2019年中考数学专题训练:网格问题(含答案)

合集下载

全国181套中考数学试题分类解析汇编 专题33网格问题

全国181套中考数学试题分类解析汇编 专题33网格问题

全国181套中考数学试题分类解析汇编专题:33网格问题一、选择题1.(某某某某、某某3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为(A )30°(B )45° (C )90° (D )135°【答案】C 。

【考点】旋转的性质,勾股定理的逆定理。

【分析】△COD 是由△AOB 绕点O 按逆时针方向旋转而得,由图可知,∠AOC 为旋转角,可利用△AOC 的三边关系解答:设小方格的边长为1,从图知,OC=OA=222222+=,AC=4。

从而OA ,OC , AC 满足OC 2+OA 2=AC 2,∴△AOC 是直角三角形,∴∠AOC=90°。

故选C 。

2.(某某某某、某某3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是A 、点(0,3)B 、点(2,3)C 、点(5,1)D 、点(6,1) 【答案】 C 。

【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理。

【分析】如图,根据垂径定理的性质得出圆心所在位置O (2,0),再根据切线的性质得出∠OBD+∠EBF=90°时,BF 与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F 点的坐标为:(5,1)。

故选C 。

3.(某某贺州3分)如图,在方格纸中的△ABC 经过变换得到△DEF,正确的变换是A .把△ABC 向右平移6格,B .把△ABC 向右平移4格,再向上平移1格C .把△ABC 绕着点A 顺时针方向90º旋转,再右平移6格D .把△ABC 绕着点A 逆时针方向90º旋转,再右平移6格B C E FD A 【答案】D 。

【考点】平移和旋转变换。

【分析】根据平移和旋转变换的特点,直接得出结果。

故选D 。

4.(某某某某3分)在边长为1的小正方形组成的网格中,有如图所示的A 、B 两点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率为A . 3 25B . 4 25C . 1 5D . 6 25【答案】D 。

中考数学专项训练:网格作图(含解析)

中考数学专项训练:网格作图(含解析)

4 的正方形网格,每个小正方形的顶点称为格点,在图①中已画出线段19.(2019·吉林)图①,图②均为4
AB,在图②中已画出线段CD,其中A,B,C,D均为格点,按下列要求画图:
(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°
解:
【知识点】菱形,勾股定理
20.(2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图①中以线段AB为边画一个△ABM,使其面积为6.
(2)在图②中以线段CD为边画一个△CDN,使其面积为6.
(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.
解:(1)如图所示:
(2)如图所示:
(3)如图所示:
【知识点】作图—应用与设计作图.。

中考数学专题复习(三)网格作图题(含答案)

中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。

2019年中考二轮数学重点试题汇编:网格专项(苏版)

2019年中考二轮数学重点试题汇编:网格专项(苏版)

2019年中考二轮数学重点试题汇编:网格专项(苏版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题1、2、3、【二】填空题1、2、3、【三】解答题1、〔2018年江西南昌十五校联考〕如图1,正方形ABCD是一个6 ×6网格电子屏的示意图,其中每个小正方形的边长为1、位于AD中点处的光点P按图2的程序移动、求光点P 经过的路径总长〔结果保留π〕、答案:解:∵90π346π180⨯⨯=,∴点P经过的路径总长为6π………4分1、〕图①、图②均为76⨯的正方形网格,点A B C、、在格点(小正方形的顶点)上、〔1〕在图①中确定格点D,并画出一个以A B C D、、、为顶点的四边形,使其为轴对称图形;图3图2D图1B〔2〕在图②中确定格点E ,并画出一个以A B C E 、、、为顶点的四边形,使其为中心对称图形、 、〔2018山东省德州二模〕如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P 、Q 分别从点F 、A 出发向右移动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点E 时,两个点都停止运动。

(1)请在6×8的网格纸中画出运动时间t 为2秒时的线段PQ ;(2)如图2,动点P 、Q 在运动的过程中,PQ 能否垂直于BF ?请说明理由。

(3)在动点P 、Q 运动的过程中,△PQB 能否成为等腰三角形?假设能,请求出相应的运动时间t ;假设不能,请说明理由、 答案:〔1〕略…………………………………………………………………………2分 〔2〕不能…………………………………………………………………………3分 假设PQ ⊥BF 时,………………………………………………………………5分,429>,所以不能……………………………………………………………………6分 (3)①BP=PQ,38=t 或8(舍去)……………………………………………………8分②BQ=PQ,47=t ………………………………………………………………9分③BP=BQ,无解…………………………………………………………………10分 3、〔2018山东省德州三模〕〔1〕如图1,∠AOB ,OA =OB ,点E 在OB 边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺........在图中画出∠AOB 的平分线、〔保留作图痕迹,不要求写作法〕〔2〕如图2,在10×10的正方形网格中,点A 〔0,0〕、B 〔5,0〕、C 〔3,6〕、D 〔-1,3〕,①依次连结A 、B 、C 、D 四点得到四边形ABCD ,四边形ABCD 的形状是▲.②在x 轴上找一点P ,使得△PCD 的周长最短〔直接画出图形,不要求写作法〕; 此时,点P 的坐标为▲,最短周长为▲. 答案:解:〔1〕如下图;……………………………………………………………………2分 〔2〕①等腰梯形;…………………………………………………………………4分②P 〔31,0〕…………………………………………………………………6分597+〔其中画图正确得2分〕……………………………………10分4、〔2018江西高安〕问题背景:在ABC △中,AB 、BC 、AC、,求这个三角形的面积、小辉同学在解答这道题时,先建立一个正方形网格〔每个小正方形的边长为1〕,再在网2 9=t格中画出格点ABC △〔即ABC △三个顶点都在小正方形的顶点处〕,如图①所示、这样不需求ABC △的高,而借用网格就能计算出它的面积、 〔1〕请你将ABC △的面积直接填写在横线上、__________________思维拓展: 〔2〕我们把上述求ABC △面积的方法叫做构图法...、假设ABC △、〔0a >〕,请利用图②的正方形网格〔每个小正方形的边长为a 〕画出相应的ABC △,并求出它的面积、 探索创新:〔3〕假设ABC △三边的长分别为、、〔00m n >>,,且m n ≠〕,试运用构图法...求出这三角形的面积、 答案:〔1〕错;〔2〕3。

初中数学专题复习网格问题

初中数学专题复习网格问题

网 格 问 题1. 已知图1和图2中的每个小正方形的边长都是1个单位. (1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2. 如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.DCBA图(一) 图(二)3. 如图,在55 的正方形网格中,每个小正 方形的边长都为1.请在所给网格中按下列要求画 出图形.(1)从点A 出发的一条线段AB ,使它的另一个端点落在格点(即小正方形的顶点)上, 且长度为22;(2)以(1)中的AB 为边的一个等腰三角形ABC ,使点C 在格点上,且另两边的长 都是无理数;(3)以(1)中的AB 为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点都 在格点上,各边长都是无理数.图2 F E A B C 图1 (第3题图)4. 下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).5. 图(1)是一个10×10格点正方形组成的网格. △ABC 是格点三角形(顶点在网格交点处),请你完成下面两个问题:(1) 在图(1)中画出与△ABC 相似的格点△A 1B 1C 1和△A 2B 2C 2, 且△A 1B 1C 1与△ABC 的相似比是2, △A 2B 2C 2与△ABC 的相似比是22.(2) 在图(2)中用与△ABC 、△A 1B 1C 1、△A 2B 2C 2全等的格点三角形(每个三角形至少使用一次), 拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【解说词】6. 如图,有一条小船,(1) 若把小船平移,使点A 平移到点B ,请你在图中画出平移后的小船;(5分) (2) 若该小船先从点A 航行到达岸边L 的点P 处补给后,再航行到点B ,但要求航程最短,EC D GB FA试在图中画出点P 的位置(3分)7. ⑴如图6,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B ,再由图形B 得到图形C (对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);⑵如图6,如果点P 、P 3的坐标分别为(0,0)、(2,1),写出点P 2的坐标; ⑶图7是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!注:方格纸中的小正方形的边长为1个单位长度.图7图68. 在如图10所示的平面直角坐标系中,已知△ABC 。

全国各地2019年中考数学分类解析(159套)专题33 网格问题

全国各地2019年中考数学分类解析(159套)专题33 网格问题

2019年全国中考数学试题分类解析汇编(159套63专题)专题33:网格问题一、选择题1. (2019宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.0【答案】B。

【考点】网格问题,圆锥的计算,由三视图判断几何体,勾股定理。

【分析】由题意和图形可知,几何体是圆锥,底面半径为4,根据勾股定理可得母线长为5。

则侧面积为πrl=π×4×5=20π≈62.8。

故选B。

2. (2019湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)【答案】B。

【考点】坐标与图形的对称和平移变化。

【分析】∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为-2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为-3。

∴点A2的坐标是(2,-3)。

故选B。

3. (2019湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A. B. C. D.4. (2019山东聊城3分)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是【 】A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°【答案】B 。

四川省自贡市2019年中考数学试卷(word版,有答案)

四川省自贡市2019年中考数学试卷(word版,有答案)

