Matlab上机练习参考答案

合集下载

MATLAB 上机 习题及答案

MATLAB 上机 习题及答案

15、今有多项式P1(x)=x4-2x+1,P2(x)=x2+4x-0.5,要求先求得P(x)=P1(x)+P2(x),然后计算xi=0.2*i各点上的P(xi)(i=0,1,2,…,5)值。

p1=[1.0 0.0 0.0 -2.0 1.0];>> p2=[0.0 0.0 1.0 4.0 -0.5];>> p1x=poly2sym(p1);p2x=poly2sym(p2);>> p=p1x+p2xp =x^4+2*x+1/2+x^2>> x=0:5;>> x.^4+2*x+1/2+x.^2ans =0.5000 4.5000 24.5000 96.5000 280.5000 660.50001、试个MATLAB的工作空间中建立以下2个矩阵:A=[1 2]1234B⎡⎤=⎢⎥⎣⎦,求出矩阵A和B的乘积,并将结果赋给变量C。

>> A=[1 2]A =1 2>> B=[1 23 4]B =1 23 4>> C=A*BC =7 102、利用MATLAB提供的帮助信息,了解inv命令的调用格式,并作简要说明。

help invINV Matrix inverse.INV(X) is the inverse of the square matrix X.A warning message is printed if X is badly scaled ornearly singular.See also SLASH, PINV, COND, CONDEST, LSQNONNEG, LSCOV. Overloaded methodshelp gf/inv.mhelp zpk/inv.mhelp tf/inv.mhelp ss/inv.mhelp lti/inv.mhelp frd/inv.mhelp sym/inv.mhelp idmodel/inv.m3、使用help命令查询函数plot的功能以及调用方法,然后利用plot命令绘制函数y=sin(x)的图形,其中0xπ≤≤。

MATLAB上机答案

MATLAB上机答案

X
1
2
3
4
5
6
7
8
9
10
Y
16
32
70
142 260 436 682 1010 1432 1960
>> x=1:10;y=[16 32 70 142 260 436 682 1010 1432 1960];
>> p1=polyfit(x,y,1)
>>
p1 =
p2=polyfit(x,y,2),y2=polyval(p2,9.5)
0.01
0.005
0
-0.005
-0.01
-0.015
0
1
2
3
4
5
6
7
(3)大气压强 p 随高度 x 变化的理论公式为
,为验证这一公式,
测得某地大气压强随高度变化的一组数据如表所示。试用插值法和拟合法进行计算并绘图,
看那种方法较为合理,且总误差最小。
高度/m
0
300
600
1000
1500
2000
压强/Pa
equally spaced points between X1 and X2. 以 X1 为首元素,X2 为末元素平均生成 100 个元素的行向量。
LINSPACE(X1, X2, N) generates N points between X1 and X2. For N < 2, LINSPACE returns X2.
ans =
pi =
ans =
5
0
3.1416
答:3 次执行的结果不一样。exist()函数是返回变量搜索顺序的一个函数。在第一次

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案09级MATLAB上机实验练习题1、给出一个系数矩阵A[2 3 4;5 4 1;1 3 2],U=[1 2 3],求出线性方程组的一个精确解。

2、给出两组数据x=[0 0.3 0.8 1.1 1.6 2.3]’y=[0.82 0.72 0.63 0.60 0.55 0.50]’,我们可以简单的认为这组数据在一条衰减的指数函数曲线上,y=C1+C2e-t通过曲线拟合求出这条衰减曲线的表达式,并且在图形窗口画出这条曲线,已知的点用*表示。

3、解线性方程4、通过测量得到一组数据:5、已知一组测量值6、从某一个过程中通过测量得到:分别采用多项式和指数函数进行曲线拟合。

7、将一个窗口分成四个子窗口,分别用四种方法做出多峰函数的表面图(原始数据法,临近插值法,双线性插值法,二重三次方插值法)8、在同一窗口使用函数作图的方法绘出正弦、余弦、双曲正弦、双曲余弦。

分别使用不同的颜色,线形和标识符。

9、下面的矩阵X表示三种产品五年内的销售额,用函数pie显示每种产品在五年内的销售额占总销售额的比例,并分离第三种产品的切片。

X= 19.3 22.1 51.634.2 70.3 82.4 61.4 82.9 90.8 50.5 54.9 59.1 29.4 36.3 47.010、对应时间矢量t ,测得一组矢量y采用一个带有线性参数的指数函数进行拟合,y=a 0+a 1e -t +a 2te -t ,利用回归方法求出拟合函数,并画出拟合曲线,已知点用圆点表示。

