高中数学人教A版第三章三角恒等变换3.2简单的三角恒等变换导学案新必修4_147
人教a版必修4学案:3.2简单的三角恒等变换(含答案)
3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换
3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
精选人教A版高中数学必修4第三章三角恒等变换3.2简单的三角恒等变换导学案
3.2 简单的三角恒等变换学习目标.1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一.半角公式思考1.我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样?答案.结果是cos α=2cos2α2-1=1-2sin 2α2=cos 2α2-sin 2α2. 思考2.根据上述结果,试用sin α,cos α表示sin α2,cos α2,tan α2.答案.∵cos2α2=1+cos α2,∴cos α2=± 1+cos α2, 同理sin α2=±1-cos α2,∴tan α2=sinα2cosα2=±1-cos α1+cos α.思考3.利用tan α=sin αcos α和倍角公式又能得到tan α2与sin α,cos α怎样的关系?答案. tan α2=sin α2cos α2=sin α2·2cosα2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sinα2cos α2·2sinα2=1-cos αsin α.梳理知识点二.辅助角公式思考1.a sin x +b cos x 化简的步骤有哪些? 答案.(1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2.在上述化简过程中,如何确定θ所在的象限? 答案.θ所在的象限由a 和b 的符号确定. 梳理.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=ba)类型一.应用半角公式求值例1.已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解.∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟.(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). 跟踪训练1.已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2. 解.∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二.三角恒等式的证明例2.求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明.要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2.证明:sin α+11+sin α+cos α=12tan α2+12.证明.∵左边=2tanα21+tan2α2+11+2tan α21+tan 2 α2+1-tan2α21+tan2α2=tan2α2+2tan α2+11+tan 2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三.利用辅助角公式研究函数性质例3.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解.(1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟.(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解.(1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四.三角函数在实际问题中的应用例4.如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解.如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟.此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解.连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为(..)A.63 B.-63 C.±63 D.±33答案.A解析.由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于(..)A.45B.-45C.415D.-35 答案.B解析.cos θ=cos 2θ2-sin2θ2cos 2θ2+sin2θ2=1-tan2θ21+tan2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是(..)A.1B.2C.32D.3答案.C解析.f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案.-1解析.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解.原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2⎝ ⎛⎭⎪⎫sin 2α2-cos 2α2⎪⎪⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪⎪⎪cos α2.因为180°<α<360°,所以90°<α2<180°,所以cos α2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限;②tan φ=b a(或sin φ=b a 2+b2,cos φ=a a 2+b 2).3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握,例如sin x ±cos x =2sin ⎝ ⎛⎭⎪⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎪⎫x ±π3等. 课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于(..)A.-12B.12 C.2 D.-2答案.A解析.∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cos α21-sinα2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于(..)A.1B.2C.3D.4 答案.C解析.cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于(..)A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案.C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是(..)A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形答案.B解析.用降幂公式进行求解. 5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为(..) A.12 B.-13 C.-23 D.2π3答案.A解析.f (x )=32cos 2ωx +12sin 2ωx +32+a =sin ⎝⎛⎭⎪⎫2ωx +π3+32+a , 依题意得 2ω·π6+π3=π2⇒ω=12. 6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c = 1-cos 50°2,则有(..) A.c <b <aB.a <b <cC.a <c <bD.b <c <a 答案.C解析.a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的, ∴a <c <b .7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于(..) A.-13B.5C.-5或13D.-13或5 答案.B解析.由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2m m +5)2=1,解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案.- 1-a2 解析.sin 2θ4=1-cos θ22,∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=- 1-cos θ22=- 1-a2.9.sin 220°+sin 80°·sin 40°的值为 .答案.34解析.原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34.10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案.π解析.∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 三、解答题11.