2019年四川省自贡市中考数学试卷一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣22.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4 C.2.5×10﹣4D.25×10﹣53.下列根式中,不是最简二次根式的是()A. B.C.D.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣45.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.27.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤18.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm210.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是.12.若n边形内角和为900°,则边数n=.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD 相交于点P,则的值=,tan∠APD的值=.三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:;(2)解不等式②,得:;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2019•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.六、解答题:本题12分22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.七、解答题23.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.2019年四川省自贡市中考数学试卷参考答案与试题解析一、选择题:本题共10个小题,每小题4分,共4分1.计算1﹣(﹣1)的结果是()A.2 B.1 C.0 D.﹣2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:1﹣(﹣1),=1+1,=2.故选A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.将0.00025用科学记数法表示为()A.2.5×104B.0.25×10﹣4 C.2.5×10﹣4D.25×10﹣5【考点】科学记数法—表示较小的数.【分析】根据用科学记数法表示较小的数的方法解答即可.【解答】解:0.00025=2.5×10﹣4,故选:C.【点评】本题考查的是用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列根式中,不是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15°B.25°C.30°D.75°【考点】圆周角定理;三角形的外角性质.【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD﹣∠A=75°﹣45°=30°,∴∠B=∠C=30°,故选C.【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键.6.若+b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的和为零,可得a、b的值,根据有理数的乘法,可得答案.【解答】解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.【点评】本题考查了非负数的性质,利用非负数的和为零得出a、b的值是解题关键.7.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.8.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【解答】解:主视图,如图所示:.故选:B.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.9.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长= cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.10.二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.【考点】二次函数的性质;正比例函数的图象;反比例函数的图象.【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【解答】解:由y=ax2+bx+c的图象开口向下,得a<0.由图象,得﹣>0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选:C.【点评】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.二、填空题:共5个小题,每小题4分,共20分11.若代数式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为:x≥1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.若n边形内角和为900°,则边数n=7.【考点】多边形内角与外角.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【考点】列表法与树状图法.【分析】根据树状图判断出蚂蚁一共有多少种路可以选择,有几种可能可以获取食物即可解决问题.【解答】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.【点评】本题考查树状图、概率等知识,记住概率的定义是解决问题的关键,考虑问题要全面,属于中考常考题型.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为16cm2.【考点】一次函数综合题.【专题】压轴题.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为16.【点评】此题考查平移的性质及一次函数的综合应用,难度中等.15.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD 相交于点P,则的值=3,tan∠APD的值=2.【考点】锐角三角函数的定义;相似三角形的判定与性质.【专题】网格型.【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【解答】解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.三、解答题:共2个题,每小题8分,共16分16.计算:()﹣1+(sin60°﹣1)0﹣2cos30°+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据负整数指数幂,零指数幂,特殊角的三角函数值,绝对值的定义化简即可.【解答】解:原式=2+1﹣+﹣1=2.【点评】本题考查负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等知识,熟练掌握这些知识是解决问题的关键,记住a﹣p=(a≠0),a0=1(a≠0),|a|=,属于中考常考题型.17.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:x<3;(2)解不等式②,得:x≥2;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:2≤x<3.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)不等式①,得x<3;(2)不等式②,得x≥2;(3)把不等式①和②的解集在数轴上表示出来,4)原不等式组的解集为2≤x<3.故答案分别为:x<3,x≥2,2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题:共2个体,每小题8分,共16分18.某校为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(2019•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)【考点】解直角三角形的应用.【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC 中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、解答题:共2个题,每题10分,共20分20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.【考点】众数;扇形统计图;条形统计图;中位数.【专题】计算题;数据的收集与整理.【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.【点评】此题考查了众数,扇形统计图,条形统计图,以及中位数,弄清题中的数据是解本题的关键.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.【考点】三角形的外接圆与外心;圆周角定理;切线的判定.【分析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;【解答】证明:(1)∵BD=BA,∴∠BDA=∠BAD,∵∠1=∠BDA,∴∠1=∠BAD;(2)连接BO,∵∠ABC=90°,又∵∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°,∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.六、解答题:本题12分22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b﹣=0的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式kx+b﹣<0的解集.【考点】反比例函数与一次函数的交点问题;反比例函数的性质.【分析】(1)把B (2,﹣4)代入反比例函数y=得出m的值,再把A(﹣4,n)代入一次函数的解析式y=kx+b,运用待定系数法分别求其解析式;(2)经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;(3)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(4)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,即使kx+b ﹣<0.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解得:.∴一次函数的解析式为y=﹣x﹣2.(2):∵A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,∴方程kx+b﹣=0的解是x1=﹣4,x2=2.(3)∵当x=0时,y=﹣2.∴点C(0,﹣2).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6;(4)不等式kx+b﹣<0的解集为﹣4<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.七、解答题23.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.【考点】几何变换综合题.【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF 的长度不变【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS).∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形.八、解答题24.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.【考点】二次函数的性质;轴对称的性质.【分析】(1)根据抛物线经过原点b=0,把a=、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△PCB∽△APM,得=,列出方程即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+4ax+b(a>0)经过原点O,∴b=0,∵a=,∴抛物线解析式为y=﹣x2+6x,∵x=2时,y=8,∴点B坐标(2,8),∵对称轴x=3,B、C关于对称轴对称,∴点C坐标(4,8),∴BC=2.(2)∵AP⊥PC,∴∠APC=90°,∵∠CPB+∠APM=90°,∠APM+∠PAM=90°,∴∠CPB=∠PAM,∵∠PBC=∠PMA=90°,∴△PCB∽△APM,∴=,∴=,整理得a2﹣4a+2=0,解得a=2±,∵a>0,∴a=2+.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.。