11、请创建如图所示的结构数组(9分)12、创建如图所示的元胞数组。

(9分)13、某钢材厂从1990年到2010年的产量如下表所示,请利用三次样条插值的方法计算1999年该钢材厂的产量,并画出曲线,已知数据用‘*’表示。

要求写出达到题目要求的MATLAB 操作过程,不要求计算结果。

14、在一次化学动力学实验中,在某温度下乙醇溶液中,两种化合物反应的产物浓度与反应时间关系的原始数据如下,请对这组数据进行三次多项式拟合,并画出拟合曲线,已知数据如下。

Matlab上机作业部分参考答案.ppt

Matlab上机作业部分参考答案.ppt
>> A=[16,2,3,13; 5,11,10,8; 9,7,6,12; 4,14,15,1];B=[1; 3; 4; 7];
[rank(A), rank([A B])]
ans =
34 由得出的结果看,A, [A;B] 两个矩阵的秩不同,故方程是
矛盾方程,没有解。
5. 试求下面齐次方程的基础解系
7. 建立如下一个元胞数组,现在要求计算第一个元胞第4行第 2列加上第二个元胞+第三个元胞里的第二个元素+最后一个元 胞的第二个元素。
a={pascal(4),'hello';17.3500,7:2:100}
解: >> a={pascal(4),'hello';17.3500,7:2:100} a=
[ 173/34, 151/34]
6. 求解方程组的通解
x1 2x2 4x3 6x4 3x5 2x6 4 2x1 4x2 4x3 5x4 x5 5x6 3
3x1 6x2 2x3 5x5 9x6 1 2x1 3x2 4x4 x6 8
4x2
5x3
2x4
x5
参考答案: (1) >> limit(sym('(tan(x) - sin(x))/(1cos(2*x))')) ans = 0 (2) >> y = sym('x^3 - 2*x^2 + sin(x)'); >> diff(y) ans = 3*x^2-4*x+cos(x) (3) >> f = x*y*log(x+y); >> fx = diff(f,x) fx = y*log(x+y)+x*y/(x+y)

matlab上机练习及答案

matlab上机练习及答案

第二、三次上机练习:目的:运行课本第四章及课堂上讲过的例子,掌握Matlab 的流程控制语句、函数及脚本文件的编程、调试方法。

作业:1、 完成下列操作:1) 求[100,999]之间能被21整除的个数。

2) 建立一个字符串向量(要求字符串向量中必须包含自己的姓名首字母,大小写均可),删除其中的大写字母2. 编写脚本文件,实现用magic(6)产生一矩阵,用for 循环指令求解其所有元素的和。

3. 定义一个函数文件,求∑=ni m i 1,要求在函数文件中包含能够通过help 查询到的说明;然后调用该函数文件求∑∑∑===++101501210011k k k k k k 的值。

4. 已知)7.1cos(12ln )7.1sin(++++=x xx y π,当x 取-3.0,-2.9,-2.8,…,2.8,2.9,3.0时, 1) 求各点的函数值;2) 求这些数据的平均值;5、求分段函数的值。

222603565231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩, 且, 0且及, 其它用if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5时的值。

6、输入一个百分制成绩,要求输出成绩等级A 、B 、C 、D 、E 。

其中90分~100分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。

要求:分别用if 语句和switch 语句实现。

7、根据222221111...,6123n ππ=++++求的近似值。

当n 分别取100、1000、10000时,结果是多少?(要求:分别用循环结构和向量运算来实现)8、已知n=1时,f 1=1;n=2时,f 2=0;n=3时,f 3=1;n>3时,f n =f n-1 -2f n-2+ f n —3; 求f 1~ f 100中,最大值、最小值以及各数之和。

Matlab上机实验答案

Matlab上机实验答案

4. 完成下列操作: (1) 求[100,999]之间能被21整除的数的个数。 (2) 建立一个字符串向量,删除其中的大写字母。 >> n=100:999; >> l=find(rem(n,21)==0); >> length(l)
ans =
43
>> ch='aegbBOIEG0je23RGnc';
150 335 520 705 890
77 237 397 557 717
>> D=C(3:5,2:3)
D=
520 705 890 >> whos Name
397 557 717
Size
Bytes Class
Attributes
A B C D
5x5 5x3 5x3 3x2
200 double 120 double 120 double 48 double
(2) >> A*B ans =
68 309 154 >> A.*B ans =
44 -72 -5
62 596 241
(3) >> A^3 ans =
12 102 68 0 9 -130
4 261 49
37226 247370 78688
233824 149188 454142
48604 600766 118820
>> A.^3 ans = 1728 39304 27 39304 343 274625 -64 658503 343
(4) >> A/B ans =
16.4000 -13.6000 35.8000 -76.2000 67.0000 -134.0000 >> B\A ans =

