高中数学必修二第一章立体几何初步第一节简单几何体(北师大版)

合集下载

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的简单几何体的内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
- 《几何原本》是古希腊数学家欧几里得的代表作,其中包含了关于立体几何的详细论述,对于理解立体几何的概念和定理非常有帮助。
举例:可以用坐标系表示几何体的顶点或中心点的位置,用向量表示几何体的尺寸和方向。
(3)几何体的表面积和体积计算:如何计算简单几何体的表面积和体积。
举例:正方体的表面积公式为6a²,其中a为边长;正方体的体积公式为a³。
2.教学难点
(1)理解并应用几何体的特征:学生可能对几何体的特征和性质理解不深,难以运用到实际问题中。
互动探究:
设计小组讨论环节,让学生围绕简单几何体的问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
技能训练:
设计实践活动或实验,让学生在实践中体验几何体的应用,提高实践能力。
在新课呈现结束后,对简单几何体的知识点进行梳理和总结。
强调重点和难点,帮助学生形成完整的知识体系。
- 学习如何表示和描述简单几何体的尺寸和位置;
- 掌握如何计算简单几何体的表面积和体积。
2.教学目标:
- 学生能准确识别和描述常见简单几何体的特征;
- 学生能运用数学语言和符号表示简单几何体的尺寸和位置;
- 学生能计算简单几何体的表面积和体积,并能解决相关实际问题。
三、教学步骤
1.导入(5分钟):通过展示一些实际生活中的几何体模型,引导学生思考和讨论这些模型的特征和数学关系。

2016-2017学年高中数学 第一章立体几何初步 1.1.2 简单多面体课件 北师大版必修2

2016-2017学年高中数学 第一章立体几何初步 1.1.2 简单多面体课件 北师大版必修2

探究一
探究二
探究三
探究四
思想方法
解:(1)错误.棱锥的侧面一定是三角形,可以是等腰三角形,也可以 是正三角形,例如棱长均相等的正三棱锥的各个面都是正三角形.
(2)正确.在三棱锥中,共有4个面,每一个面均可作为底面,每一个 顶点均可作为棱锥的顶点.
(3)错误.只有当棱锥被与其底面平行的平面所截时,才能截得一 个棱锥和一个棱台.
4.棱台 (1)棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面与截 面之间的部分叫作棱台.原棱锥的底面和截面叫作棱台的下底面和 上底面,其他各面叫作棱台的侧面,相邻侧面的公共边叫作棱台的 侧棱.如图所示.
(2)表示:用表示底面各顶点的字母表示棱台.如上图中的棱台可记 作:四棱台ABCD-A'B'C'D'. (3)分类:按底面多边形的边数分为三棱台、四棱台、五棱台…… (4)特殊的棱台:用正棱锥截得的棱台叫作正棱台.正棱台的侧面是 全等的等腰梯形.
锥的顶点,于是棱台的侧棱所在的直线均相交于同一点,故命题④
为真命题.故选A. 答案:A
探究一
探究二
探究三
探究四
思想方法
探究一
探究二
探究三
探究四
思想方法
变式训练1 下列说法中正确的是
.
①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4
个顶点;
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中假命题的个数是( )
A.0 B.1 C.2 D.3
探究一
探究二
探究三
探究四
思想方法
解析:解答本题可先根据棱柱、棱锥、棱台的结构特征进行详细
分析,再结合已知的各个命题具体条件进行具体分析.显然命题① ②③均是真命题.对于命题④,棱台的侧棱所在的直线就是截得原

高中数学必修二第一章立体几何初步第一节简单几何体北师大版ppt课件

高中数学必修二第一章立体几何初步第一节简单几何体北师大版ppt课件

A1B1C1D1 .
D1 A1
B1 C1
D A
C B
1.用任意一个平面截一个几何体,各个截面都是圆,
则这个几何体一定是 ( C )
A.圆柱
B.圆锥
C.球体
D.圆柱,圆锥,球体的组合体
【解析】当用过高线的平面截圆柱和圆锥时,截面分别为矩形 和三角形,只有球满足任意截面都是圆面.
2.下列说法正确的是( D ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱. B.有两个面平行,其余各面都是平行四边形的几何体叫 棱柱. C.有一个面是多边形,其余各面都是三角形的几何体叫 棱锥. D.棱台各侧棱的延长线交于一点.
线段叫作球的半径. 5.连接_球__面__上两点并且过_球__心__的线段叫作球的
直径.
直径 球面
球心
半径
二、圆柱、圆锥、圆台
(Hale Waihona Puke )圆柱1.以矩形的一边所在的直线为旋转轴,其余 各边旋转而形成的曲面所围成的几何体叫作 圆柱. 2.在旋转轴上这条边的长度叫做圆柱的高. 3.垂直于旋转轴的边旋转形成的圆面叫做圆 柱的底面.
第一章 立体几何初步
§1 简单几何体
情境引入
课堂探究
简单旋转体 一、球
1.以半圆的_直__径__所__在__的__直__线__为旋转轴,将半圆旋
转所形成的曲面叫作球面. 2._球__面__所围成的几何体叫作球体,
简称球.
3.半圆的_圆__心__叫作球心.
O
4.连接球心和_球__面__上__任__意__一__点__的
3.以下四个叙述:
① 正棱锥的所有侧棱相等;
② 直棱柱的侧面都是全等的矩形;
③ 圆柱的母线垂直于底面;

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

小 结
·


新 你发现直观图的面积与原图形面积有何关系?
