已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解.∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎪⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6 =35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 证明.∵左边=tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2 =sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin x cos x +cos 2x=右边. ∴原等式得证.13.已知cos 2θ=725,π2<θ<π, (1)求tan θ的值;(2)求2cos 2θ2+sin θ2sin (θ+π4)的值. 解.(1)因为cos 2θ=725, 所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34, 因为π2<θ<π,所以tan θ=-34. (2)因为π2<θ<π,tan θ=-34, 所以sin θ=35,cos θ=-45, 所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ =1-45+35-45+35=-4. 四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 . 答案.32.12解析.∵A +B =2π3, ∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B ) =1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B ) =1-12cos(A -B ), ∴当cos(A -B )=-1时,原式取得最大值32; 当cos(A -B )=1时,原式取得最小值12. 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解.(1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。
高中数学必修四教案-3.2 简单的三角恒等变换(1)-人教A版
数学
年级/册
高一年级(上)
教材版本
人教版A版必修四
课题名称
第三章 三角恒等变换
3.2简单的三角恒等变换
利用三角恒等变换求三角函数的最值(辅助角公式的推导及应用)
难点名称
辅助角公式的推导与辅助角的选取
难点分析
从知识角度分析为什么难
知识点本身内容比较抽象、复杂,推导过程要用到转化的数学思想,要实现将含有多个三角函数的函数解析式转化成只含有一个三角函数的形式,凸显了模型化思维方式。
知识讲解
(难点突破)
3、推导辅助角公式:把形如的三角函数解析式化成 的形式
分析:若a=0或b=0时, 已经是的形式,无需化简。
若ab≠0时
课堂练习
(难点巩固)
解:
小结
1、 辅助角公式: 2、
2、 辅助角公式的应用:
利用辅助角公式将形如
的三角函数式化成的形式,进而
求函数的最值、最小正周期以及单调区间等。
从学生角度分析为什么难
学生对两角和与差的正弦公式的逆向使用能力较弱,以至于在辅助角公式推导和辅助角的选取上存在困难。
难点教学方法
1、复习导入,做足准备。
2、给学生充足的时间思考、动手实践。
3、多媒体辅助教学。教学环节教学过程导入1、复习导入:
两角和与差的正弦公式:
2、练习:利用两角和与差的正弦公式化简下列式子
人教A版高中数学必修4第三章三角恒等变换导学案
第三章 三角恒等变换1.三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1.已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析.将π6+α看作一个整体,观察π6+α与5π6-α的关系.解.∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2.设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案.-34三、注意发现互余角、互补角,利用诱导公式转化角 例3.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析.转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4.求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析.观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解.f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2.三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析.3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案.2点评.常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解.因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评.一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析.cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案.-79点评.正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析.cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案.3点评.解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解.原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评.这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3.聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1.求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解.原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2.求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解.原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评.形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3.求函数y =2sin x +12sin x -1的值域.解.原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4.求函数y =sin x +3cos x -4的值域.解.原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评.对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5.设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解.y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评.形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6.试求函数y =sin x +cos x +2sin x cos x +2的最值.解.设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评.一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2). 四、利用函数的单调性求解例7.求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解.y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8.在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解.AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评.一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4.行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1.已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析].由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2.