matlab上机练习答案

matlab上机练习答案

实验一MA TLAB的基本命令与基本函数1已知矩阵a =11 12 13 1421 22 23 2431 32 33 3441 42 43 44求(1) A(:,1) (2) A(2,:)(3) A(:,2:3) (4) A(2:3,2:3)(5) A(:,1:2:3) (6) A(2:3)(7) A(:) (8) A(:,:)(9) ones(2,2) (10) eye(2)(11) [A,[ones(2,2);eye(2)]](12) diag(A) (13) diag(A,1)(14) diag(A,-1) (15) diag(A,2)2(1)输入如下矩阵A0π/3A=π/6 π/2(2) 求矩阵B1,B1中每一元素为对应矩阵A中每一元素的正弦函数(3) 求矩阵B2, B2中每一元素为对应矩阵A中每一元素的余弦函数(4) 求B12+B22(5) 求矩阵A的特征值与特征矢量:称特征矢量为M,而特征值矩阵为L(6) 求Msin(L)M-13已知水的黏度随温度的变化公式为μ=μ0/(1+at+bt2)其中μ0=1.785×10-3,a=0.03368,b=0.000221,求水在0,20,40,80℃时的黏度。

程序如下:miu0=1.785e-3;a=0.03368;b=0.000221;t=0:20:80miu=miu0./ (1+a*t+b*t.^2)(2)一个长管,其内表面半径为a,温度为Ta ;外表面半径为Tb;则其径向和切向应力可分别表示为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+----=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=r b a b r b a b a a b v T T E r b a b r b a b a a b v T T E b a t b a r ln ln 11)/ln()1(2)(ln ln 1)/ln()1(2)(2222222222ασασ式中r 为管子的径向坐标,E 为管子材料的弹性模量,ɑ为热膨胀系数。

MATLAB上机练习一参考解答

MATLAB上机练习一参考解答

上机练习一参考解答一、实验目的1、 熟悉Matlab 编程2、 体会数学上恒等,算法上不一定恒等二、实验内容1. Using the Taylor polynomial of degree nine and three-digit rounding arithmetic to find an approximationto 5-e by each of the following methods.(A) ∑=--≈905!)5(n n n e , (B) ∑=-≈=9055!5/11n nn e e An approximate value of 5-e correct to three digits is 31074.6-⨯. Which formula, (A) or (B), gives the most accuracy, and why?1) 算法基础利用x e 的Taylor 公式00!!n nk x n n x x e n n ∞===≈∑∑,x -∞<<+∞ (1)及001/1/1/!!n nk x x n n x x e e n n ∞-====≈∑∑,x -∞<<+∞, (2)其中k 是根据精度要求给定的一个参数。

在本题中将k 取为9, x 取为-5或5即可由公式(1)或(2)得到5-e 的近似计算方法(A )或(B )。

2) 程序下述程序用公式(A )及(B )分别在Matlab 许可精度下及限定在字长为3的算术运算情况下给出5-e的近似计算结果,其中results_1, results_2为用方法(A )在上述两种情况下的计算结果,err_1, err_2为相应的绝对误差;类似的,results_3, results_4为用方法(B )在上述两种情况下的计算结果,err_3, err_4为相应的绝对误差;具体程序如下:% Numerical Experiment 1.1 % by Xu Minghua, May 17, 2008 clc; %Initialize the data x=-5; k=9; m=3; %three-digit rounding arithmetic %------------------------------------ % Compute exp(x) by using Method (A) % with the computer precision results_1=1; power_x=1; for i=1:k factor_x=x/i; power_x=power_x*factor_x; results_1=results_1+power_x; end results_1 err_1=abs(exp(x)-results_1)%------------------------------------% Compute exp(x) by using Method (A) % with the 3-digits precisionresults_2=1;power_x=1;for i=1:kfactor_x=digit(x/i,m);power_x=digit(power_x*factor_x,m); results_2=digit(results_2+power_x,m); endresults_2err_2=abs(exp(x)-results_2)%------------------------------------% Compute exp(x) by using Method (B) % with the computer precisiont=-x;results_3=1;power_x=1;for i=1:kfactor_x=t/i;power_x=power_x*factor_x;results_3=results_3+power_x; endresults_3=1/results_3err_3=abs(exp(x)-results_3)%------------------------------------% Compute exp(x) by using Method (B) % with the 3-digits precisiont=-x; results_4=1;power_x=1;for i=1:kfactor_x=digit(t/i,m);power_x=digit(power_x*factor_x,m);results_4=digit(results_4+power_x,m); endresults_4=digit(1/results_4,m)err_4=abs(exp(x)-results_4)%------------------------------------上述主程序用到一个子程序digit.m, digit(x,m)的作用是将x四舍五入成m位数。