部编数学九年级下册专题14网格中画相似(解析版)含答案

部编数学九年级下册专题14网格中画相似(解析版)含答案

专题14 网格中画相似1.如图,大小为4×4的正方形方格中,能作出与△ABC 相似的格点三角形(顶点都在正方形的顶点上),其中最小的一个面积是______.【答案】12##0.5【点睛】本题考查作图﹣相似变换,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.图①,图②,图③均是66´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中.按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使ABD ACD S S =V V ;(2)在图②中,在BC 上画一点E ,使ABE S V :2ACE S =V :3;(3)在图③中,在ABC 内画一点F ,使ACF S △:ABF S △:2BCF S =V :3:3.(2)在图②中,点E 即为所求;点C 下移三个单位得到点连接MN ,得到CME ∽△△32CE CM BE BN ==∴,∴ABE S V :2ACE S =V :3(3)在图③中,点F 即为所求.由图可知,6AC =,AB =12ABC S =∴△,∵ACF S △:ABF S △:BCF S =V 21238ACF S =´=∴△,ABF S =△【点睛】本题考查作图-应用与设计作图,三角形相似性质,三角形的面积等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.3.(1)如图,4×4的正方形方格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上.请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在小正方形的顶点上.并将此三角形涂上阴影(2)按要求作图,不要求写作法,但要保留作图痕迹:我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图1,在平行四边形ABCD中,E为CD的中点,作BC的中点F.②如图2,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH(2)①如图1,点F 为所作;理由:因为三角形的三条中线交于同一点,四边形ABCD 是平行四边形,∴O 是BD 的中点,∵E 是CD 的中点,根据三条中线交于同一点,连接BE 交AC 于P ,则点P 为三条中线的交点,作射线DP 交DP 于点F ,则点F 为BC 的中点;②如图2,找到格点D ,过A 点作AD 垂直AB ,再平移DA 得到CE ,则CE ⊥AB ,接着作MN 垂直AC ,平移MN 得到BF ,则BF ⊥AC ,BF 与CE 的交点O 为△ABC 的垂心,所以延长AO 交BC 于H ,则AH ⊥BC ,AH 为所作.理由:∵ABG DAKV V ≌∴GAB ADKÐ=Ð90GAB DAK ADK DAK \Ð+Ð=Ð+Ð=°∴90BAD Ð=°∴BA AD^平移AD 至CJ ,并延长,交AB 于点E ,∴CE AB^同理作出BF AC ^,,BF CE 交于点O根据三角形三条高所在的直线交于同一点,延长AO 交BC 于点H ,则AH 即为所求.【点睛】本题考查了画相似三角形:根据相似三角形的判定条件作为作图的依据.比较简单的是把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,也考查了三角形的重心和平行四边形的性质.4.在4*4的方格中,ABC V 的三个顶点都在格点上.(1)在图1中画出与ABC V 成轴对称且与ABC V 有公共边的格点三角形(画出一个即可);(2)将图2中画一个与ABC V 相似的三角形.【答案】(1)见解析;(2)见解析.【分析】(1)选取AC 所在的直线为对称轴作图即可;(2)保证每条边方向一致,且边长减小为原来的一半作图即可.【详解】(1)解:如下图所示,AB C ¢V 即为所求作的三角形;(答案不唯一)(2)如下图所示,DEF V 即为所求作的三角形;【点睛】本题考查轴对称作图与作相似图形,掌握两个图形关于某条直线对称的性质与相似三角形的性质是解题的关键.5.如图,ABC D 是正方形网格中的格点三角形(顶点在格点上),请在正方形网格上按下列要求画一个格点三角形与ABC D 相似.(1)在图甲中画△111A B C ,使得△111A B C 的周长是ABC D 的周长的2倍;(2)在图乙中画出△222A B C ,使得△222A B C 的面积是ABC D 的面积的2倍.(1)A B C,即为所求;解:如图所示:△111(2)A B C,即为所求.解:如图所示:△222【点睛】此题主要考查了相似变换,正确得出对应三角形的边长是解题关键.6.如图,在8×8的正方形网格中,△ABC是格点三角形,请按以下要求作图.(1)在图1中画出格点△EDP,使得△EDP∽△ABC,且面积比为1;2(2)在图2中将△ABC绕着某格点逆向时针旋转90°得到格点△PFG,其中C与P对应.【答案】(1)见解析(2)见解析【分析】(1)直接利用位似图形的性质,结合位似中心得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.(1)如图,(案不唯一)(2)如图,【点睛】此题主要考查了位似变换以及旋转变换,根据题意得出对应点位置是解题关键.7.如图,在74´方格纸中,点A,B,C都在格点上(△ABC称为格点三角形,即格点△ABC),用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使25CD AC=;(2)在图2中作一个格点△CEF,使△CEF与△ABC相似.【答案】(1)见解析(2)见解析【分析】(1)根据“8字形”相似,可得CD:AD=2:3,从而得出点D的位置;(2)根据∠ACB=90°,AC=2BC,即可画出△CEF.【详解】(1)解:如图1所示,点D即为所求,(2)如图2所示,△CEF即为所求,【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.如图,在7×6的正方形网格中,点A、B、C、D在格点(小正方形的顶点)上,从点A、B、C、D四点中任取三点,两两连接,得到一个三角形,请在所得的所有三角形中,写出互为相似的两个三角形及它们的相似比.∵AB=2221+=5,AC=∴55225ADBD==,ABCD=∴52 AD AB BDBD CD BC===,∴△ABD∽△DCB,相似比9.如图,在5×5的边长为1小的正方形的网格中,如图1△ABC和△DEF都是格点三角形(即三角形的各顶点都在小正方形的顶点上).(1)判断:△ABC与△DEF是否相似?并说明理由;(2)在如图2的正方形网格中,画出与△DEF相似且面积最大的格点三角形,并直接写出其面积.【答案】(1)相似,见解析(2)图见解析,面积为5【点睛】此题考查了作图—相似变换,三角形的面积等知识,解题的关键是掌握相似变换的性质,灵活运用所学知识解决问题.10.按要求作图,无需写作法:图①图②(1)如图①,已知∠AOB,OA=OB,点E 在OB 边上,四边形AEBF 是平行四边形,只用无刻度的直尺在图中画出∠AOB 的平分线.(2)如图②,在边长为1个单位的方格纸上,有△ABC,请作一个格点△DEF,使它与△ABC相似,但相似比不能为1.Q即为所求\11.如图正方形网格中,每个小正方形的边长均为1,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中画等腰△ABC ,使得∠CAB =90°;(2)在图②中画等腰△DEF ,使△ABC ∽△DEF :1.10AB =Q ,10AC =,25BC =,5,5,10DE DF EF ===,21AB AC BC DE DF EF \===.\△ABC ∽△DEF ,且相似比为2:1.【点睛】本题考查了勾股定理,相似三角形的性质,掌握勾股定理与相似三角形的性质是解题的关12.图①、图②、图③分别是6×6的正方形网格,网格中每个小正方形的边长均为1,小正方形的顶点称为格点,点A 、B 、C 、D 、E 、P 、Q 、M 、N 均在格点上,仅用无刻度的直尺在下列网格中按要求作图,保留作图痕迹.(1)在图①中,画线段AB 的中点F .(2)在图②中,画CDE V 的中位线GH ,点G 、H 分别在线段CD 、CE 上,并直接写出CGH V 与四边形DEHG 的面积比.(3)在图③中,画PQR V ,点R 在格点上,且PQR V 被线段MN 分成的两部分图形的面积比为1:3.【答案】(1)见解析(2)见解析,面积比为1:3(3)见解析【分析】(1)根据网格的特点,找到,A B 之间单元网格的对角线,交AB 于点F ,则点F 即为所求;(2)根据(1)的方法找到,CD CE 的中点,G H ,连接GH ,根据相似三角形的性质即可求出CGH V 与四边形DEHG 的面积比;(3)根据(2)的结论,可知,只要MN 经过PQR V 的中位线,根据R 在网格上,找到符合题意的点R 即可求解.(1)如图①:13.如图,已知ABC V 和点O .(2)用无刻度的直尺,在AC边上画出点P,使23PAPC=(要求保留作图痕迹,不写作法).(2)解:如图,取网格点E、F,连接EF交AC14.如图,ABC V 是格点三角形(三角形的三个顶点都在格点上),每个小正方形的边长均为1.(1)在图(1)中将ABC V 绕点C 逆时针旋转90°,得到CDE V .(2)在图(2)中找格P ,使以格点P 、C 、B 为顶点的三角形与ABC V 相似,但不全等,请画出一个符合条件的三角形.【答案】(1)见解析(2)见解析【分析】(1)找到旋转角度、旋转中心、旋转方向后可得出各点的对应点,进而顺次连接即可得出答案;(2)可找能使PCB V 是直角三角形且2PB BC =或2PC BC =的P .(1)所作图形如下:(2)【点睛】本题考查旋转作图及相似三角形的性质,明确旋转角度、旋转中心、旋转方向是解本题的关键.15.如图是由边长为1的小正方形构成的69´网格,各个小正方形的顶点叫做格点.△ABC 的顶点在格点上,边BC 上的点D 也是一个格点.仅用无刻度的直尺在定网格中画图.画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先画出AC 的平行线DE 交AB 边于点E ,可在BC 边上画点F ,使ACF BCA ∽△△;(2)在图2中,先在边AB 找点M ,使△MDC 与△MAC 的面积相等,再在AC 上画点N ,使△CDN 的面积是△ABC 的面积的三分之一.【答案】(1)见解析(2)见解析【分析】(1)根据格点特点画出AC 的平行线即可;根据格点特点作MA ⊥AC ,连接MC ,则△AMC16.如图,在6×7的矩形网格中,我们把顶点都在格点上的多边形称为格点多边形,点A,B,C 均在格点上,按下面要求画出格点三角形.(1)在图1中,画一个△ABD,使得△ABD与△ABC全等.(2)在图2中,画一个△ACE,使得S△ABC=3S△ACE,且点E不在边BC上.注:图1,图2在答题纸上.【答案】(1)见解析(2)见解析【分析】(1)运用三角形全等判定定理SSS,在网格上构造△ABD与△ABC全等.(2)△ACE与△ABC共顶点A,因此考虑两个三角形在以A为顶点的高线相等的情况下,构造3CE=BC,从而满足S△ABC=3S△ACE.(1)解:(2)解:【点睛】本题考查三角形全等判定定理,三角形面积计算方法,找到相应的作图依据是解题关键.17.如图,在7×8的正方形网格中,点A,B,C都在格点上,用无刻度直尺完成下列作图:(1)在AC上画点E,使AE=3CE;(2)在AB上画点D,使AD=CD;(3)在BC上画点F(不与B重合),使AF^BC.(4)在AB上画点P,使tan13 ACPÐ=.(2)如图,取格点,P Q,连接PQ,交AC于点M,Q=∥,AP CQ AP CQ\APM CQM∽V VAM AP\=1=MC PQ\=AM MCM,连接根据网格的特点作正方形,同理取中点1则DM是AC的垂直平分线,\=.DA DC(3)如图,方法同(2)作正方形BXYC ,作AZ ∥(4)如图,同方法(3)作正方形,作EE AC ¢^,同方法(连接1KK 交EE ¢于点S ,作射线CS 交AB 于点13,44AE AC CE AC ==Q ,1tan 3SE ACP EC \Ð==.【点睛】本题考查了网格中无刻度直尺作图,相似三角形的性质,正方形的性质,根据相似三角形的性质确定线段的长度是解题的关键.18.如图,在6×10的方格纸ABCD中有一个格点△EFG,请按要求画线段.(1)在图1中,过点O画一条格点线段PQ(端点在格点上),使点P,Q分别落在边AD,BC上,且PQ与FG的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF上一点M,EG上一点N,连结MN,使△EMN和△EFG的相似比为2:5.(保留作图痕迹)【答案】(1)见解析(2)见解析【分析】(1)根据题意找到格点,P Q,画出线段PQ即可(1)如图所示,PQ即为所求,19.请在如图所示的网格中,运用无刻度直尺作图(保留作图痕迹)(1)在图1中画出线段AB的中垂线AC CB=.(2)如图2,在线段AB上找出点C,使:1:2\点C 即为所求,如图所示:【点睛】本题考查作图—应用与设计作图,相似三角形的应用,解题关键是学会利用数形结合的思想解决问题.20.如图在5×5的网格中,△ABC 的顶点都在格点上.(仅用无刻度的直尺在给定的网格中按要求画图,画图过程用虚线表示,画图结果用实线表示)(1)在图1中画出△ABC 的中线AD ;(2)在图2中画线段CE ,点E 在AB 上,使得ACE S V :BCE S V =2:3;(3)在图3中画出△ABC 的外心点O .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)由题知BO =CO ,取两个格点F 、G 构造CFD BGD △≌△,即可得中点D .(2)由ACE S V :BCE S V =2:3得AE :BE =2∶3,取格点H 、J ,构造△∽△AHE BGE ,且相似比为2∶3,即可得到E 点.(3)由O 为△ABC 的外心知O 为AB 、AC 的中垂线的交点,作出两条中垂线,交点即为O .(1)如图1中,取格点F 、G ,连接FG 交BC 于点D ,线段AD 即为所求.(2)如图2中,取格点H 、J ,连接HJ 交AB 于点E ,线段CE 即为所求.(3)如图3中,取格点K 、L 、M 、N ,连接KL 、MN 交于点O ,则点O 为所求.【点睛】本题考查作图-应用与设计作图,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.21.如图,在6×6的正方形网格中,每个小正方形的边长都为1,点A ,B ,C 均在格点上.请按要求在网格中画图,所画图形的顶点均需在格点上.(1)在图1中以线段AB 为边画一个ABD △,使其与ABC V 相似,但不全等.(2)在图2中画一个EFG V ,使其与ABC V 相似,且面积为8.(2)如图,△EFG 即为所求.【点睛】本题考查作图-相似变换,三角形的面积,全等三角形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.如图,在6×6的正方形网格中,每个小正方形的边长均为1,线段AB 的两个端点均在格点上,按要求完成下列画图(要求:用无刻度的直尺,保留画图痕迹,不要求写出画法).(1)在图①中,在线段AB 上找到一点E ,使AE BE=23;(2)在图②中,画出一个以A 、B 、C 为顶点的三角形,且cos ∠BAC (3)在图③中,画出一个四边形ACBD ,使其既是中心对称图形,又是轴对称图形,且邻边之比为12,C 、D 为格点.【答案】(1)见解析(2)见解析(2)V即为所求;如图所示,ABC(3)如图所示即为所求作【点睛】本题考查了作图-轴对称变换,等腰直角三角形的性质,相似三角形的判定与性质,解决本题的关键是掌握相关知识与性质.。

2019年全国各地中考数学解析汇编35 网格型问题

2019年全国各地中考数学解析汇编35 网格型问题

2019年全国各地中考数学解析汇编35 网格型问题7.(2019湖北荆州,7,3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )【解析】本题属于中考中的网格问题,本题考察了勾股定理、勾股定理的逆定理、相似三角形的判定,根据勾股定理得10,22,2===AC AB BC ,根据勾股定理的逆定理可判断△ABC 为直角三角形,∠ABC=90°,2:1:=AB BC ,在四个图形中,显然答案B 中的三角形为直角三角形且两条直角边的比为1:2.【答案】B【点评】本题属于中考中的网格问题,本题考察了勾股定理、勾股定理的逆定理、相似三角形的判定。

26.((2019江苏泰州市,26,本题满分10分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;(2)计算线段AC 在变换到A 1 C 2的过程中扫过区域的面积(重叠部分不重复计算)(第26题图)【解析】1)作已知图形的平移图形,需找准平移方向和距离,再作出图形;将已知图形的旋转,需看清旋转中心、旋转角和旋转方向;(2)观察可知,线段AC 变换到A 1C 2过程中所扫过部分为两个平行四边形和圆心角为45°扇形,求其面积较易.【答案】(1)画图略;(2)扫过区域的面积=4×2+3×2+458360π⨯=14+π 【点评】平移、旋转作图经常在网格中来实现,作图方便,又能体现学生活学活用相关知识的能力,是近几年来新兴的试题.本题主要考查几何变换中的平移与旋转相关知识,只要理解与掌握平移及旋转的定义及性质,ACBA .B .C .D .作出几何变换后的图形就非常容易了.实际上,图形的变换就是转化为关键点的变换,抓住平移的两要素(平移的方向与距离)与旋转的三要素(旋转中心、旋转方向和旋转角),是解决本题的关键.。