返 首 页
·
32
·









提示:由题意,易知在△ABC 中,AC⊥AB,且 AC=6,AB=3, 提
·



∴S△ABC=12×6×3=9.



作 探 究

S△A′B′C′=12×3×(3sin
45°)=9 4 2,∴S△A′B′C′=


OB=2O′B′=2 2,OC=O′C′=AB=
·



知 A′B′=1,

·
·

且 AB∥OC,∠BOC=90°.
BC = B′C′ = 1 +
2,在
y
轴上截取线段
BA =
课 堂


习 2B′A′=2.
·



新 知
过 A 作 AD∥BC,截取 AD=A′D′=1.
素 养
·
·

连接 CD,则四边形 ABCD 就是四边形 A′B′C′D′的平面图 课


探 形.



释 疑
四边形 ABCD 为直角梯形,上底 AD=1,下底 BC=1+







2021年高中数学第1章 学案北师大版必修2(付,143页)

2021年高中数学第1章 学案北师大版必修2(付,143页)

第一章立体几何初步§1简单几何体1.1简单旋转体知识点一旋转体[填一填](1)概念:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.(2)特殊的旋转体:圆柱、圆锥、圆台、球.知识点二球[填一填](1)概念:以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面.球面所围成的几何体叫作球体,简称球.半圆的圆心叫作球心.连接球心和球面上任意一点的线段叫作球的半径.连接球面上两点并且过球心的线段叫作球的直径.如图所示.(2)表示:球常用表示球心的字母表示.如上图中的球记作球O.[答一答]1.在平面几何中,你学习了直线与圆的位置关系,那么平面与球的位置关系如何?提示:类比平面上直线与圆的位置关系,平面与球有以下几种位置关系:相离、相切、相交,其中相离是平面与球无公共点,相切是平面与球有且只有一个公共点,相交则是平面与球有无数多个公共点.知识点三圆柱、圆锥、圆台[填一填](1)概念:分别以矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台.圆台也可以看作是用平行于圆锥底面的平面截这个圆锥而得到的.垂直于旋转轴的边旋转而成的圆面叫作它们的底面;不垂直于旋转轴的边旋转而成的曲面叫作它们的侧面,无论转到什么位置,这条边都叫作侧面的母线.如图所示.(2)表示:圆柱、圆锥、圆台都是用表示轴的字母表示.如上图中的圆柱、圆锥、圆台分别记为圆柱OO′、圆锥SO、圆台OO′.[答一答]2.对圆柱、圆锥、圆台:(1)平行于底面的截面是什么样的图形?(2)过轴的截面(简称轴截面)分别是什么样的图形?(3)研究圆柱、圆台和圆锥之间的关系.提示:(1)平行于底面的截面,图形都是圆.(2)过轴的截面,对于圆柱是矩形,对于圆锥是等腰三角形,对于圆台是等腰梯形.(3)圆柱的上底面变小,就变为圆台,当上底面变为一个点时,它就变成了圆锥.圆台是由圆锥截得的,“补台成锥”是解决圆台问题的一种重要方法.3.为什么以直角三角形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体不一定是圆锥?提示:如图①所示,Rt△ABC中,AB⊥AC,以直角边AC所在的直线为轴旋转所得旋转体是圆锥,如图②;以直角边AB所在的直线为轴旋转所得旋转体也是圆锥,如图③;以斜边BC所在的直线为轴旋转所得旋转体不是圆锥,是两个同底面的圆锥拼接成的几何体,如图④.由此可见,平面图形绕同一平面内的一条直线旋转所得几何体是什么样的旋转体,跟所选旋转轴所在的直线的位置关系有关.在理解圆柱、圆锥和圆台的概念时要注意以下几点(1)我们以轴上的两个字母表示几何体,可以记作圆柱OO′,圆锥SO,圆台OO′.(2)圆台可看作是用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.(3)这三种几何体的母线不是唯一的.圆柱的母线互相平行,圆锥的母线交于一点,圆台的母线延长后交于一点.连接圆柱上、下底面圆周上两点,不一定是圆柱的母线,圆柱的母线与轴平行.但连接圆锥顶点和底面圆周上任一点得到的线段都是母线.(4)用一个与底面平行的平面去截这三种几何体,得到的截面都是圆面.类型一旋转体的有关概念【例1】以下对于几何体的描述,错误的是()A.NBA决赛中使用的篮球不是球体B.一个等腰三角形绕着底边上的高所在直线旋转180°形成的封闭曲面所围成的图形叫作圆锥C.用平面去截圆锥,底面与截面之间的部分叫作圆台D.以矩形的一组对边的中垂线所在直线为轴旋转180°所形成的几何体为圆柱【思路探究】根据柱、锥、台的结构特征进行判断.【解析】根据球的定义可知A正确.由圆锥的定义知B正确.当平面与圆锥的底面平行时底面与截面之间的部分为圆台,故C错误.由圆柱的定义知D正确.【答案】 C规律方法1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解:(1)错误.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错误.应为球面.类型二有关几何体的计算问题【例2】一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【思路探究】本题主要考查圆台中的有关计算,关键是画出轴截面,依据相似三角形求解.【解】(1)如右图所示,设圆台的轴截面是等腰梯形ABCD,O1,O分别是上、下底面的中心,作AM⊥BC于M,延长BA,CD交于S,连接SO,则SO经过O1.由已知得上底面半径O1A=2 cm ,下底面半径OB =5 cm ,且腰长AB =12 cm ,∴圆台的高AM =122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l cm ,则由△SAO 1∽△SBO ,得l -12l =25,解得l =20. 即截得此圆台的圆锥的母线长为20 cm.规律方法 解决这类问题一般是画出轴截面解三角形.一个圆锥的高为2,母线与轴的夹角为30°,则圆锥的母线长为433. 