Matlab上机题库及详细答案_Tonyxie

Matlab上机题库及详细答案_Tonyxie

ax 2 + bx + c 0.5 ≤ x < 1.5 = y a sin c b + x 1.5 ≤ x < 3.5 c ln b + 3.5 ≤ x < 5.5 x
clc;clear; a=input('Please input a= '); b=input('Please input b= '); c=input('Please input c= '); x=input('Please input x= '); disp('#if#'); if x>=0.5&x<1.5 y=a*x^2+b*x+c elseif x<3.5&x>=1.5 y=a*sin(b)^c+x elseif x>=3.5&x<5.5 y=log(abs(b+(c./x))) else y='ERROR!' end disp('#switch#') switch(x*10/5) case {1 2} y=a*x^2+b*x+c case {3 4 5 6} y=a*sin(b)^c+x case {7 8 9 10} y=log(abs(b+(c./x))) otherwise y='ERROR!' end
பைடு நூலகம்
8、数值与符号计算
ex (1)求极限 lim x →+∞ a + be x
(3)已知线性方程组 Ax=b,其中
(2)求不定积分
∫ xe
ax

Matlab上机练习题及答案

Matlab上机练习题及答案

Matlab 上机练习题及答案---------------------------------------------------------------------1、 矩阵Y= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3472123100451150425,给出元素1的全下标和单下标,并用函数练习全下标和单下标的转换,求出元素100的存储位置。

取出子矩阵⎥⎦⎤⎢⎣⎡21301,并求该矩阵的维数。

解:命令为:Y=[5,2,4;0,15,1;45,100,23;21,47,3] Y(2,3) Y(10)sub2ind([4 3],2,3)[i,j]=ind2sub([4 3],10)find(Y==100) sub2ind([4 3],3,2)B=Y(2:2:4,3:-2:1) 或 B=Y([2 4],[3 1]) [m n]=size(Y)---------------------------------------------------------------------2、已知矩阵A=[1 0 -1 ;2 4 1; -2 0 5],B=[0 -1 0;2 1 3;1 1 2] 求2A+B 、A 2-3B 、A*B 、B*A 、A .*B ,A/B 、A\B解:命令为:A=[1 0 -1 ;2 4 1; -2 0 5] B=[0 -1 0;2 1 3;1 1 2] E=2*A+B F=A^2-3*B G=A*B H=B*A I=A.*B J=A/B K=A\B---------------------------------------------------------------------3、利用函数产生3*4阶单位矩阵和全部元素都为8的4*4阶矩阵,并计算两者的乘积。

解:命令为: A=eye(3,4) B=8*ones(4)C=A*B---------------------------------------------------------------------4、创建矩阵a=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------7023021.5003.120498601,取出其前两列构成的矩阵b ,取出前两行构成矩阵c ,转置矩阵b 构成矩阵d ,计算a*b 、c<d ,c&d, c|d ,~c|~d解:命令为:a=[-1,0,-6,8;-9,4,0,;0,0,,-2;0,-23,0,-7] b=a(:,[1 2]) c=a([1 2],:) d=b ’ e=a*b f=c<d g=c&d h=c|d i=~c|~d---------------------------------------------------------------------5、求!201∑=n n解:命令文件为 sum=0; s=1;for n=1:20 s=n*s; sum=sum+s; end sum---------------------------------------------------------------------6、求a aa aaa aa a S n ++++=得值,其中a 是一个数字,由键盘输入,表达式中位数最多项a 的个数,也由键盘输入。

Matlab上机题库及详细答案

Matlab上机题库及详细答案
例17:输入一个字符,若为大写字母,则输出其对应的小写字母;若为小写字母,则输出其对应的大写字母;若为数字字符则输出其对应的数值,若为其他字符则原样输出。
解:c=input('请输入一个字符','s');
if c>='A' & c<='Z'
disp(setstr(abs(c)+abs('a')-abs('A')));
elseif c>='a'& c<='z'
disp(setstr(abs(c)- abs('a')+abs('A')));
(2)均值为0.6方差为0.1的5阶正态分布随机矩阵
解:>>x=20+(50-20)*rand(5);
>>y=0.6+sqrt(0.1)*randn(5)
例13:将101~125等25个数填入一个5行5列的表格中,使其每行每列及对角线的和均为565。
解:M=100+magic(5)
M =117 124 101 108 115
-0.4606
0.3848
例2、用简短命令计算并绘制在0x6范围内的sin(2x)、sinx2、sin2x。
解:x=linspace(0,6)
y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;
plot(x,y1,x, y2,x, y3)
例3:画出指数衰减曲线y1=exp(-t/3)*sin(3*t)和它的包络y2=exp(-t/3),t的取值范围是(0,4pi)。

matlab上机考试题及答案

matlab上机考试题及答案

matlab上机考试题及答案1. 题目:编写一个MATLAB函数,计算并返回一个向量中所有元素的平方和。

答案:函数定义如下:```matlabfunction sumOfSquares = calculateSumOfSquares(vector)sumOfSquares = sum(vector.^2);end```2. 题目:使用MATLAB的内置函数,找出一个矩阵中的最大元素及其位置。