已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解].由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析].由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解].由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3.在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解].由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析].在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解].由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4.判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解].f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析].运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解].事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评.判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5.若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解].∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析].∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解].∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5.平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析.由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案.π点评.解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析.因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案.-17250点评.解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析.由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案.2π3点评.解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析.由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案.4点评.解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于(..) A.-32 B.-16 C.16D.32解析.由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案.D点评.平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6.单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1.已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解.设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评.借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2.已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析.如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案.-43点评.若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3.如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解.(1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评.借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7.教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1.求函数y =2sin x (sin x -cos x )的最小值. 解.y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2.求函数y =12cos 2x +32sin x cos x +1的单调区间.解.y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3.函数y =cos 22x +4cos 2x sin 2x 的最小正周期是(..) A.2π B.π C.π2 D.π4答案.C解析.y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为(..)A. 2B.- 2C.1D.-1 答案.D解析.y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
3.2简单的三角恒等变换 导学案-2021-2022学年高一数学人教A版必修4
3. 2简单的三角恒等变换学习目标、细解考纲1.引导学生以已有的公式为依据,以推导积化和差、和差化积、半角公式作为基本训练.2.学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.3.培养学生化归和整体转化思想,注重方程思想和消元思想的培养.4.通过简单的三角恒等变换的学习,提升学生逻辑推理和运算求解的核心素养.一、自主学习—————(素养催化剂)1.预习学习半角公式2.预习学习积化和差、和差化积公式二、探究应用,“三会培养”-------(素养生长剂)例1、已知,31cos =αα是第四象限角,求2tan ,2cos ,2sin ααα的值变式1:(教材改编)已知α是第四象限角,,51cos sin =+αα求2tan α的值例2、求证:()()[]βαβαβα-++=sin sin 21cos sin变式2:求证:2cos 2sin2sin sin βαβαβα-+=+变式3:求证:αααααsin cos 1cos 1sin 2tan -=+=例3、如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值变式4:(教材改编)如图,已知OPQ 是半径为1,圆心角为2π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值三、拓展延伸、智慧发展--------(素养强壮剂)例4、设(){}*,2|,cos sin N k k n n x x f x ∈=∈+=ααα,利用三角变换,估计()αf 在6,4,2=x 时的取值情况,进而对x 取一般值时()αf 的取值范围作出一个猜想.四、本课总结、感悟思考--------(素养升华剂)。
人教A版高中数学必修4第三章 三角恒等变换3.2 简单的三角恒等变换导学案
简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos(μ=± ⇔ )cos(sin sin cos cos βαβαβα±=μ (3)βαβαβαtan tan 1tan tan )tan(μ±=± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2cos 2cos 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα2cos 24cos 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2sin 2cos 12αα=-因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα2sin 24cos 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值 (提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+o o o o的值等于( )A .14 B .2 C .12D .42、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3- B .3 C .13- D .133、cos5πcos52π的值等于( )A .41B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º= ( ) A .21B .23C .426+D .426- 7、sin14ºcos16º+sin76ºcos74º的值是( )A .23 B .21 C .23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724-9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是 ( ) A .0 B . —2 C .2 D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C . 32-D .332-。