解析:先明确圆锥的相关概念,画出示意图,再利用直角三角形的知识求解,如图所示,设圆锥底面直径为AB ,SO 为高,SA 为母线,由题意可知∠ASO =30°,所以在Rt △AOS 中,SA =SO cos ∠ASO =2cos30°=433. 类型三 有关球的截面问题【例3】 在球内有相距9 cm 的两个平行截面,面积分别为49π cm 2和400π cm 2,求此球的半径.【思路探究】 作轴截面(过与截面圆垂直的半径作截面),将空间图形化为平面图形.利用截面的性质解直角三角形.【解】 两截面与球心的位置关系有两种:(1)两截面位于球心的同侧;(2)球心在两截面之间.若两截面位于球心的同侧,如图①,C ,C 1分别是两平行截面的圆心,设球的半径为R ,截面圆的半径分别为r ,r 1,由πr 21=49π,得r 1=7(cm),由πr 2=400π,得r =20(cm),在Rt△OB1C1中,OC1=R2-r21=R2-49,在Rt△OBC中,OC=R2-r2=R2-400,由题意知OC1-OC=9 cm,即R2-49-R2-400=9,解得R=25(cm),若球心在两截面之间,如图②,OC1=R2-49,OC=R2-400.由题意知OC1+OC=9 cm,即R2-49+R2-400=9,R2-49=9-R2-400,平方得R2-400=-15,此方程无解,说明第二种情况不存在.综上所述,所求球的半径为25 cm.规律方法在解决球的截面问题时,可作轴截面,将空间图形化为平面图形.由于球心与截面圆心的连线垂直于截面圆,因此经过球心与截面圆心的连线作轴截面如图.则球的半径R,截面圆半径r,球心到截面的距离d有如下关系:d2+r2=R2.在半径等于13 cm的球内有一个截面,它的面积是25π cm2,求球心到这个截面的距离.解:设截面圆的半径为r cm.因为πr2=25π,所以r=5.设球心到截面的距离为d cm,则d=132-52=12.所以球心到截面的距离为12 cm.类型四圆柱、圆锥、圆台的侧面展开图问题【例4】如图所示,一圆柱的底面半径为2,母线长为5,轴截面为矩形ABCD,从点A拉一绳子沿圆柱侧面到点C,求最短绳长.【思路探究】(1)绳子是在圆柱的侧面上,与侧面有关的问题用侧面展开图来解决.(2)沿母线BC剪开,将圆柱侧面的一半展开,得展开图矩形,其中AD是母线的长,AB′是底面周长的一半.【解】沿BC剪开,将圆柱侧面的一半展开得到矩形B′ADC′,如图所示,连接AC′,则AC′的长即为所求最短绳长,由题意可知,B′C′=5,AB′=2π,即最短绳长为25+4π2.规律方法1.圆柱问题中的基本量为底面半径r、h、母线长l,且h=l.2.解决与圆柱有关的问题可作轴截面或侧面展开图,将空间问题转化为平面问题.3.轴截面是矩形,长和宽分别为2r和l.4.侧面展开图是矩形,长和宽分别为2πr和l.圆锥底面半径r=1 cm,母线l=6 cm,现有一只蚂蚁,从圆锥底面圆周上点A沿侧面爬一周后又回到A点,求它至少要爬的路程.解:如图所示,将圆锥侧面沿母线P A 展开,所得扇形的圆心角θ=r l ·360°=16×360°=60°,∴△P AA ′为等边三角形,∴AA ′=6,即它至少要爬的路程为6 cm.——转化与化归思想——立体几何问题平面化1.利用轴截面将空间问题转化为平面问题圆柱、圆锥、圆台、球的轴截面中含有丰富的元素和良好的图形性质,因此在解决几何体的有关长度计算问题时常常利用轴截面来解决,将空间问题转化为平面问题.2.用侧面展开的方法求圆柱、圆锥和圆台侧面上两点间距离(最值)求几何体侧面上两点间最短距离的问题,常把侧面展开,转化为平面几何问题后解决.【例5】 如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离;(3)f (x )的最大值.【思路分析】 求几何体侧面上两点之间的距离的最小值时,往往利用其侧面展开图求解.【精解详析】 将圆锥的侧面沿SA 剪开,并展开,如图所示,该图形为扇形,且弧AA ′的长度L 就是圆O 的周长,所以L =2πr =2π.所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°.(1)由题意知,绳子长度的最小值为展开图中的AM ,且AM =x 2+16(0≤x ≤4),所以f (x )=AM 2=x 2+16(0≤x ≤4).(2)作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,因为12SA ·SM =12AM ·SR ,所以SR =SA ·SM AM =4x x 2+16(0≤x ≤4),即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4). (3)因为f (x )=x 2+16(0≤x ≤4)是增函数,所以f (x )的最大值为f (4)=32.【解后反思】 求解旋转体侧面上两点间的最小距离时,一般将几何体侧面展开,从而将空间问题转化为平面问题,将曲线问题转化为直线问题来解决,使复杂问题简单化.如图,圆台的上、下底面半径分别为5 cm 和10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到A 点.求:在绳子最短时,上底圆周上的点到绳子的最短距离.提示:类似几何体表面最短路径问题一般是把侧面展开,转化为平面几何知识求解. 解:如图,将圆台侧面展开,则绳子的最短长度为侧面展开图中A 1M 的长度,所以∠AOA 1=10-520×360°=90°, 设OB =l ′,则5l ′·360°=90°, 所以l ′=20 cm ,所以OA =OA 1=40 cm ,OM =30 cm.在Rt△A1OM中,A1M=OA21+OM2=402+302=50(cm).过点O作OQ⊥A1M于Q,交弧BB1于P,则PQ为所求最短距离.因为OA1·OM=A1M·OQ,则40×30=50·OQ,所以OQ=24 cm,所以PQ=OQ-OP=OQ-OB=24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.一、选择题1.下列不是旋转体的是(D)A.圆台B.圆锥C.圆柱D.