答案:可以使用`max`函数来找出矩阵中的最大元素,同时使用`find`函数来获取其位置。

示例代码如下:```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9];[maxValue, linearIndex] = max(A(:));[row, col] = ind2sub(size(A), linearIndex);```3. 题目:给定一个向量,使用MATLAB编写代码,实现向量元素的逆序排列。

答案:可以使用`flip`函数来实现向量的逆序排列。

示例代码如下:```matlabvector = [1, 2, 3, 4, 5];reversedVector = flip(vector);```4. 题目:编写一个MATLAB脚本,计算并绘制一个正弦波的图像。

答案:可以使用`sin`函数生成正弦波数据,并使用`plot`函数绘制图像。

示例代码如下:```matlabx = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);xlabel('x');ylabel('sin(x)');title('Sine Wave');```5. 题目:给定一个3x3的矩阵,使用MATLAB编写代码,计算其行列式。

答案:可以使用`det`函数来计算矩阵的行列式。

示例代码如下:```matlabmatrix = [1, 2, 3; 4, 5, 6; 7, 8, 9];determinant = det(matrix);```结束语:以上是MATLAB上机考试的题目及答案,希望能够帮助大家更好地掌握MATLAB的编程技巧和函数使用。

Matlab上机练习二答案

Matlab上机练习二答案

1、 求⎥⎦⎤⎢⎣⎡+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。

>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i];>> x’ans =4.0000 - 8.0000i 3.0000 - 2.0000i3.0000 - 5.0000i 7.0000 + 6.0000i2.0000 + 7.0000i 9.0000 - 4.0000i1.0000 - 4.0000i 3.0000 + 9.0000i7.0000 + 5.0000i 4.0000 - 4.0000i2、计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。

>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8];>> a.*bans =12 36 38 42 403、 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’;>> X=A\BX =-0.51184.04271.33184、 ⎥⎦⎤⎢⎣⎡-=463521a ,⎥⎦⎤⎢⎣⎡-=263478b ,观察a 与b 之间的六种关系运算的结果。

>> a=[1 2 3;4 5 6];>> b=[8 –7 4;3 6 2];>> a>bans =0 1 01 0 1>> a>=bans =0 1 01 0 1>> a<bans =1 0 10 1 0>> a<=bans =1 0 10 1 0>> a==bans =0 0 00 0 0>> a~=bans =1 1 11 1 15、[]7.0802.05--=a ,在进行逻辑运算时,a 相当于什么样的逻辑量。

(完整版)matlab上机练习题答案

(完整版)matlab上机练习题答案

6 9 3 2 4 11.计算a 与b 的数组乘积2 7 5 4 6 8>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8];>> a.*bans =12 36 38 42 404 9 2 372.对于AX B,如果A 7 6 4 ,B 26,求解X o3 5 7 287 16 185计算多项式除法(3乂3+13*+6乂+8)/0+4)>> d=deconv([3 13 6 8],[1 4])6求欠定方程组298的最小范数解5>> a=[2 4 7 4;9 3 5 6];>> b=[8 5]';>> x=pinv(a)*b-0.2151>> A=[4 9 2;7 6 4;3 5 7]; >> B=[37 26 28]';>> X=A\BX =-0.51184.04271.33180.44590.79490.27077用符号函数法求解方程at2+b*t+c=0 >> r=solve('a*t A2+b*t+c=0','t')1 2 5 8 7 43.a ,b ,观察a与b之间的3 64 3 6 2六种关系运算的结果[1/2/a*(-b+(bA2-4*a*c)A(1/2))] [1/2/a*(-b-(bA2-4*a*c)A(1/2))]>> a=[1 2 3;4 5 6]; >> b=[8 - 4;3 6 2]; >> a>bans =0 11 0 >> a>=bans =0 11 0 >> a<bans =1 00 1 >> a<=bans =1 00 1 >> a==bans =0 00 0 >> a~=bans =1 11 1 4计算多项式乘法111111(X2+2X+2)(X2+5X+4)8求矩阵A a11 a12的行列式值、逆和特征根a 21 a22>> syms a11 a12 a21 a22;>> A=[a11,a12;a21,a22]>> AD=det(A) % 行列式>> AI=inv(A) % 逆>> AE=eig(A) % 特征值A =[a11, a12][a21, a22]AD =a11*a22-a12*a21AI =[-a22/(-a11*a22+a12*a21), a12/(-a11*a22+a12*a21)][a21/(-a11*a22+a12*a21), -a11/(-a11*a22+a12*a21)]AE =>> c=conv([1 2 2],[1 5 4]) [1/2*a11+1/2*a22+1/2*(a11A2-2*a11*a22+a22A2+4*a12*a21)A(1/2)][1/2*a11+1/2*a22-1/2*(a11A2-2*a11*a22+a22A2+4*a12*a21)A(1/2)] 9 因式分解:X45X35X25X 6>> syms X;>> f=xA4-5*xA3+5*xA2+5*x-6;>> factor(f)ans =(X-1)*(X-2)*(X-3)*(X+1)x ,用符号微分求df/dx。