初中数学专题复习网格型问题(含答案)

初中数学专题复习网格型问题(含答案)

专题训练22 网格型问题一、选择题(每小题3分,共24分)1.下列图形中只能用其中一部分平移可以得到的是 ( )2.如图,方格纸上一圆经过(2 , 5)、(2 , -3)两点,且此两点为圆与方格纸横线的切点,则该圆圆心的坐标为( )A .(2, -1)B .(2, 2)C .(2, 1)D .(3, 1)3.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A.5B.4C.3D.24.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A.3:4B.5:8C.9:16D.1:25.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为()a b ,,那么大“鱼”上对应“顶点”的坐标为( )A.(2)a b --, B.(2)a b --, C.(22)a b --, D.(22)b a --, 6. 下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是 ( )ABCD(第2题)(第3题)DACB(第4题)(第5题)x (小时)(千米)y 012345153045甲乙(第14题)7.已知:如图ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( )A .12S S >B .12S S =C .12S S <D .不能确定8. 如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) A.x l =1,x 2=2 B.x l = -2,x 2= -1 C.x l =1,x 2= -2 D.x l =2,x 2= -1 二、填空题(每小题3分,共18分) 9.如图,∠1的正切值等于__________.10. 线段AB 、CD 在平面直角坐标系中的位置如图所示,O 为坐标原点。

2019届全国数学中考试卷分类汇编:格点问题

2019届全国数学中考试卷分类汇编:格点问题

▼ ▼▼2021届数学中考复习资料▼▼▼中考全国100份试卷分类汇编格点问题1、(2021泰安)在如下图的单位正方形网格中, △ ABC经过平移后得到△A i B i C i,在AC上一点P (2.4, 2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,那么P2点的坐标为( )A. (1.4, T)B. (1.5, 2)C. (1.6, 1)D. (2.4, 1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出, ^ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中央对称图形的性质得出P2点的坐标.解答:解:A点坐标为:(2, 4), A1 (-2, 1),.••点P (2.4, 2)平移后的对应点P1为:(-1.6, - 1),•・•点P1绕点O逆时针旋转180°,得到对应点P2,・•.P2点的坐标为:(1.6, 1).应选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据得出平移距离是解题关键.2、(2021?宜昌)如图,点A, B, C, D 的坐标分别是(1, 7), (1, 1), (4, 1), (6, 1), 以C, D, E为顶点的三角形与△ ABC相似,那么点E的坐标不可能是( )(6, 0) B. (6, 3) C. | (6, 5) D. (4, 2)考点:相似三角形的性质;坐标与图形性质.分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.解答:解:AABC 中,Z ABC=90 °, AB=6 , BC=3, AB : BC=2 .A、当点E 的坐标为〔6, 0〕时,/ CDE=90°, CD=2, △CDEs^ABC,故本选项不符合题意;B、当点E 的坐标为〔6, 3〕时,/ CDE=90°, CD=2 , △CDE与4ABC不相似,故本选项符合题意;C、当点E 的坐标为〔6, 5〕时,/ CDE=90 °, CD=2 , △EDC^A ABC ,故本选项不符合题意;D、当点E 的坐标为〔4, 2〕时,/ ECD=90°, CD=2 , △DCE^A ABC ,故本选项不符合题意;应选B. DE=1 ,DE=2 ,DE=4 ,CE=1 ,那么AB :那么AB :那么AB :那么AB :点评:此题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键.A向下移动1格2一②所示, B向上移动1格C向上移动2格BC=CD:BC^CD:BC=DE:BC=CD :DE,DE,CD,CE,D向下移动2格AB 2分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N向下移动2格.应选D.点评:此题考查平移的根本概念及平移规律, 是比拟简单的几何图形变换. 关键是要观察比较平移前后图形的位置.(m, n)经过缩小变换后点P'的坐标为葭3 一5)5、(2021?郴州)在图示的方格纸中考点:作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于MN的对称点A i、B i、C i的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.解答:解:(1) △A i B i C i如下图;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6点评:此题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.6、(20i3?温州)如图,在方格纸中, 4ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(i)将4ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中央,将4ABC旋转,使点P落在旋转后的三角形内部, 在图乙中画出示意图.图乙考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把^ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ ABC 绕点C 顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如下图;(2)如下图,旋转后的三角形如下图.(2 )题图点评:此题考查了利用旋转变换作图, 利用平移变换作图,熟练掌握网格结构是解题的关键.7、(2021徭化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点, 4ABC的顶点均在格点上,请按要求完成以下步骤:(1)画出将4ABC 向右平移3个单位后得到的△A 1B 1C 1,再画出将^A i B i C i 绕点B i 按逆 时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.考点:作图-旋转变换;作图-平移变换.分析:(1)根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;(2)根据弧长计算公式求出即可. 解答:解:(1)如下图:点评:此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据得出对应点位置是解题关键.8、(2021件感)如图, 4ABC 和点O.(1)把4ABC 绕点O 顺时针旋转904到△A 1B 1C 1,在网格中画出 △A 1B 1C 1;(2)用直尺和圆规作 4ABC 的边AB , AC 的垂直平分线,并标出两条垂直平分线的交点 P(2)点C 1所经过的路径长为:x 4=2兀1803%A/C£/•—A,\1(要求保存作图痕迹,不写作法);指出点P是4ABC的内心,外心,还是重心?考点:作图-旋转变换;作图一复杂作图.分析:(1)分别得出4ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1) △A1B1C1如下图;(2)如下图;点P >AABC的外心.I 1 1 K I I X点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出图(2) 2 5 5 2P点位置是解题关键.9、(2021哈尔滨)如图.在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN点A、B M N均在小正方形的顶点上.(1) 在方格纸中画四边形ABCD四边形的各顶点均在小正方形的顶点上),使四边形ABCD^以直线MNK;对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2) 请直接写出四边形ABC曲周长.考点:轴对称图形;勾股定理;网格作图;分析:(1)根据轴对称图形的性质,利用轴对称的作图方法来作图,(2)利用勾股定理求出AB 、BC CDAD四条线段的长度,然后求和即可最解答:(1)正确画10、(2021?淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将4ABC向左平移6个单位长度得到得到^A I B I C I;(2)将4ABC绕点O按逆时针方向旋转180°得到4A2B2c2,请画出4A2B2c2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△ A2B2c2.解答:解:(1)如下图:△A1B1C1,即为所求;(2)如下图:4A2B2c2,即为所求.点评:此题主要考查了图形的平移和旋转,根据得出对应点坐标是解题关键.11、(2021?钦州)如图,在平面直角坐标系中, 4ABC的三个顶点都在格点上,点A的坐标为(2, 4),请解答以下问题:(1)画出4ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的4A2B2c2,并写出点A2的坐标.考点:作图-旋转变换;作图-轴对称变换.分析:〔1〕分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A 点坐标;〔2〕将^A I B I C I中的各点A i、B i、C i绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得4A2B2c2.解答:解:〔1〕如下图:点Ai的坐标〔2, -4〕;点评:此题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.12、〔2021年佛山市〕网格图中每个方格都是边长为1的正方形.假设A, B, C, D, E, F都是格点, 试说明^ ABC^A DEF.分析:利用图形与勾股定理可以推知图中两个三角形的三条对应边成1匕例,ABC DEF .由此可以证得△第解:证实:AC=b,BC={[2+3 2=VT^, AB=4 , DF=J 22+ ? 2=2&, EF=*+ §2=2 ",ED=8,....,=二=±=2,DF EF DE・ .△ ABC^A DEF.点评:此题考查了相似三角形的判定、勾股定理.相似三角形相似的判定方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种根本方法.相似的根本图形可分别记为A〞型和X〞型,如图所示在应用时要善于从复杂的图形中抽象出这些根本图形;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.13、( 13 年安徽省8 分、17)如图, A (—3, -3) , B (—2, —1) , C (— 1, —2) 是直角坐标平面上三点.(1)请画出A ABC关于原点O对称的A ABC,(2)请写出点B关天y轴对称的点B的坐标,假设将点B2向上平移h个单位,使其落在A ABC 内部,指出h的取值范围.口}生三朋里加力I:. 一IL1的期龄码为Z<fc<X5工才专】造福研*,斗坪t甲L.T时史楼L中:尸料尤,,坤曲性亡,¥柱的性肿.工分箫】⑴昨―R I B c黄干原卓町…,1:榭想文(1) WHtKffl wmsmff庐百手赫只3口&£的m#>左1跖加.上下甲M蚪青珈的―F«JJfll-困%. 上第型,为I -由期可知.点B:向Lt平监ht1•也便算搞在AA 3亡内潞咽点左耳与4c单愚.限14、(2021?天津)如图,将AABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(I ) AABC的面积等于 6 ;(II)假设四边形DEFG是AABC中所能包含的面积最大的正方形,请你在如下图的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证实) 取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点 D ,过点D画CB 的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G, F,那么四边形DEFG即为所求.考点:作图一相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(I) AABC以AB为底,高为3个单位,求出面积即可;(II)作出所求的正方形,如下图,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线, 与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G, F,那么四边形DEFG即为所求解答:解:(I) AABC的面积为:-X4>3=6;2(n)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G, F, 那么四边形DEFG即为所求.故答案为:(I ) 6; ( n )取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G, F,那么四边形DEFG即为所求点评:此题考查了作图-位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解此题的关键.。