球面解析:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫作空间几何体.旋转体是特珠的空间几何体.因此球面不是旋转体.2.下列说法中正确的是(D)A.圆台是直角梯形绕其一边所在的直线旋转而成的B.圆锥是直角三角形绕其一边所在的直线旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的底面与截面之间的部分解析:圆台是直角梯形绕垂直于底边的腰所在的直线旋转而得到的,故A不正确;圆锥是直角三角形绕其一条直角边所在的直线旋转而得到的,故B不正确;而圆柱、圆锥、圆台、球都是旋转体,故C不正确.3.有下列表述:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是(D)A.①②B.②③C.①③D.②④解析:对于①③,两点的连线不一定在圆柱、圆台的侧面上,当然有可能不是母线了,对于②④,由母线的定义知正确.二、填空题4.有下列说法:①球的半径是连接球面上任意一点和球心的线段;②球的直径是球面上任意两点间的线段;③用一个平面截一个球,得到的是一个圆;④空间中到一定点距离相等的点的集合是一个球.其中正确的有①.解析:①球是半圆绕其直径所在的直线旋转,旋转面所围成的封闭的几何体,不难理解,半圆的直径就是球的直径,半圆的圆心就是球心,半圆的半径就是球的半径,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离相等的点的集合是一个球面,而不是一个球体,所以④错误.5.圆柱、圆锥和圆台过轴的截面分别是矩形、等腰三角形和等腰梯形.三、解答题6.在半径为25 cm的球内有一个截面,它的面积是49π cm2,求球心到这个截面的距离.解:设球的半径为R,截面圆的半径为r,球心到截面的距离为d,如图所示.因为S=πr2=49π cm2,所以r=7 cm,所以d=R2-r2=252-72=24(cm),即球心到这个截面的距离为24 cm.1.2 简单多面体知识点一多面体与棱柱[填一填]1.多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体.2.棱柱(1)棱柱的有关概念两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.两个互相平行的面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是平行四边形.两个面的公共边叫作棱柱的棱,其中两个侧面的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫作棱柱的顶点,与两个底面都垂直的直线夹在两底面间的线段长叫作棱柱的高.(2)棱柱的分类①按底面多边形的边数:棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫作三棱柱、四棱柱、五棱柱…….②按侧棱与底面是否垂直:[答一答]1.有人说:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱.你认为这种说法对吗?提示:这种说法不对.棱柱有两个本质特征:(1)有两个面互相平行;(2)其余各面每相邻两个面的公共边相互平行.正是由于这两个特征,使棱柱的各侧面都是平行四边形,但是有两个面互相平行,其余各面都是平行四边形的几何体未必是棱柱.反例如图.知识点二棱锥[填一填](1)定义有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.这个多边形叫作棱锥的底面,其余各面叫作棱锥的侧面,相邻侧面的公共边叫作棱锥的侧棱,各侧面的公共点叫作棱锥的顶点,过顶点作底面的垂线,顶点与垂足间的线段长叫作棱锥的高.(2)正棱锥如果棱锥的底面是正多边形,且各侧面全等,就称作正棱锥.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱锥分别叫作三棱锥、四棱锥、五棱锥…….[答一答]2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?为什么?提示:不一定,判断一个几何体是否是棱锥,关键是紧扣棱锥的三个本质特征:(1)有一个面是多边形;(2)其余各面都是三角形;(3)这些三角形有一个公共顶点.这三个特征缺一不可,显然,这种说法不满足(3). 反例如图.知识点三棱台[填一填](1)定义用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.原棱锥的底面和截面叫作棱台的下底面和上底面,其他各面叫作棱台的侧面,相邻侧面的公共边叫作棱台的侧棱,与两个底面都垂直的直线夹在两底面间的线段长叫作棱台的高.(2)正棱台用正棱锥截得的棱台叫作正棱台,正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱台分别叫作三棱台、四棱台、五棱台…….[答一答]3.棱台的各侧棱是什么关系?各侧面是什么样的多边形?两个底面是什么关系?提示:棱台的各侧棱延长后交于一点,各侧面是梯形,两个底面是相似的多边形.4.观察下面的几何体,思考问题:图①是棱台吗?图②用任意一个平面去截棱锥,一定能得到棱台吗?提示:图①不是棱台,因为各侧棱延长后不交于一点,图②中只有用平行于底面的平面去截才能得到棱台.1.对于多面体概念的理解,注意以下两个方面(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.(2)多面体是一个“封闭”的几何体.2.对于棱柱的定义注意以下三个方面(1)有两个面平行,各侧棱都平行,各侧面都是平行四边形.(2)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱.(3)从运动的观点看,棱柱可以看成是一个平面多边形,从一个位置沿一条不与其共面的直线运动到另一位置时,形成的几何体.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.类型一概念的理解与应用【例1】下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.