Matlab上机题库及详细答案

Matlab上机题库及详细答案
rate=8/100;
case num2cell(25:49) %价格大于等于2500但小于5000
Байду номын сангаасrate=10/100;
otherwise %价格大于等于5000
rate=14/100;
end
price=price*(1-rate) %输出商品实际销售价格
例19已知,当n=100时,求的值。
解:程序如下:
y=0;n=100;for i=1:n;y=y+1/(2*i-1);End
例20:一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数
解:for m=100:999
m1=fix(m/100);m2=rem(fix(m/10),10);m3=rem(m,10);
if m==m1*m1*m1+m2*m2*m2+m3*m3*m3;disp(m);end
D=diag(1:5);D*A %用D左乘A,对A的每行乘以一个指定常数
例15:输入x,y的值,并将它们的值互换后输出。
程序如下:
x=input('Input x please.');y=input('Input y please.');z=x;x=y;y=z;
disp(x);disp(y);
例16::求一元二次方程ax2 +bx+c=0的根。
switch fix(price/100)
case {0,1} %价格小于200
rate=0;
case {2,3,4} %价格大于等于200但小于500
rate=3/100;
case num2cell(5:9) %价格大于等于500但小于1000

Matlab上机作业部分参考答案

Matlab上机作业部分参考答案

上机练习二 参考答案
1. 产生一个1x10的随机矩阵,大小位于(-5 5),并 且按照从大到小的顺序排列好! 【求解】 a=10*rand(1,10)-5; b=sort(a,'descend')
上机练习二 参考答案
2、用MATLAB 语句输入矩阵A 和B
前面给出的是4 ×4 矩阵,如果给出A(5,6) = 5 命令,矩阵A将得出什么 结果?
Matlab 上机课作业
吴梅红 2012.10.15
上机练习一
上机练习一 参考答案
上机练习一 参考答案
上机练习一 参考答案
上机练习二
1. 产生一个1x10的随机矩阵,大小位于(-5 5),并且按 照从大到小的顺序排列好! 2、用MATLAB 语句输入矩阵A 和B
前面给出的是4 ×4 矩阵,如果给出A(5,6) = 5 命令,矩阵 A将得出什么结果? 3、假设已知矩阵A ,试给出相应的MATLAB 命令,将其全 部偶数行提取出来,赋给B 矩阵,用A =magic(8) 命令生成A 矩阵,用上述的命令检验一下结果是不是正确。
【求解】用课程介绍的方法可以直接输入这两个矩阵 >> A=[1 2 3 4; 4 3 2 1; 2 3 4 1; 3 2 4 1] A= 1234 4321 2341 3241 若给出A(5,6)=5 命令,虽然这时的行和列数均大于A矩阵当前的维数, 但仍然可以执行该语句,得出 >> A(5,6)=5 A= 123400 432100 234100 324100 000005 复数矩阵也可以用直观的语句输入 3+2i 4+1i; 4+1i 3+2i 2+3i 1+4i; 2+3i 3+2i 4+1i 1+4i; 3+2i 2+3i 4+1i 1+4i]; B= 1.0000 + 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i 4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 4.0000 + 1.0000i 1.0000 + 4.0000i

Matlab编程与应用习题和一些参考答案

Matlab编程与应用习题和一些参考答案

Matlab 上机实验一、二1.安装Matlab 软件。

2.验证所学内容和教材上的例子。

3.求下列联立方程的解⎪⎪⎩⎪⎪⎨⎧=+-+-=-+=++-=--+41025695842475412743w z y x w z x w z y x w z y x>> a=[3 4 -7 -12;5 -7 4 2;1 0 8 -5;-6 5 -2 10];>> b=[4;4;9;4];>> c=a\bc =5.22264.45701.47181.59944.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=81272956313841A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=793183262345B ,求C1=A*B’;C2=A’*B;C3=A.*B,并求上述所有方阵的逆阵。

>> A=[1 4 8 13;-3 6 -5 -9;2 -7 -12 -8];>> B=[5 4 3 -2;6 -2 3 -8;-1 3 -9 7];>> C1=A*B'C1 =19 -82 3012 27 3-38 54 29>> C2=A'*BC2 =-15 16 -24 3663 -17 93 -10522 6 117 -6019 46 84 -10>> C3=A.*BC3 =5 16 24 -26-18 -12 -15 72-2 -21 108 -56>> inv(C1)ans =0.0062 0.0400 -0.0106-0.0046 0.0169 0.00300.0168 0.0209 0.0150>> inv(C2)Warning: Matrix is close to singular or badly scaled.Results may be inaccurate. RCOND = 8.997019e-019.ans =1.0e+015 *-0.9553 -0.2391 -0.1997 0.27000.9667 0.2420 0.2021 -0.2732-0.4473 -0.1120 -0.0935 0.1264-1.1259 -0.2818 -0.2353 0.3182>> inv(C3)Error using ==> invMatrix must be square.5.设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y ,把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab 上机练习二班级 学号 姓名按要求完成题目,并写下指令和运行结果。