2019中考数学最新重点汇编56-网格专项.doc

2019中考数学最新重点汇编56-网格专项.doc

2019中考数学最新重点汇编56-网格专项【一】选择题1、〔2018年广东省深圳市实验中学一模〕如图,在3×3的正方形的格中标出了∠1,那么tan ∠1的值为〔〕A 、B 、C 、D 、第1题 答案:C2、(2018广西北海市模拟)如图(1),小正方形的边长均为1,关于ABC ∆和DEF ∆的以下说法正确的选项是〔〕A.ABC ∆和DEF ∆一定不相似B.ABC ∆和DEF ∆是位似图形C.ABC ∆和DEF ∆相似且相似比是1:2D.ABC ∆和DEF ∆相似且相似比是1:43年完全相同的情况下多支出2000元,并且y =2x +3600(单位:元),那么该家庭2003年属于〔〕A 、贫困B 、温饱C 、小康D 、富裕4、假设在象棋盘上建立直角坐标系,使“帥”位于点〔-1,-2〕,“馬”位于点〔2,-2〕,那么“兵”位于点A.〔-1,1〕B.〔-2,-1〕C.〔-3,1〕D.〔1,-2〕 答案:C【二】填空题1、〔2018四川乐山市市中区毕业会考〕如图,在正方形格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点、如果AD =1,那么当 AE =时,以点A 、D 、E 为顶点 的三角形与△ABC 相似、1、〔2018 在△AC 三边的长分别为面积、小辉同学在解答这道题时,先建立一个正方形格〔每个小正方形的边长为1〕,再在格中画出格点ABC △〔即ABC △三个顶点都在小正方形的顶点处〕,如图①所示、这样不需求ABC △的高,而借用格就能计算出它的面积、〔1〕请你将ABC △的面积直接填写在横线上、__________________思维拓展: 〔2〕我们把上述求ABC △面积的方法叫做构图法...、假设ABC △、〔0a >〕,请利用图②的正方形格〔每个小正方形的边长为a 〕画出相应的ABC △,并求出它的面积、 探索创新:〔3〕假设ABC △三边的长分别为、、〔00m n >>,,且m n ≠〕,试运用构图法...求出这三角形的面积、 答案:〔1〕;〔2〕3;(3)5mn2、(2018广西北海市模拟)〔此题总分值8分〕:如图,图①和图②中的每个小正方形的边长都为1个单位长度.〔1〕将图①中的格点ABC ∆〔顶点都在格线交点处的三角形叫格点三角形〕向上平移2个单位长度得到111C B A ∆,请你在图中画出111C B A ∆;〔2〕在图②中画出一个与格点ABC ∆相似的格点222C B A ∆,且222C B A ∆与ABC ∆的相似比为2﹕1.第2题 答案:〔每画一个图给4分,共8分〕3、〔2018江西高安〕问题背景:在ABC △中,AB 、BC 、AC 三边的长分别为面积、小辉同学在解答这道题时,先建立一个正方形格〔每个小正方形的边长为1〕,再在格中画出格点ABC △〔即ABC △三个顶点都在小正方形的顶点处〕,如图①所示、这样不需求ABC △的高,而借用格就能计算出它的面积、〔1〕请你将ABC △的面积直接填写在横线上、__________________图① A B C思维拓展: 〔2〕我们把上述求ABC △面积的方法叫做构图法...、假设ABC △、〔0a >〕,请利用图②的正方形格〔每个小正方形的边长为a 〕画出相应的ABC △,并求出它的面积、 探索创新:〔3〕假设ABC △三边的长分别为、、〔00m n >>,,且m n ≠〕,试运用构图法...求出这三角形的面积、 答案:〔1〕;〔2〕3;(3)5mn4、〔2018内蒙古呼伦贝尔一摸〕21、〔本小题6分〕甲、乙两支仪仗队队员的身高〔单位:厘米〕如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;〔1〕将下表填完整:〔2〕甲队队员身高的平均数为______厘米,乙队队员身高的平均数为_____厘米;〔3〕你认为哪支仪仗队更为整齐?简要说明理由、 解:〔1〕〔2〕178,178;〔3〕甲仪仗队更为整齐、 因为甲、乙两支仪仗队队数据的方差分别为0.6和5、如图9以下问题:〔1〕分别写出点A 、〔2〕作出△ABC △A 1B 1C 1;〔3〕作出点C 关于是x 轴的对称点P .假设点P向右平移....x 个单位长度后落在△A 1B 1C 1的 内部..,请直接写出x 的取值范围. 答案:〔1〕A 、B 两点的坐标分别为〔-1,0〕、〔-2,-2〕;………2分〔2〕所作△A 1B 1C 1如图2所示;………4分 〔3〕所作点P 如图2所示, 5.5<x <8.………8分(图①) (图②)A CB 第22题图6、如图,在正方形格图中建立一直角坐标系,一条圆弧经过格点A 〔0,2〕,B 〔4,2〕,C 〔6,0〕,解答以下问题: (1) 请在图中确定该圆弧所在圆心D 点的位置,那么D 点坐标为________;连结AD ,CD ,求⊙D 的半径〔结果保留根号〕; (2) 连结AD ,CD ,求⊙D 的半径〔结果保留根号〕; (3) 求扇形DAC 的面积、〔结果保留π〕 答案、〔1〕D 点坐标为〔2,—2〕 〔2〕解::524222=+=r所以,⊙D 的半径为52 〔3〕解:∠ADC =90°ππ53602090=⨯=S 7、〔2018北京市怀柔区〕如图①,将一张直角三角形纸片ABC ∆折叠,使点A 与点C 重合,这时DE 为折痕,CBE ∆为等腰三角形;再继续将纸片沿CBE ∆的对称轴EF 折叠,这时得到了两个完全重合的矩形〔其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形〕,我们称这样两个矩形为“叠加矩形”.图①图②图③ 〔1〕如图②,在正方形格中,能否仿照前面的方法把ABC ∆折叠成“叠加矩形”,如果能,请在图②中画出折痕及叠加矩形;〔2〕如图③,在正方形格中,以给定的BC 为一边,画出一个斜ABC ∆,使其顶点A 在格点上,且ABC ∆折成的“叠加矩形”为正方形;〔3〕如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么? 22.〔1〕〔说明:画出折痕即可.〕〔2〕 (2)分………………图②图③〔2〕只需画出满足条件的一个三角形;答案不惟一,所画三角形的一边长与该边上的高相等即可.〕〔3〕三角形的一边长与该边上的高相等的直角三角形或锐角三角形.…………………5分 8.〔2018北京市东城区〕在ABC △中,AB 、BC 、AC 求这个三角形的面积、小宝同学在解答这道题时,先建立一个正方形格〔每个小正方形的边长为1〕,再在格中画出格点ABC △〔即ABC △三个顶点都在小正方形的顶点处〕,如图1所示、这样不需求ABC △的高,而借用格就能计算出它的面积、B〔1〕请你将ABC △的面积直接填写在横线上__________________; 思维拓展:〔2〕我们把上述求ABC △面积的方法叫做构图法...、假设ABC △、〔0a >〕,请利用图2的正方形格〔每个小正方形的边长为a 〕画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:〔3〕假设ABC △〔0a >〕,且ABC △的面积为22a ,试运用构图法...在图3的正方形格〔每个小正方形的边长为a 〕中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________、22、〔本小题总分值5分〕解:〔1〕ABC △的面积为72;……………………1分〔2〕ABC △的面积为252a;…………………………3分 〔3〕图中三角形为符合题意的三角形.…………………………5分。

专题02 网格类作图题中考题型训练(解析版)

专题02 网格类作图题中考题型训练(解析版)