【解析】①中两个四棱柱放在一起,如图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错.②中棱台的侧面一定是梯形,不可能为平行四边形,②正确.根据棱锥的概念知③正确.根据棱台的概念知④正确.棱柱的底面可以是三角形,故⑤不正确.正确的个数为3.【答案】 3规律方法有关棱柱、棱锥、棱台结构特征的判断方法(1)举反例法:结合棱柱、棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点下面属于多面体的是①②.(将正确答案的序号填在横线上)①建筑用的方砖;②埃及的金字塔;③茶杯;④球.解析:①②属于多面体;③④属于旋转体.类型二棱柱的结构特征【例2】如图所示,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.【思路探究】判断一个几何体是否是棱柱,关键是验证几何体是否满足棱柱的定义.如果是棱柱,一是要找到两个面平行,二是要判定其余各个面的公共边平行;如果不是棱柱,则需指出不满足定义或举出反例.【解】(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是四边形,其余各面都是矩形,矩形当然是平行四边形,并且几何体的四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.规律方法棱柱的两个主要结构特征:(1)有两个面互相平行;(2)各侧棱都互相平行,各侧面都是平行四边形.通俗地讲,就是棱柱“两头一样平,上下一样粗”.下列说法中,正确的是(C)A.底面是正多边形的棱柱是正棱柱B.棱柱中两个互相平行的面一定是棱柱的底面C.棱柱的各个面中,至少有两个面互相平行D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形解析:正棱柱是底面是正多边形且侧棱垂直于底面的棱柱,故A错误;棱柱中可以有两个侧面互相平行,不一定是底面,同时底面可以是平行四边形,故B,D错;由棱柱的概念知C正确.故正确答案为C.类型三棱锥的几何特征【例3】已知正三棱锥V-ABC的底面边长为6,高VO=4,D为AB的中点,过点V,C,D作截面,试求该截面的周长和面积.【思路探究】依据题意画出图形,利用高与侧棱、底面等边三角形相应的外接圆半径,高与斜高、底面等边三角形相应边心距构成的直角三角形进行计算.【解】 由题意画出图形,如图所示,其中VO =4,AB =BC =CA =6,∵△ABC 是等边三角形,O 是中心,∴OC =23,OD =3,在Rt △VOC 和Rt △VOD 中,由勾股定理,得VC =42+(23)2=27,VD =42+(3)2=19,∴截面△VCD 的周长为VC +CD +VD =27+33+19,面积为12CD ·VO =12×33×4=6 3.规律方法 1.如图,在正三棱锥的计算中,常要研究基本量:底面边长AB 、侧棱长PC 、高PO 、斜高PD 、边心距OD 、底面外接圆半径OC 等.2.含有这些基本量的直角三角形有Rt △POD 、Rt △POC 、Rt △PDB 、Rt △AOD 等. 3.通过解这些直角三角形可求出基本量,进而完成解题. 4.记住一些结论可提高解题速度.如若AB =a ,则OC =33a ,OD =36a ,CD =32a 等.在四棱锥的四个侧面中,直角三角形最多可有( D ) A .1个 B .2个 C .3个D .4个解析:如图所示,在长方体ABCD -A 1B 1C 1D 1中取四棱锥A 1-ABCD ,则此四棱锥的四个侧面全为直角三角形.故正确答案为D.类型四 棱台的几何特征【例4】 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均为17,求四棱台的高.【思路探究】 思路一:用“补形法”,将棱台还原为棱锥,结合平面几何知识求解;思路二:依题意,作出棱台的对角面,化为平面几何的计算问题.【解】解法一:如图所示,设O 1,O 分别为正方形A 1B 1C 1D 1和正方形ABCD 的中心,则P ,O 1,O 三点共线.A 1O 1=12A 1C 1=12×42=22,AO =12AC =12×82=4 2.∵△P A 1O 1∽△P AO ,∴A 1O 1AO =P A 1P A ,即P A 1P A =12.又∵P A =P A 1+A 1A =2P A 1,∴P A 1=A 1A =17, 在Rt △PO 1A 1中,PO 1=P A 21-A 1O 21=(17)2-(22)2=3.又∵PO 1PO =A 1O 1AO ,∴PO =6,∴OO 1=3.∴四棱台的高为3.解法二:如图所示,在截面ACC 1A 1中,A 1A =CC 1=17,A 1C 1=42,AC =82,过A 1作A 1E ⊥AC 交AC 于点E ,则A 1E 就是四棱台的高.在Rt △A 1EA 中,AE =12×(82-42)=22,A 1A =17,∴A1E=A1A2-AE2=(17)2-(22)2=3,即四棱台的高为3.规律方法正棱台的计算1.将正棱台补成棱锥(1)大、小棱锥中用解直角三角形方法求解;(2)两棱锥之间运用“对应高之比等于相似比”及相似形知识求解.2.在正棱台中作直角梯形,进而化为矩形和直角三角形求解.下列几何体是棱台的是④(填序号).解析:①③都不是由棱锥截得的,不符合棱台的定义,故①③不满足题意,②中的截面不平行于底面,不符合棱台的定义,故②不满足题意,④符合棱台的定义,故填④.——多维探究系列——几何体的侧面或表面展开图问题展开图问题是转化思想的体现,是把立体几何问题转化为平面几何问题的重要手段之一,所以要重视这种问题的应用.【例5】如图是三个几何体的侧面展开图,请问各是什么几何体?【思路分析】图①中,有5个平行四边形,而且还有2个全等的五边形,符合棱柱特点;图②中,有5个三角形,且有共同的顶点,还有1个五边形,符合棱锥特点;图③中,有3个梯形,还有2个相似的三角形,符合棱台的特点.【精解详析】由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把。