(不需要画图)1、 求⎥⎦⎤⎢⎣⎡+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。

>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i];>> x’(ans =- -- ++ -- ++ -2、计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。

>> a=[6 9 3;2 7 5];%>> b=[2 4 1;4 6 8];>> a.*bans =12 36 38 42 403、 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’;¥>> X=A\BX =4、 ⎥⎦⎤⎢⎣⎡-=463521a ,⎥⎦⎤⎢⎣⎡-=263478b ,观察a 与b 之间的六种关系运算的结果。

>> a=[1 2 3;4 5 6];>> b=[8 –7 4;3 6 2];—>> a>bans =0 1 01 0 1>> a>=bans =0 1 01 0 1)>> a<bans =1 0 10 1 0>> a<=bans =1 0 10 1 0*>> a==bans =0 0 00 0 0>> a~=bans =1 1 11 1 1]5、[]7.0-=a,在进行逻辑运算时,a相当于什么样的逻辑量。

5-82.0相当于a=[1 1 0 1 1]。

6、角度[]60x,求x的正弦、余弦、正切和余切。

=4530>> x=[30 45 60];>> x1=x/180*pi;>> sin(x1)ans =]>> cos(x1)ans =>> tan(x1)ans =>> cot(x1)ans =【7、用四舍五入的方法将数组[ ]取整。

>> b=[ ];>> round(b)ans =2 6 4 98、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=81272956313841A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=793183262345B ,求C1=A*B’;C2=A’*B;C3=A.*B,并求上述所有方阵的逆阵。

《>> A=[1 4 8 13;-3 6 -5 -9;2 -7 -12 -8];>> B=[5 4 3 -2;6 -2 3 -8;-1 3 -9 7];>> C1=A*B'C1 =19 -82 3012 27 3-38 54 29>> C2=A'*B|C2 =-15 16 -24 3663 -17 93 -10522 6 117 -6019 46 84 -10>> C3=A.*BC3 =5 16 24 -26;-18 -12 -15 72-2 -21 108 -56>> inv(C1)ans =>> inv(C2)`Warning: Matrix is close to singular or badly scaled.Results may be inaccurate. RCOND = .ans =+015 *%>> inv(C3)Error using ==> invMatrix must be square.9、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。

>> t=linspace(0,10);>> r1=2;?>> x1=(r1*cos(t)+3*t);>> y1=r1*sin(t)+3;>> r2=3;>> x2=(r2*cos(t)+3*t);>> y2=r2*sin(t)+3;>> r3=4;>> x3=(r3*cos(t)+3*t);>> y3=r3*sin(t)+3;|>> plot(x1,y1,'r',x2,y2,'b',x3,y3,'m')10、设f(x)=x5- 4x4 +3x2- 2x+ 6(1) 在x=[-2,8]之间取100个点,画出曲线,看它有几个过零点。

(提示:用polyval 函数)>> x=linspace(2,8,100);>> y=polyval([1 0 -4 3 -2 6],x);>> plot(x,y,'b',x,0,'y')>(2) 用roots函数求此多项式的根。

t=[1 0 -4 3 -2 6]p=roots(t)11、设x=sint, y=sin(nt+a),(1)若a=1,令n =1,2,3,4,在四个子图中分别画出其曲线。

(2)若n=2,取a=0,π/3,π/2,及π,在四个子图中分别画出其曲线。

·(1)a=1; x=sin(t);y1=sin(1*t+a);y2=sin(2*t+a);y3=sin(3*t+a);y4=sin(4*t+a); subplot(2,2,1);plot(x,y1);subplot(2,2,2);plot(x,y2);subplot(2,2,3);plot(x,y3);subplot(2,2,4);plot(x,y4)(2)n=2;x=sin(t);y1=sin(2*t+0);y2=sin(2*t+pi/3);y3=sin(2*t+pi/2);y4=sin(2*t+pi);subplot(2,2,1);plot(x,y1);subplot(2,2,2);plot(x,y2);subplot(2,2,3);plot(x,y3);subplot(2,2,4);plot(x,y4)注:本题好像题目本身就有问题,因为“t ” 取值不明,所以运行不了,画不出图来。

转化为符号式来画图也是不可行的。

(纯粹个人意见,可能我想错了方向,会做的同学请上传一下正确的做法)12、 求解多项式x 3-7x 2+2x +40的根。

'>> r=[1 -7 2 40];>> p=roots(r);13、符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t 的变化范围为[0,2]。