专题2 网格类作图题中考题型训练1.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.2.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:3.(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.4.(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).5.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是 直角三角形 ;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.6.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;7.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【分析】(1)连接AC,取AC的中点P,作射线BP即可;(2)利用数形结合的射线画出图形即可.【解答】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.8.(2023•锡山区校级模拟)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于 ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.9.(2023•鄞州区校级一模)如图,在6×6的方格纸中,每个小正方形的边长为1,点A,B均在格点上,在图1和图2中分别画出一个以点A,B为顶点且另两个顶点均在格点上的正方形,并分别求出其周长.【分析】分别根据“四条边相等且四个角相等的四边形是正方形”,“对角线互相垂直平分且相等的四边形是正方形“作图.【解答】解:如下图:正方形ABCD,正方形ACBD即为所求.10.(2023•衢州模拟)如图在7×7的方格中,有两个格点A、B.请用无刻度的直尺按要求画图.(1)在图1中画线段AB中点C;(2)在图2中在线段AB上找一点D,使AD:DB=1:2.【分析】(1)取格点E,F,连接EF交AB于点C,点C即为所求;(2)取格点J,K,连接JK交AB于点D,点D即为所求.【解答】解:(1)如图,点C即为所求;(2)如图,点D即为所求.理由:∵AJ∥BK,∴△ADJ∽△BDK,∴==.11.(2023•宁波模拟)作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为 .(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.【分析】(1)根据勾股定理即可得到答案;(2)①根据正方形的性质得到MP和NQ互相平分,MP⊥NQ,则四边形MNPQ是菱形,再用勾股定理和菱形面积等于对角线乘积的一半,即可验证满足题意;②利用网格的特点构造一条边长为3,此边上的高为2,∠BAD=45°的平行四边形即可.【解答】JIE:(1)∵长方形的长为3,宽为2,∴对角线的长为=,故答案为:;(2)①如图,四边形MNPQ即为所求的菱形,由网格知,MP和NQ互相平分,∴四边形MNPQ是平行四边形,∵MP⊥NQ,∴四边形MNPQ是菱形,∵,NQ==,∴菱形MNPQ的面积是MP×NQ=×4×=4,故菱形MNPQ满足题意;②如图2,平行四边形ABCD满足题意,由图可知,AB ∥CD ,AB =CD =3,∴四边形ABCD 是平行四边形,则平行四边形ABCD 的面积=AB •DH =3×2=6,∵∠BAD =45°,∴平行四边形ABCD 满足题意.12.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC 的顶点A 、B 、C 都在格点上.请按要求完成下列问题:(1)S △ABC = 4 ;sin ∠ABC = ;(2)请仅用无刻度的直尺在线段AB 上求作一点P ,使S △ACP =S △ABC .(不要求写作法,但保留作图痕迹,写出结论)【分析】(1)由正方形面积减去三个直角三角形面积可求S △ABC ,过A 作AD ⊥BC 于D ,用面积法可求AD 的长,在Rt △ABD 中可得sin ∠ABC ;(2)取格点E ,F ,连接EF 交AB 于P ,由AE =BF 可知AP =BP ,从而AP =AB ,即可得S △ACP=S △ABC ,故P 是满足条件的点.【解答】解:(1)由图可得:S △ABC =3×3﹣×1×3﹣×3×1﹣×2×2=4,过A 作AD ⊥BC 于D ,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故答案为:4,;(2)如图:点P即为所求点.13.(2023•武汉模拟)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【分析】(1)根据90°的圆周角所对的弦是直径;(2)根据网格线的特征或平行线,再根据平行弦所夹的弧相等,再根据等腰梯形的性质作图.【解答】解:如下图:(1)点D,O即为所求;(2)线段MN,点G即为所求.14.(2023•乌鲁木齐一模)请仅用无刻度的直尺在网格中完成下列作图,保留作图痕迹,不写作法.(1)图①是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.在图①中,画出△ABC 中AB边上的中线CM;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)作出AB的中点M,连接CM即可;(2)连接AC,BD交于点O,延长BA交CD的延长线于点S,作直线SO即可.【解答】解:(1)如图1中,线段CM即为所求.(2)如图2中,直线n即为所求.15.(2023•靖江市校级模拟)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ 交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.16.(2023•九台区模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.【分析】(1)利用网格特征作出AC的中点D,连接BD即可;(2)取格点T,连接BT交AC于点E,线段BE即为所求;(3)取格点W,连接BW交AC于点F,线段BF即为所求.【解答】解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.17.(2023•迁安市模拟)如图是由边长为1的小正方形组成的网格,△ABC的顶点均在格点上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图(1)中画△ABC的高CH;(2)在图(1)的线段AC上画一点D,使得S△ABD :S△CBD=2:3;(3)在图(2)中C点的右侧画一点F,使∠FCA=∠BCA且CF=2.【分析】(1)取格点P,连接CP交AB于点H,线段CH即为所求作.(2)取格点M,N,连接MN交AC于点D,点D即为所求作.(3)取格线的中点R,连接CR,取格点K,格线的中点J,连接KJ交CR于点F,线段CF即为所求作.【解答】解:(1)如图1中,线段CH即为所求作.(2)如图2中,点D即为所求作.(3)如图2中,线段CF即为所求作.18.(2022•碧江区校级一模)操作理解,解答问题.(1)如图1:已知△ABC,AB=AC,直线CD∥AB;①完成作图:以点A为圆心,AB长为半径画弧,交直线CD于点P,连接PB.②试判断①中∠ABP与∠BAC的数量关系,并证明你的结论.(2)如图2:已知△ABC是格点三角形,点C在直线n上,且n∥AB;在直线n上画出点P,连接PB,使得∠PBA=∠CAB.(不用尺规作图)【分析】(1)①根据要求作出图形即可;②结论:∠APB=∠BAC.利用平行线的性质,圆周角定理证明即可.【解答】解:(1)①图形如图所示:②结论:∠APB=∠BAC.理由:∵CP∥AB,∴∠ABP=∠BPC,∵AB=AC=AP,∴∠BPC=∠BAC,∴∠ABP=∠BAC.(2)如图2中,∠APB=∠CAB.19.(2022•丽水模拟)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AC为底边的等腰△ABC,使点B落在格点上.(2)在图2中画出一个以AC为对角线且面积为6的格点矩形ABCD(顶点均在格点上).【分析】(1)根据等腰直角三角形的判定与性质,结合网格特点作图即可得;(2)根据矩形的判定与性质,结合网格特点作图即可得.【解答】解:(1)如图所示,等腰△ABC即为所求;(2)如图所示,矩形ABCD即为所求.20.(2022•婺城区校级模拟)如图,在4×4的方格中,点A,B,C为格点,利用无刻度的直尺画出满足以下条件的图形(保留必要的辅助线).(1)在图1中画△ABC的中线BE.(2)在图2中标注△ABC的外心O并画出其外接圆的切线CP.【分析】(1)根据中线的定义作图;(2)根据三角形的外心的定义和切线的判定定理作图.【解答】解:(1)如图所示,BE即为所求的△ABC的中线;(2)如图所示,点O即为所求的△ABC的外心,PC即为所求的外接圆的切线.21.(2022•海陵区校级三模)如图(1)(2),在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上,以AB为直径的半圆的圆心为O,请用无刻度的直尺,在如图(1)图(2)所示的网格中,在半圆O上画出点P,连接AP,使AP平分∠CAB.【分析】如图(1)中,取格点T,连接OT交⊙O于点P,连接AP,点P即为所求.如图(2)中取BC 的中点J,连接OJ,延长OJ交⊙O于点P,连接AP,点P即为所求.【解答】解:如图(1)(2)中,点P即为所求.22.(2022•吉安模拟)如图,在正方形网格中,△ABC的顶点在格点(网格线的交点)上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中作△ABC的重心.(2)在图2中作∠AGB=∠ACB,且G是格点.【分析】(1)根据重心是三角形的中线的交点,画出图形即可;(2)利用圆周角定理,画出图形即可.【解答】解:(1)如图1,点D即为所求作的的;(2)如图2,∠AG1B,∠AG2B,∠AG3B,∠AG4B即为所求作.23.(2022•绿园区校级模拟)如图①,②,③中每个小正方形的边长均为1.△ABC的顶点A,B均落在小正方形的顶点上,点C在小正方形的边上,以AC为直径的半圆的圆心为O.请用无刻度的直尺按要求画图.(1)如图①,在半圆上确定点D,使OD∥AB.(2)如图②,在线段AB的延长线上确定点E,使AE=AC.(3)如图③,在线段AC上确定点F,使AF=AB.【分析】(1)取B长度中点D,连接OD即可;(2)延长OD交⊙O于点J,连接CJ,延长CJ交AB的延长线于点E,点E即为所求;(3)在图②的基础上,连接AJ交BC于点K,连接EK,延长EK交AC于点F,点F即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点E 即为所求;(3)如图③中,点F 即为所求.24.(2022•南关区校级模拟)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使S △ABD =S △ACD .(2)在图②中,在BC 上画一点E ,使S △ABE :S △ACE =2:3.(3)在图③中,在ABC 内画一点F ,使S △ACF :S △ABF :S △BCF =2:3:3.【分析】(1)取BC 的中点D 即可;(2)取格点M ,N ,连接MN 交BC 于点E ,点E 即为所求;(3)利用数形结合的思想,判断出点F 到AC 的距离为1,到AB 的距离为,取格点P ,Q ,连接PQ 交直线m 于点F ,点F 即为所求.【解答】解:(1)在图①中,点D 即为所求;(2)在图②中,点E 即为所求;(3)在图③中,点F 即为所求.25.(2022•长春模拟)图①、图②分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的格点上,请在图①、图②中各取一点(点C必须在小正方形的格点上),使以A、B、C为顶点的三角形分别满足下列要求.(1)在图①中画一个△ABC,使∠ACB=90°,面积为5;(2)在图②中画一个△ABC,使BA=BC,∠ABC为钝角,并求△ABC的周长.【分析】(1)根据要求作出图形即可;(2)利用数形结合的思想作出图形,利用勾股定理求出AC,可得结论.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABC即为所求.∵AB=BC=5,AC==4,∴△ABC的周长为10+4.26.(2022•二道区校级二模)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB、EF、MN的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图.(1)在图①中,画∠ADB=45°;(2)在图②中,画∠APB=45°,且点P在线段EF上;(3)在图③中,画∠AQB=45°,且点Q在线段MN上.【分析】(1)构造等腰直角三角形,可得结论;(2)构造等腰直角三角形,可得结论;(3)取格点R,T,连接RT交MN于点Q,连接QB,QA,点Q即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点P即为所求;(3)如图③中,点Q即为所求.27.(2022•香坊区校级三模)如图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8,并直接写出tan A的值.【分析】(1)根据等腰直角三角形的定义画出图形即可;(2)利用数形结合的思想作出图形即可.【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ADC即为所求,tan A==2.28.(2022•瑞安市校级三模)如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB,利用网格图,仅用无刻度的直尺来完成下面几何作图.(1)请在图①中作一个格点等腰三角形△ABC;(2)请在图②在线段AB上求作点P,使得AP:BP=3:4.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC,再连接BC即可;(2)如图②,作△ADP∽△BCP即可得出结论.【解答】解:(1)如图所示,△ABC即为所求作的等腰三角形:(2)如图②,点P即为所求作;29.(2022•江夏区模拟)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使=.(4)如图2,在AB上作点M,使∠ACM=∠ABC.【分析】(1)取格点Q,连接CQ交AB于点E,点E即为所求;(2)取AQ是中点P,连接FP交AB于点D,点D即为所求;(3)利用网格特征作出点N即可;(4)把∠ABC考查45°+∠CBK,∠ACE=45°,∠ECF=∠CBK,可得结论.【解答】解:(1)如图1中,点E即为所求;(2)如图1中,点D即为所求;(3)如图2中,点N即为所求;(4)如图2中,点M即为所求.30.(2022•阿城区模拟)如图,在每个小正方形的边长均为1的方格纸中,线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为底边的等腰三角形ABC,使△ABC的面积为10,点C在小正方形的顶点上,直接写出tan∠ABC的值;(2)在方格纸中画出钝角三角形DEF,使∠DEF=45°,点F在小正方形的顶点上.【分析】(1)利用数形结合的思想画出图形即可;(2)根据要求作出图形即可.【解答】解:(1)如图,△ABC即为所求,tan∠ABC=2;(2)如图,△DEF即为所求.31.(2022•长春模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,所画图形的顶点均在格点上.(1)在图①中,画等腰三角形ABC,使其面积为3.(2)在图②中,画等腰直角三角形ABD,使其面积为5.(3)在图③中,画平行四边形ABEF,使其面积为9.【分析】(1)根据等腰三角形的定义,利用数形结合的思想解决问题即可;(2)作一个腰为的等腰直角三角形即可;(3)根据平行四边形的判定,利用数形结合的思想解决问题.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABD即为所求;(3)如图③中,平行四边形ABEF即为所求.32.(2022•朝阳区校级模拟)如图在8×8的网格中,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,用无刻度的直尺在网格中完成下列画图,保留必要的作图痕迹,不要求说明理由.(1)如图1,过点A作线段AF,使AF∥DC,且AF=DC.(2)如图2,在四边形ABCD边上求作一点E,使点E与四边形ABCD某一顶点连线,能把该四边形分成的两部分恰好拼成一个无缝隙、不重叠的三角形.(画一个即可)(3)如图3,在边AB上求作一点G,使∠AGD=∠BGC.【分析】(1)根据要求作出图形即可;(2)取CD的中点E,连接AE即可;(3)取格点T,连接CT交AB于点G,连接DG,点G即为所求.【解答】解:(1)如图,线段AF即为所求;(2)如图,点E即为所求(答案不唯一);(3)如图,点G即为所求.。