高中数学第一章立体几何初步1简单几何体学案北师大版必修2(2021年整理)

高中数学第一章立体几何初步1简单几何体学案北师大版必修2(2021年整理)

(赣豫陕)2018-2019学年高中数学第一章立体几何初步1 简单几何体学案北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((赣豫陕)2018-2019学年高中数学第一章立体几何初步1 简单几何体学案北师大版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(赣豫陕)2018-2019学年高中数学第一章立体几何初步1 简单几何体学案北师大版必修2的全部内容。

§1简单几何体学习目标1。

理解旋转体与多面体的概念。

2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质.知识点一旋转体与多面体旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体多面体把若干个平面多边形围成的几何体叫作多面体知识点二常见的旋转体及概念思考1 以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥吗?答案不是.以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥的一半,不是整个圆锥.思考2 能否由圆锥得到圆台?答案用平行于圆锥底面的平面截去一个圆锥可以得到.梳理名称图形及表示定义相关概念球记作:球O 球面:以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面.球体:球面所围成的几何体叫作球体,简称球球心:半圆的圆心.球的半径:连接球心和球面上任意一点的线段.球的直径:连接球面上两点并且过球心的线段圆柱记作:圆柱OO′以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆柱高:在旋转轴上这条边的长度.底面:垂直于旋转轴的边旋转而成的圆面.侧面:不垂直于旋转轴的边旋转而成的曲面.母线:不垂直于旋转轴的边,无论转到什么位置都叫作侧面的母线圆锥记作:圆锥OO′以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆锥圆台记作:圆台OO′以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆台特别提醒:(1)经过旋转体轴的截面称为该几何体的轴截面.(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点.知识点三常见的多面体及相关概念思考观察下列多面体,试指明其类别.答案(1)五棱柱;(2)四棱锥;(3)三棱台.梳理(1)棱柱①定义要点:(ⅰ)两个面互相平行;(ⅱ)其余各面都是四边形;(ⅲ)每相邻两个四边形的公共边都互相平行.②相关概念:底面:两个互相平行的面.侧面:除底面外的其余各面.侧棱:相邻两个侧面的公共边.顶点:底面多边形与侧面的公共顶点.③记法:如三棱柱ABC-A1B1C1.④分类及特殊棱柱:(ⅰ)按底面多边形的边数分,有三棱柱、四棱柱、五棱柱、……。