人教A版高中数学必修四 第三章《简单的三角恒等变换》教案
3.2 简单的三角恒等变换(3个课时)一、课标要求: 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =的周期,最大值和最小值.解:sin y x x =这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P -14T T -。
(新课程)高中数学《3.2简单的三角恒等变换》导学案 新人教a版必修4
3.2 简单的三角恒等变换1、会用已学公式进行三角函数式的化简、求值和证明。
2、会推导半角公式,积化和差、和差化积公式(公式不要求记忆)。
3、进一步提高运用转化、换元、方程等数学思想解决问题的能力。
(预习教材P139—P142)复习:Cos(α+β)=Cos(α-β)=sin(α+β)=sin(α-β)=tan(α+β)=tan(α-β)=sin2α=tan2α=cos2α=二、新课导学※探索新知探究一:半角公式的推导请同学们阅看p139例1..思考1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
.思考2、半角公式中的符号如何确定?思考3、二倍角公式和半角公式有什么联系?.思考4、代数变换与三角变换有什么不同?变式训练1:求证sin tan 21cos 1cos tan 2sin αααααα=+-=探究二:积化和差、和差化积公式的推导.请同学们阅看p140例2。
.思考 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?.思考2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?.思考3、在例2证明过程中,体现了什么数学思想方法?点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式.变式训练2:课本p142 2(2)、3(3)探究三:三角函数式的变换。
请同学们阅看p140例3。
.思考1、例3的过程中应用了哪些公式?.思考2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.变式3:已知函数x x x x x f 44sin cos sin 2cos )(--=(1)求)(x f 的最小正周期,(2)当]2,0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合※ 典型例题例1.已知135sin =α,且α在第二象限,求2tan α的值。
高中数学第三章三角恒等变换3.2简单的三角恒等变换3.2.1倍角公式导学案新人教A版必修4【精选】.doc
13.2.1二倍角公式教学目标: 12能用上述公式进行简单的求值、化简、恒等证明教学重点:二倍角公式的推导 教学过程sin15cos15×o o 的求值问题?一、复习引入复习两角和与差的正弦、余弦、正切公式:),(,sin cos cos sin )sin(R R ∈∈+=+βαβαβαβα )(βα+S=+)sin(αα),(,sin sin cos cos )cos(R R ∈∈-=+βαβαβαβα )(βα+C =+)cos(αα ),2,,(,tan tan 1tan tan )tan(Z k k ∈+≠+-+=+ππβαβαβαβαβα)(βα+T=+)tan(αα二、讲解新课(一) 二倍角公式的推导在公式)(βα+S ,)(βα+C ,)(βα+T 中,当βα=时,得到相应的一组公式: sin 2________________α= 简记为_____________.cos 2________________α=简记为_____________又可写成________________.________________.=⎧⎨=⎩tan 2________________α= 简记为_____________.(二)公式的变形应用21sin 2_______________(_________).α±==1cos 2_______;1cos 2_______.αα+=-= 22sin _______.cos _______.αα⇒==(三)相对2倍角(倍角的相对性)sin 2________________α=cos 2________________α=sin α= cos α= (利用2α表示) cos4α= __________________ cos3_________.α=(利用32α表示). sin2α=__________________ (22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用)例1不查表.求下列各式的值(公式的逆用) (1) 15cos 15sin ; (2)8sin 8cos 22ππ-;(3)5.22tan 15.22tan 22-; (4)75sin 212-. (5)22cos 112π-= (6)求cos 20cos 40cos60cos80o o o o 的值例2求值(1))125cos 125)(sin 125cos 125(sin ππππ-+(2)2sin 2cos 44αα- (3)ααtan 11tan 11+-- (4)θθ2cos cos 212-+例3若tan θ = 3,求sin2θ- cos2θ的值三、课后提升1、已知12cos13α=,)2,0(πα∈,求sin2α,cos2α,tan2α的值 ?2、已知5tan12α=,3(,)2παπ∈,求tan2α的值。
人教A版高中数学必修四全册导学案简单的三角恒等变换
3. 2 简单的三角恒等变换三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高推理能力. 重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学过程 引言:三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台. 应用:例1、 试以cos α表示sin 22a ,cos 22a , tan 22a .例2、 练习:求证tan 2a=ααααsin cos 1cos 1sin -=+。
例2、证明(1)sinαcosβ=21[sin(α+β)+sin(α-β)]; (2)sinθ+sinφ=2sin 2cos2ϕθϕθ-+.练习:课后练习2(2)、3(2)、题例3、 求函数x x y cos 3sin +=的周期,最大值和最小值。
练习:求下列函数的最小正周期,递增区间及最大值。
(!)x x y 2cos 2sin = (2)12cos22+=xy (3)x x y 4sin 4cos 3+=阅读内容:接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.课堂小结1、回顾前面学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2、本节课还研究了通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.作业课本习题3.2 A组1(2)(4)、3、5、题。
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一半角公式思考1 我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样?答案结果是cos α=2cos2α2-1=1-2sin2α2=cos2α2-sin2α2.思考2 根据上述结果,试用sin α,cos α表示sinα2,cosα2,tanα2.答案∵cos2α2=1+cos α2,∴cosα2=±1+cos α2,同理sinα2=±1-cos α2,∴tanα2=sinα2cosα2=±1-cos α1+cos α.思考3 利用tan α=sin αcos α和倍角公式又能得到tanα2与sin α,cos α怎样的关系?答案 tanα2=sinα2cosα2=sinα2·2cosα2cosα2·2cosα2=sin α1+cos α,tanα2=sinα2cosα2=sinα2·2sinα2cosα2·2sinα2=1-cos αsin α.梳理sinα2=±1-cos α2,cosα2=±1+cos α2,tanα2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α .知识点二 辅助角公式思考1 a sin x +b cos x 化简的步骤有哪些? 答案 (1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2 在上述化简过程中,如何确定θ所在的象限? 答案 θ所在的象限由a 和b 的符号确定. 