2019中考数学复习必考题型解读与提升网格型问题

2019中考数学复习必考题型解读与提升网格型问题

2019中考数学复习必考题型解读与提升网格型问题一. 网格形问题常见的题型:(1)与三角形(直角三角形、勾股定理、相似三角形等)有关的网格型问题;(2)坐标平面内的网格型问题;(3)与图形变换(画图、描述操作及图案设计)有关的网格型问题;(4)利用格点图形探究规律及分类讨论思想在格点问题中的运用.二.例题探究类型一与三角形有关的网格型问题例1.如图①,在矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上.若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图②,图③,图④中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图②,图③中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH;计算与猜想:(2)求图②,图③中反射四边形EFGH的周长,并猜想:矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图④,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于点M,试利用小华同学给我们的启发证明(2)中的猜想.解析:(1)作图如下(如解图1,解图2).(图1) (图2)(2)在图1中,EF=FG=GH=HE=22+42=20=2 5,∴四边形EFGH的周长为8 5.在图2中,EF=GH=22+12=5,FG=HE=32+62=45=3 5.∴四边形EFGH的周长为2×5+2×3 5=8 5.猜想:矩形ABCD的反射四边形的周长为定值.(3)如图3,延长GH交CB的延长线于点N.(图3)∵∠1=∠2,∠1=∠5,∴∠2=∠5.又∵FC=FC,∴Rt△FCE≌Rt△FCM.∴EF=MF,EC=MC.同理:NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90°-∠5=90°-∠1,∠N=90°-∠3,∴∠M=∠N,∴GM=GN.过点G作GK⊥BC于点K,则KM=12MN=8.∴GM=GK2+KM2=42+82=4 5.∴四边形EFGH的周长=GH+HE+GF+EF=GH+HN+GF+FM=GN+GM=2GM=8 5.点评:(1)本题考查应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,难度中等.(2)读懂题意,理解“反射四边形EFGH”的特征是解题的关键.(3)根据网格结构,作出相等的角即可得到反射四边形.与三角形有关的网格型问题,常常结合直角三角形、相似三角形、勾股定理及三角函数的知识,难度一般不大,但在这类问题中,要特别注意与相似结合时常常会用到分类讨论.练习反馈1.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与图中△ABC相似的三角形所在的网格图形是 ( )2. 在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A ,B ,C 为格点.作△ABC 的外接圆⊙O ,则AC ︵的长等于 ( )A.34πB.54πC.32πD.52π 3. 如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上.若点C 也在网格格点上,以A ,B ,C 为顶点的三角形面积为2,则满足条件的点C 的个数是 ( )A .2B .3C .4D .5 类型二 坐标平面内的网格型问题例2.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为32,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是 ( )A .16B .15C .14D .13解析:∵抛物线与网格对角线OB 的两个交点之间的距离为32,∴两交点的横纵坐标的差都为3,设其中一交点为(0,0),则另一交点为(3,3). ∵抛物线顶点在格点上,∴开口向下,且对称轴为x =2.如解图5,设开口向下,经过点(0,0),(3,3)的抛物线的解析式为y =a (x -2)2+k ,把(0,0),(3,3)代入,得⎩⎨⎧4a +k =0,a +k =3,解得⎩⎨⎧a =-1,k =4,∴y =-(x -2)2+4=-x 2+4x .向右平移1个单位,向上平移1个单位可得到另一条符合题意的抛物线,可平移6次,∴一共有7条抛物线.同理:开口向上的抛物线也有7条.∴满足上述条件且对称轴平行于y轴的抛物线条数是7+7=14.故选C.点评:(1)本题以网格为背景,主要考查网格结构的知识与二次函数的性质,二次函数图象与几何变换,难度较大.(2)本题利用网格作出图形更形象直观,根据在OB上的两个交点之间的距离为32可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.坐标平面内的网格型问题,主要利用坐标平面内的点与有序实数对是一一对应的,常常以函数为载体,结合函数的图象和性质进行考查,解决这类问题的关键是抓住函数的本质特征,熟练的进行图象平移、对称等变换.练习反馈1. 二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个.类型三与图形变换有关的网格型问题例3. 如图38-7,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均落在格点上.(1)△ABC的面积等于__________;(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图的方法(不要求证明).解析:(1)6[△ABC的面积为:12×4×3=6.](2)方法一:如图7,取格点P,连结PC,过点A画PC的平行线,与BC交于点Q,连结PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D,E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.(图7) (图8)方法二、图8,在AB上任取一点P,作PQ⊥BC于点Q,以PQ为一边在△ABC内部作正方形PQMN;作射线BN交AC于点D,过点D作DG⊥BC于点G,作DE⊥DG交AB于点E,过点E作EF⊥BC于点F,则四边形DEFG即为所求.点评:(1)本题主要考查格点图中三角形的面积、利用位似变换作图,以及正方形的性质,难度较大.(2)根据正方形的性质作出正确的图形是求解本题的关键.与图形变换有关的网格型问题,常常会考查网格中的画图、图形描述或图形操作、运动轨迹的路径(面积)、以及利于网格进行图案或方案设计等方面,一般而言,这类问题常常会以我们学过的平移、旋转与对称的知识为基础,难度不大,掌握图形变换的本质特征是解题的关键.练习反馈1. 如图,8×8方格纸上的两条对称轴EF,MN交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格,向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中能将△ABC变换成△PQR的是( )A.①② B.①③ C.②③ D.①②③2. 如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△A1B1C1.(1)在正方形网格中,作出△A1B1C1;(2)设网格小正方形的边长为1,求旋转过程中动点B 所经过的路径长.类型四 其他类型的网格问题例4. 如图①,AD 和AE 分别是△ABC 的BC 边上的高和中线,点D 是垂足,点E 是BC 的中点,规定:λA =DE BE .特别地,当点D ,E 重合时,规定:λA =0.另外,对λB ,λC作类似的规定.(1)如图②,在△ABC 中,∠C =90°,∠A =30°,求λA ,λC ;(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC ,使其顶点在格点(格点即每个小正方形的顶点)上,且λA =2,面积也为2;(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):①若△ABC 中λA <1,则△ABC 为锐角三角形;( )②若△ABC 中λA =1,则△ABC 为直角三角形;( )③若△ABC 中λA >1,则△ABC 为钝角三角形.( )解析:(1)如图10,作BC边上的中线AD.∵AC⊥DC,∴λA=CDBD=1.过点C分别作AB边上的高CE和中线CF.∵∠ACB=90°,AF=CF,∴∠ACF=∠CAF=30°,∴∠CFE=60°,∴λC=EFAF=EFCF=cos 60°=12.(图10) (图11) (图12)(2)如图11.(3)①×[由(1)可知,该命题是假命题.]②√[如图12.λA=DEBE=1,∴DE=BE.又∵BE=CE,∴C与D重合.∴△ABC是直角三角形.]③√[如图12,λA=DEBE>1,∴DE>BE=CE,∴AD在△ABC之外.∴△ABC是钝角三角形.]点评:(1)本题给出一段资料,提供网格作为探索问题的工具,主要考查直角三角形斜边中线、高的性质以及特殊角的三角函数值、画图、真假命题的判断等知识,比较复杂,难度较大.(2)理解λA的意义,根据题目要求画出图象是解题的关键.网格型问题还可以和新材料、找规律、图形面积的计算及概率等知识结合,对于这些问题,读懂题意、利用网格画出符合要求的图形、发现其蕴含的本质是解题的关键.练习反馈1. 一只蚂蚁在如图所示的图案内任意爬动一段时间后停下,蚂蚁停在阴影内的概率为.2.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.3. 请在下列边长为1的小正三角形组成的虚线网格(如图所示)中,各画出一个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形(要求等腰三角形不全等).。

中考复习专题:网格中的数学问题

中考复习专题:网格中的数学问题
的位置的坐标.
情况三:点P与点O为对称点
P 不在格点上
分类讨论
5. 作轴对称图形
例6. 棋盘中建立了如图的直角坐标系,三颗棋子A,O,B的位置如图,它们
分别是(-1,1),(0,0)和(1,0).若在其他格点位置添加一颗棋子P,使
A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P所有可能
的位置的坐标.
网格中的数学问题
目录
CONTENTS
1
网格的有关常识
2
网格中的作图
网格的有关常识
1.正方形网格
格点△ABC
每个小正方形的边长均为1个单位长度
2. 以格点为顶点的图形称为格点图形
考考你:①你能快速说出这个三角形AC边的长度吗?
②若将线段AC绕点C顺时针旋转90°,你能画出旋转后的线段A’C’吗?
例5. 已知∠AOB在网格中的位置如图,O在格点上,试作出∠AOB的角平分线.
OM=ON
作MM’⊥OA
作NN’⊥OB
△OMH≌△ONH(HL)
∠AOH=∠BOH
角平分线OH
4. 作角的平分线
SSS
HL
等腰△:三线合一





组合
图形
全等
变换
四边形
三角形
平行线+等腰三
角形→角平分线
菱形
正方形
对角线平分一组对角
其他
……
4. 作角的平分线
问题4:在网格中,你能做一个角的角平分线吗?
例5. 已知∠AOB在网格中的位置如图,O在格点上,试作出∠AOB的角平分线.
OM=ON
5. 作轴对称图形
例6. 棋盘中建立了如图的直角坐标系,三颗棋子A,O,B的位置如图,它们