2014届北师大版高中数学必修二(高一)课件 第一章§1.1

2014届北师大版高中数学必修二(高一)课件 第一章§1.1

圆锥;若绕其斜边所在的直线旋转得到的是两个同底面圆锥
构成的一个几何体,如图(1).B项错误,没有说明这两个平行 截面的位置关系,当这两个平行截面与底面平行时正确,其他
情况则结论是错误的,如图 (2) . D 项错误,通过圆台侧面上
一点,只有一条母线,如图(4).C项正确,如图(3).
栏目 导引
第一章
由圆柱、圆锥、圆台定义可知,三者分别为矩形、
三角形、直角梯形旋转而得,所以其上、下底面都是圆面, 故正确; B 圆台的母线是直角梯形不垂直于旋转轴的边,不
是上、下底面圆周上任意两点的连线,故错误; C 球的截面
一定是圆,用平行于圆柱底面的面截圆柱得到的截面是圆, 其他平面截得的截面不是圆,故错误; D 以直角三角形的一 条直角边所在的直线为轴旋转,其余各边旋转而成的旋转面 形成的曲面所围成的几何体叫作圆锥,以斜边为轴旋转形成
第一章
立体几何初步
第一章 立体几何初步
栏目 导引
第一章
立体几何初步
§1 简单几何体
1.1 简单旋转体栏目 导引Fra bibliotek第一章
立体几何初步
学习导航
学习目标
理解
实例 ― ― → 旋转体
了解
― ― → 圆柱、圆锥、圆台和球的结构特征 重点难点 重点:圆柱、圆锥、圆台和球的结构特征.
难点:多面体和旋转体概念的理解及几何体形状的判断.
栏目 导引
第一章
立体几何初步
想一想 2.“ 直角三角形绕其一边旋转一周所形成的几何体必是圆
锥”,这种说法正确吗?
提示:不正确,当以斜边所在直线为轴旋转时,其余各边 旋转形成的曲面所围成的几何体不是圆锥.如图所示,是
由两个同底圆锥组成的几何体.

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以半圆的直径所在的直线为 旋转轴,将半圆旋转所形成的 球 曲面叫作球面.球面所围成的 几何体叫作球体,简称球
几种几何体的简单比较
以矩形的一边所在的直线为旋 圆 转轴,其余各边旋转而形成的曲 柱 面所围成的几何体叫作圆柱 以直角三角形的一条直角边所 圆 在的直线为旋转轴,其余各边旋 锥 转而形成的曲面所围成的几何 体叫作圆锥 以直角梯形垂直于底边的腰所 圆 在的直线为旋转轴,其余各边旋 台 转而形成的曲面所围成的几何 体叫作圆台 高:在旋转轴上这条 边的长度叫作它们 的高; 底面:垂直于旋转轴 的边旋转而成的圆 面叫作它们的底面; 侧面:不垂直于旋转 轴的边旋转而成的 曲面叫作它们的侧 面; 母线:无论转到什么 位置,不垂直于旋转 轴的边都叫作侧面 的母线