梳理 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=b a)类型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟 (1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手).跟踪训练1 已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2.解 ∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二 三角恒等式的证明例2 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2 证明:sin α+11+sin α+cos α=12tan α2+12.证明 ∵左边=2tanα21+tan2α2+11+2tanα21+tan 2 α2+1-tan2α21+tan 2α2=tan2α2+2tan α2+11+tan2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三 利用辅助角公式研究函数性质例3 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3 已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解 (1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四 三角函数在实际问题中的应用例4 如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解 如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟 此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解 连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B.-63 C.±63 D.±33答案 A解析 由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于( ) A.45 B.-45 C.415 D.-35 答案 B解析 cos θ=cos 2θ2-sin2θ2cos 2θ2+sin 2θ2=1-tan2θ21+tan 2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是( )A.1B.2C.32D.3答案 C解析 f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案 -1解析 f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解 原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cosα2⎝⎛⎭⎪⎫sin2α2-cos2α2⎪⎪⎪⎪⎪⎪cosα2=-cosα2cos α⎪⎪⎪⎪⎪⎪cosα2.因为180°<α<360°,所以90°<α2<180°,所以cosα2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tan φ=ba(或sin φ=ba2+b2,cos φ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握,例如sin x±cos x=2sin⎝⎛⎭⎪⎫x±π4;sin x±3cos x=2sin⎝⎛⎭⎪⎫x±π3等.课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A.-12B.12C.2D.-2答案 A解析∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cosα21-sinα2cosα2=cos α2+sinα2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A.1B.2C.3D.4 答案 C解析 cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于( )A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案 C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形答案 B解析 用降幂公式进行求解.5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为( )A.12B.-13C.-23D.2π3 答案 A 解析 f (x )=32cos 2ωx +12sin 2ωx +32+a =sin ⎝ ⎛⎭⎪⎫2ωx +π3+32+a , 依题意得 2ω·π6+π3=π2⇒ω=12.6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A.c <b <a B.a <b <c C.a <c <b D.b <c <a答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°) =sin 24°,b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的,∴a <c <b . 7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.-13B.5C.-5或13D.-13或5答案 B解析 由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2m m +5)2=1,解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8, sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案 -1-a 2解析 sin 2θ4=1-cosθ22,∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=-1-cosθ22=-1-a2. 9.sin 220°+sin 80°·sin 40°的值为 . 答案 34解析 原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220° =sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34. 10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案 π 解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.三、解答题11.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解 ∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α=32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45.∵-π2<α<0,∴-π3<α+π6<π6,∴cos ⎝⎛⎭⎪⎫α+π6=35.∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝ ⎛⎭⎪⎫α+π6sin π6=35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x .证明 ∵左边=tan 3x 2-tan x2=sin 3x 2cos 3x 2-sinx2cosx2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cosx 2=sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin xcos x +cos 2x=右边.∴原等式得证.13.已知cos 2θ=725,π2<θ<π,(1)求tan θ的值; (2)求2cos 2θ2+sin θ2sin (θ+π4)的值.解 (1)因为cos 2θ=725,所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34,因为π2<θ<π,所以tan θ=-34.(2)因为π2<θ<π,tan θ=-34,所以sin θ=35,cos θ=-45,所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ=1-45+35-45+35=-4.四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 .答案 32 12解析 ∵A +B =2π3,∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B )=1+cos(A +B )cos(A -B ) =1+cos 2π3·cos(A -B )=1-12cos(A -B ),∴当cos(A -B )=-1时, 原式取得最大值32;当cos(A -B )=1时,原式取得最小值12.15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。