2019年江苏省淮安市中考数学精编试题附解析

2019年江苏省淮安市中考数学精编试题附解析

2019年江苏省淮安市中考数学精编试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .55B .255C .12D .2 2.电影院里阶梯的形状成下坡的原理是( ) A .减少盲区B .盲区不变C .增大盲区D .为了美观而设计的 3. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( )A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x 4.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4B .3C .2D .1 5.下列特征中,等腰梯形具有而直角梯形没有的是 ( )A .一组对边平行B .两腰不相等C .两角相等D .对角线相等 6.在等腰三角形ABC 中,∠C=90°,BC=2cm. 如果以AC 的中点0为旋转中心,将这个三角形旋转 180°,点B 落在点B ′处,那么点B ′与B 相距( )A .3cmB .23cmC .5cmD .25cm 7.已知2x =是 关于x 的方程23202x a −=的一个根,则22a −的值是( )A .3B .4C .5D .68.下列各数中,与23的积为有理数的是( )A .23+B .23−C .23−+D .3 9. 等腰三角形的一个外角为140°,则顶角的度数为( ) A .40°B . 40°或 70°C .70°D . 40°或 100° 10.如图,AB ∥CD ,AC ⊥BC 于点C ,图中与∠CAB 互余的角有( )A .1个B .2个C .3个D .4个11.如图所示,下列说法中错误的是 ( )A .∠C 和∠3是同位角B .∠A 和∠3是内错角C .∠A 和∠B 是同旁内角D .∠l 和∠3是内错角12.在5×5的方格纸中,将图(1)中的图形 N 平移后的位置如图(2)所示,那么正确的平移方法是( )A .先向下移动1 格,再向左移动1格B .先向下移动1 格,再向左移动2格C .先向下移动2格,再向左移动 1格D .先向下移动2格,再向左移动 2格13.化简 2a 3 + a 2·a 的结果等于( )A . 3a 3B .2a 3C .3a 6D .2a 6 14.将方程12x 3123x −+−=去分母,正确的结果是( ) A .3(1)2(23)1x x −−+= B .3(1)2(23)6x x −−+=C .31431x x −−+=D .31436x x −−+=二、填空题15.已如图所示,两个同样高度的建筑物 AB 和CD ,它们相距 8m ,在 BD 上一点E 处测得A 点的仰角为 60°,C 点的仰角为 30°,则两建筑物的高度为 m .16.如图,△ABC 为⊙O 的内接三角形,AB 是直径,∠A=20°,则∠B= 度.17.如图,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)18.当x =_______时,代数式x x 42+的值与代数式32+x 的值相等.19.如图,大圆半径为2cm ,小圆的半径为1cm ,则图中阴影部分的面积是__________cm 2.20.某校七年级(2)班期末数学考试成绩的条形统计图如图所示,根据统计图回答下列问题:(1)全班共有 人,成绩为 的学生最多;(2)成绩在中等以下的学生占全班人数的百分比是 (精确到0.1%).21.某城市按以下规定收取每月的煤气费:用气不超过 60 米3,按每立方米 0. 8 元收费;如果超过 60 米3,超过部分每立方米按 1. 2元收费,已知某户用煤气 x(米3)(x>60),则该户应交煤气费 元.三、解答题22.求证:若两条直线平行,则一对同旁内角的角平分线互相垂直. (要求:画出图形,写出已知条件,求证和证明过程)23.21x x −−x 的取值范围是什么?12x ≤≤24.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P 1(x 1,y 1),P 2(x 2,y 2),其两点间距离公式为22122121()()PP x x y y =−+−x 轴或垂直于x 轴时,两点间距离公式可简化成21x x −或21y y −.(1)已知A(3,5)、B(-2,-l),试求A 、B 两点的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-l ,试求A 、B 两点的距离;(3)已知一个三角形各顶点坐标为A(0,6)、B(-3,2)、C(3,2),你能断定此三角形的形状吗?说明理由.25.在一个不透明的口袋中装有除颜色外一模一样的 5个红球、3个蓝球和2个黑球,它们已在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件、还是必然事件.(1)从口袋中任意取出一个球,是白球;(2)从口袋中一次任取两个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和黑球,没有红球;(4)从口袋中一次任意取出 6个球,恰好红、蓝、黑三种颜色的球都齐了.26.因式分解:⑴322344x y x y xy −+− ⑵x 2―2x +1―y 227.如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形;(2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.28.解方程:11322x x x−=−−−29.如图所示,把一张长为 b 、宽为 a 的长方形纸板的四个角剪去,剪去的部分都是边长为 x A O B的小正方形,然后做成无盖纸盒. 请你用三种方法求出盒子的表面积(阴影部分面积).30.如图①是按一定规律排列的数构成的一个数表:(①)(1)用一方框按图①中的样子任意框住9个数,若这9个数的和是549,求方框中最后一个数.(2)若用如图②所示的斜框任意框住9个数,且这9个数的和是360,则斜框中的第一个数是什么?(题②)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.A5.D6.D7.B8.D9.D10.C11.BC13.A14.B二、填空题15..7017.∠=或AD BCA90∥=或AB CD18.1或-319.π220.(1)3,良好;(2)15.1%21.x−1.224三、解答题22.略.23.≤≤24.x12(2)6;(3)等腰三角形25.(1)是不可能事件,(2)、(3)、(4)是不确定事件26.(1)-xy(2x-y)2,(2)(x-1-y)(x-1+y)27.略.无解29.方法一:2−;方法二:24ab x−+−=−,a b x x a x ab x(2)2(2)4方法三:2−+−=−b a x x b x ab x(2)2(2)430.(1)88 (2)16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学专题训练:网格专题
1. (2018宁夏)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【B 】
A. B.62.8 C. D.
2. (2018湖北)如图,△ABC在平面直角坐标系中的第二象限内,顶点A
的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【 B。


A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)3. (2018湖北)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【 B 】
A. B.
C. D.
4. (2018聊城)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是【 B 】
A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
5. (2018浙江)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A 的坐标为▲ .(﹣1,1),(﹣2,﹣2)。

6. (2018泰州)如图,在边长相同的小正方形组成的网格中,点A、B、
C、D都在这
些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是▲ .2
7. (2018广东)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)
(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;
(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.
【答案】解:(1)(﹣3,﹣2)。

(2)(﹣2,3)。

(3)10
2。

8. (2018福建)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如
图所示的四边
形(顶点都在格点上).
(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90o后的图形;
(2)完成上述设计后,整个
..图案的面积等于_________.
【答案】解:(1)作图如图所示:
(2)20。

9. (2018福建)如图,方格纸中的每个小方格是边长为1个单位长度的正方形.
① 画出将Rt△ABC 向右平移5个单位长度后的Rt△A 1B 1C 1;
② 再将Rt△A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt△A 2B 2C 1,
并求出旋转过程中线段
A 1C 1所扫过的面积(结果保留π).
【答案】解:① 如图所示;
② 如图所示;
在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42
360
=4π。

10. (2018福建)如图,在方格纸中(小正方形的边长为1),反比例函数k y x
=与
直线的交点A 、B 均在格点上,根据所给的直角坐标系(点O 是坐标原点),解答
下列问题:
(1)分别写.
出点A 、B 的坐标后,把直线AB 向右平移5个单位,再在向上平移5个单位,画.
出平移后的直线A ′B ′.
(2)若点C 在函数k y x
=的图像上,△ABC 是以AB 为底边的等腰三角形,请写出
点C 的坐标.
【答案】解:(1)点A的坐标是(-1,-4);点B的坐标是(-4,-1)。

平移后的直线如图:
(2).点C的坐标是(-2,-2)或(2,2)。

11. (2018四川)如图,梯形ABCD是直角梯形.
(1)直接写出点A、B、C、D的坐标;
(2)画出直角梯形ABCD关于y轴的对称图形,使它与梯形ABCD构成一个等腰梯形.
(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)
【答案】解:(1)如图所示,根据A,B,C,D,位置得出点A、B、C、D的坐标分别为:
(-2,-1),(-4,-4),(0,-4),(0,-1)。

(2)根据A,B两点关于y轴对称点分别为:A′(2,-1),B′(4,-4),
在坐标系中找出A′,B′,连接DA′,A′B′,B′C,即可得等腰梯形AA′B′B,即为所求,如下图所示:
(3)将对应点分别向上移动4个单位,可得等腰梯形EFGH ,即为所
求,如上图所示。

12. (2018辽宁)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中, 每个小正方形的边长是1个
单位长度)
(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐
标;
(2)以点B 为位似中心,在网格中...画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直接写出C 2点的坐标及△A 2BC 2的面积.
【答案】解:(1)如图,△A 1B1C1即为所求,C 1(2,-2)。

(2)如图,△A2BC2即为所求,C 2(1,0),△A 2BC 2的面积:10
13. (2018贵州)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,
以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.
(1)图中格点△A′B′C′是由格点△ABC 通过怎样的变换得到的
(2)如果以直线a 、b 为坐标轴建立平面直角坐标系后,点A 的坐标为(﹣3,4),请写出格点△DEF 各顶点的坐标,并求出△DEF 的面积.
【答案】解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;
(2)如果以直线a、b为坐标轴建立
平面直角坐标系后,点A的坐标为(﹣3,4),则
格点△DEF各顶点的坐标分别为D(0,﹣2),E
(﹣4,﹣4),F(3,﹣3),
过点F作FG∥x轴,交DE于
点G,
则G(-2,-3)。

∴S△DEF=S△DGF+S△GEF =1
2×5×1+1
2
×5×1=5。

14. (2018贵州)如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;
(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.
【答案】解:(1)如图所示,△A1B1C1即为所求作的三角形。

点A1的坐标为(1,0)。

(2)如图所示,△A2B2C2即为所求作的三角形。

根据勾股定理,A1C1=22
2+3=13,
∴旋转过程中C1所经过的路程为901313
=
π
π
⋅⋅。

15. (2018广西)如图,在10×10的正方形网格中,△ABC 的顶点和线段EF 的端点都在边长为1的小正
方形的顶点上.
(1)填空:tan
A ,AC (结果保留根号);
(2)请你在图中找出一点D (仅一个点即可),连结DE 、DF ,使以D 、E 、F 为顶点的三角形与△ABC
全等,并加以证明.
【答案】解:(1)12
;2
5。

(2)如图,点D ,连接DE 、DF ,则△ABC≌△EFD。

证明:过点C 作CG⊥AB 的延长线于点G ,过
点D 作DM⊥EF 的延长线于点M ,
由(1)得AC=2
5,
在Rt△BCG 中,BG=2,CG=2,根据勾股定理得BC=2
2,
∴△ABC 的三边长为AB=2,BC=2
2,AC=25。

在Rt△EMD 中,EM=4,MD=2,根据勾股定理得ED=25,
在Rt△FDM 中,FM=2,MD=2,根据勾股定理得:FD=22,
∴△ABC 的三边长为EF=2,FD =2
2,ED=25。

在△ABC 和△EFD 中,∵AB=EF=2, BC= FD=22,AC=ED=25,
∴△ABC≌△EFD(SSS)。

相关文档
最新文档