母线
侧 面
底面
(二)圆锥
1.以直角三角形的一条直角边所在的直线为 旋转轴,其余两边旋转而形成的曲面所围成 的几何体叫作圆锥. 2.在旋转轴上这条边的长度叫做圆锥的高. 3.垂直于旋转轴的边旋转形成的圆面叫做圆 锥的底面. 4.不垂直于旋转轴的边旋转而成的曲面 叫作圆锥的侧面. 5.无论转到什么位置不垂直于旋转轴的边都 叫作侧面的母线.
轴______绕着它所在的平面内的
定直线 旋转所形成的曲面. 一条_______ 封闭 旋转体:_____的旋转面围成的几何体.
平面曲线
【提示】球面是旋转面,球体是旋转体.
2 .几种简单几何体的比较
名 定义 称 相关概念 球心:半圆的圆 心叫作球心; 半径:连接球心 和球面上任意一 点的线段叫作球 的半径; 直径:连接球面 上的两点并且过 球心的线段叫作 球的直径 图形表示
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱台,分别叫作三棱台,四棱 台,五棱台….由正棱锥截得的棱台叫作正棱台.
棱台的表示方法:
棱台用表示上、下底面各顶点的字母来表示,如图四棱台ABCDA1B1C1D1 .
D A B A1 D1 B1 C1
C
1.用任意一个平面截一个几何体,各个截面都是圆, 则这个几何体一定是 ( C ) A.圆柱 C.球体 B.圆锥 D.圆柱,圆锥,球体的组合体
第一章 立体几何初步
§1 简单几何体
陈真媛
情境引入
课堂探究
简单旋转体 一、球
直径所在的直线 为旋转轴,将半圆旋 1.以半圆的_______________ 转所形成的曲面叫作球面. 球面 所围成的几何体叫作球体, 2._____ 直径 O 球面 球心
简称球.
圆心 叫作球心. 3.半圆的_____ 球面上任意一点 的 4.连接球心和_______________
C
D
正棱锥:棱锥的底面是正多边形,且各侧面全等,该棱锥 就称作正棱锥.
棱锥的表示方法: 用表示顶点和底面的字母表示棱锥,如:四棱锥S-ABCD.
(二)棱台
平行 于棱锥底面的 1.棱台的概念:用一个_____ 平面去截棱锥,底面和截面之间的部分叫作 棱台.
D1
A1 D A
上底面
B1 C1
C B
下底面
线段叫作球的半径. 球面 上两点并且过_____ 球心 的线段叫作球的 5.连接_____ 直径.
半径
二、圆柱、圆锥、圆台
(一)圆柱
1.以矩形的一边所在的直线为旋转轴,其余 各边旋转而形成的曲面所围成的几何体叫作 圆柱. 2.在旋转轴上这条边的长度叫做圆柱的高.
3.垂直于旋转轴的边旋转形成的圆面叫做圆 柱的底面. 4.不垂直于旋转轴的边旋转而成的曲面 叫作圆柱的侧面. 5.无论转到什么位置不垂直于旋转轴的边都 叫作侧面的母线.
简单多面体
我们把若干个平面多边形围成的几何体叫做多面体。 其中棱柱、棱锥、棱台是简单多面体。
一、棱柱 互相平行 ,其余各面都 1.定义:两个面_________ 四边形 ,并且每相邻两个四边形的公 是_______ 互相平行 ,这些面围成的几何体 共边都_________ 叫作棱柱. 2.两个互相平行的面叫作棱柱的底面,其 余各面叫作棱柱的侧面.棱柱的侧面是 平行四边形 ___________. 3. 两个面的公共边叫作棱柱的棱.底面 多边形与侧面的公共顶点叫作棱柱的顶 点. 底面


母线
侧 面
底面
(三)圆台
1.以直角梯形垂直于底边的腰所在的直线为 旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫作圆台. 2.在旋转轴上这条边的长度叫做圆台的高. 3.垂直于旋转轴的边旋转形成的圆面叫做圆 台的底面. 4.不垂直于旋转轴的边旋转而成的曲面 叫作圆台的侧面. 5.无论转到什么位置不垂直于旋转轴的边都 叫作侧面的母线.
二、棱锥、棱台
(一)棱锥
1.定义:有一个面是多边形,其余各面是有一 个公共顶点的三角形,这些面围成的几何体叫 作棱锥.
这个多边形面叫作棱锥的底面. 有公共顶点的各个三角形叫作 棱锥的侧面. 各侧面的公共顶点叫作棱锥的顶点. 相邻侧面的公共边叫作棱锥的侧 棱.
棱锥的分类: 按底面多边形的边数,可分为三棱锥、四棱锥、五棱锥… S A B
3.以下四个叙述:
① 正棱锥的所有侧棱相等;
② 直棱柱的侧面都是全等的矩形;
③ 圆柱的母线垂直于底面;
④ 用经过旋转轴的平面截圆锥,所得的截面一定是全 等的等腰三角形. 其中,正确的个数为( B A.4 B .3 )
底面
棱柱的分类:
关注底面 (1)棱柱的底面可以是三角形、四边形、五边形 ……我们把这样的 棱柱分别叫作三棱柱、四棱柱、五棱柱……
三棱柱 四棱柱 五棱柱 垂直于底面的棱柱叫作直棱柱,底面是 (2) 我们把侧棱_____ 正多边形 的直棱柱叫作正棱柱. 关注侧棱 _________
棱柱的表示方法: 用底面各顶点的字母表示棱柱,如:五棱柱ABCDE-A1B1C1D1E1.
【解析】当用过高线的平面截圆柱和圆锥时,截面分别为矩形
和三角形,只有球满足任意截面都是圆面.
2.下列说法正确的是( D
)
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫 棱柱. C.有一个面是多边形,其余各面都是三角形的几何体叫 棱锥. D.棱台各侧棱的延长线交于一点.
相关文档
最新文档