>> syms t?>> ezplot(sin(3*t)*cos(t),sin(3*t)*sin(t),[0,pi])14、设,求x=sym('x'); y=(sin(x))^4+(cos(x))^4;diff(y,10)15、dx x x ⎰-632)9(x=sym('x');int((sqrt((9-x^2)^3)/x^6),x)16、⎰+213x x dx 【x=sym('x');int(x+x^3,x,1,2)17、求级数的和: ∑∞=+122n n n sym(‘n ’);symsum(n+2/2^n,n,1,inf)18、利用函数int 计算二重不定积分 x=sym('x'); y=sym('y');z=(x+y)*exp(-x*y);a=int(z,x);int(a,y)19、试求出如下极限。

(1)x x x x 1)93(lim +∞→; (2)11lim 00-+→→xy xy y x ;(1)>> syms x;f=(3^x+9^x)^(1/x);l=limit(f,x,inf))l =9(2)>> syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0)ans =2(3)>> syms x y;f=(1-cos(x^2+y^2))*exp(x^2+y^2)/(x^2+y^2);limit(limit(f,x,0),y,0) ans ={20、已知参数方程⎩⎨⎧-==tt t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y >> syms t;x=log(cos(t));y=cos(t)-t*sin(t);diff(y,t)/diff(x,t)ans =-(-2*sin(t)-t*cos(t))/sin(t)*cos(t)>> f=diff(y,t,2)/diff(x,t,2);subs(f,t,sym(pi)/3)ans =3/8-1/24*pi*3^(1/2)21、假设⎰-=xy t t e y x f 0d ),(2,试求222222y f y x f x f y x ∂∂+∂∂∂-∂∂>> syms x y t %>> s=int(exp(-t^2),t,0,x*y);>> x/y*diff(f,x,2)-2*diff(diff(f,x),y)+diff(f,y,2)ans =2*x^2*y^2*exp(-x^2*y^2)-2*exp(-x^2*y^2)-2*x^3*y*exp(-x^2*y^2)22试求出下面的极限。

(1)⎥⎦⎤⎢⎣⎡-++-+-+-∞→1)2(1161141121lim 2222n n ; (2))131211(lim 2222ππππn n n n n n n ++++++++∞→ >> syms kn;symsum(1/((2*k)^2-1),k,1,inf)· ans =dxdy e y x xy ⎰⎰-+)(1/2>> limit(symsum(1/((2*k)^2-1),k,1,n),n,inf)ans =1/2(2)>> limit(n*symsum(1/(n^2+k*pi),k,1,n),n,inf)ans =、123、假设一曲线数据点为x=0:2:4*pi y=sin(x).*exp(-x/5)试将x的间距调成,并用下列方法进行内插:(1)线性内插法(method=’linear’)(2)样条内插法(method=’spline’)(3)三次多项式内插法(method=’cubic’)(4)多项式拟合法:直接利用6次多项式去通过7个数据点请将这些内插法的结果及原先的数据点画在同一个图上!24、(15分)某一过程中通过测量得到:编程完成以下内容:(1) 分别采用三阶和四阶多项式对数据进行拟合;(提示:采用polyfit进行多项式拟合;调用格式为p = polyfit(t,y,n),n为多项式阶数,p为得到的多项式系数)(2) 比较拟合效果,要求把图形窗口分成两个子窗口,子窗口1绘制出原始测量值和三阶多项式拟合后的曲线,子窗口2绘制出原始测量值和四阶多项式拟合后的曲线;.七、(15分)t = [0 ];y = [ ]; % 1分p1 = polyfit(t,y,3); % 1分p2 = polyfit(t,y,4); % 1分x = [0::5];y1 = polyval(p1,x); % 1分—y2 = polyval(p2,x); % 1分subplot(1,2,1); % subplot 语句格式写对1分plot(t,y,'o',x,y1); % 也可使用hold on命令,正确画出第一个子图 2分subplot(1,2,2);plot(t,y,'o',x,y2); % 正确画出第二个子图 2分25、阅读以下程序并在指定位置上写注释(6分)t=(0::2)*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z,'r-',x,y,z,'bd') %___(1)_绘制一条红色连续曲线和蓝色菱形离散点view([-82,58]) %___(2)__以方位角-82度,俯角58度观察视图box on %显示坐标轴的矩形框legend('图形','视角') %__ (3)_标注图例______hold on %__(4)_保持图形_____x=-4:4;y=x;[X,Y]=meshgrid(x,y); %__(5)_生成平面网格坐标矩阵__Z=X.^2+Y.^2;surf(X,Y,Z); %__ (6)_绘制三维曲面_26、编写一个M 函数文件fun_es(x),计算如下函数:)sin(5.023/x x e y x -=,其中参数可以为标量,也可以为向量。

相关文档
最新文档