二进制及其转换PPT课件

合集下载

二进制及其转换ppt课件

二进制及其转换ppt课件
(4)(111)2 1 22 1 21 1 20
13
例2 将下列二进制数转换成十进制数
步骤:①将二进制数写为按权展开式形式; ②计算按权展开式得十进制数.
(1) (110)2 (2) (101011)2
解: (1)(110)2 1 22 1 21 0 20 (6)10
(2)(101011)2 1 25 0 24 1 23 0 22 1 21 1 20 (43)10
11.1 二进制及其转换
1
回顾•思考:
1、最大的个位数是?有多少个个位数, 分别是?
2、29565中数学9所在的位置是第几位, 也叫第( )位?9代表的值( )
9 + 1= ?
为什么是两位数而不是一位数?
2
1. 十进制
特点:逢十进一 数位:个位、十位、百位、千位、万位、十分位、百分位,千分位等。
第一位
20
9
二进制数的意义是各个数位的数码与其位权数 乘积之和。
(110)2 = 1×22+1×21+0×20
10
进制数的表示方法
方法:用一个下标来表明
例如: (365)10 十进制
(1011)2 二进制
11
例1.写出下列各数的按权展开式
(1)(532)10
(3)(1100)2
(2)(12.35)10
0
2 22
0
2 11
1
25
1
22
0
直到商为零
21
1
0
结果为:(89)10 = (1011001)2
低位
高位
18
练习3: 将下列十进制换算成二进制数
(1)(9)10 (2)(16)10

人教版中图版(2019)必修一 1.2.2二进制与数制转换(30张PPT)

人教版中图版(2019)必修一  1.2.2二进制与数制转换(30张PPT)

巩固题 1、(65)10=( 2、(77)10=( 3、(35)8=( 4、(78)16=(
)8 )16 )10 )10
十进制与R进制(R可以是任何一个数值)之间的转换方法是什么?
十进制转R进制
除R反向取余法
R进制转十进制
按权展开求和法
思考
03
进制间转换
二进制与八进制转换
二进制转八进制
每三位二进制数对应一位 八进制数
十六进制转二进制
每位十六进制数转换为对应的 四位二进制数
二进制与十六进制转换
二进制转十六进制
(11011011)2=( DB )16
11011011
13
11
D
B
十六进制转二进制
(123)16=(100100011 )21 23源自0001 0010 0011
巩固题
1、(231)8=(
)2
2、(A23)16=(
课后探究
十六进制与八进制 之间如何转换呢?
谢谢
二进制概念与规则
01
二进制基数与数码
二进制基数为2, 数码为0和1
02
逢二进一进位规则
逢二进一
03
数位与权值
不同数位对应不同权值, 权值用基数的幂表示,从 右向左依次为20,21,22···
为什么要了解进制转换呢?
为了更好学习并使用计算机,为后续学习 书写程序使用进制的转换打基础。因为计算 机只认识二进制,也就是0和1,我们生活中的 任何数据通过编码在计算机中都以二进制的 形式存在。
2
17
1
2
8
0
2
4
0
2
2
0
2
1
1

进制转换课件ppt

进制转换课件ppt

示例和练习
示例
将二进制数1010转换为十进制数 ,即 0×2^3 + 1×2^2 + 0×2^1 + 1×2^0 = 8 + 0 + 0 + 1 = 9 。
练习
提供多个二进制数,要求学生将 其转换为十进制数。
注意事项和常见错误
注意事项
在进行二进制到十进制的转换时,需要注意权值的计算和进 位的处理。
进制转换的基本原则
确定基数
确定要转换的数所在的 基数,即要转换到的目
标进制。
权值计算
根据目标进制的权值, 从被转换数的最低位开
始逐位计算。
转换过程
按照权值计算结果,将 每一位上的数值转换为 对应的符号(0-9或0-9
、A-F)。
特殊情况处理
对于超过目标进制表示 范围的数,需要进行相 应的处理(如截断或四
示例和练习
示例
将十进制数23转换为二进制数。
练习
自己尝试将几个十进制数转换为二进制数,如15、31、63等。
注意事项和常见错误
注意项
在进行进制转换时,需要注意进制的 表示方法,以及不同进制之间的对应 关系。
常见错误
在进行进制转换时,容易出现余数忘 记加上的错误,以及进制表示不正确 的错误。
2023
练习
将八进制数5678转换为十进制数。
注意事项和常见错误
注意事项
注意八进制数的每一位对应的十进制数 乘以8的相应次方,不要混淆。
VS
常见错误
将八进制数的每一位直接转换为十进制数 ,未按照规则进行转换。
2023
PART 05
十进制到八进制的转换
REPORTING
规则和方法

课件二进制.ppt

课件二进制.ppt

10
1010
12
11
1011
13
12
1100
14
13
1101
15
14
1110
16
15
1111
17
9
A
B
C
D
E
F
4
➢各种进制之间的转换
二进制、八进制、十六进制转换成十进制
-方法:按权相加
(10101.11)2 =12(34510)823 122 021 120 12-1 12-2 =16 + 0 + 4 + 0 + 1 + 0.5 + 0.25
表示形式: ➢十进制小数形式:(必须有小数点) 如 0.123, .123, 123.0, 0.0, 123. ➢指数形式:(e或E之前必须有数字;指 数必须为整数)如12.3e3 ,123E2, 1.23e4, e-5, 1.2E-3.5
实型常量的类型 ➢默认double型 ➢在实型常量后加字母f或F,认为是float 型
64
-1.7e308 ~ 1.7e308
128
-1.2e4932 ~ 1.2e4932
8
-128 ~ 127
8
0 ~ 255
13
➢ VC6.0 基本数据类型
14
3.2 常量和变量
➢常量
定义:程序运行时其值不能改变的量(即常数)
分类:
➢符号常量:用标识符代表常量
定义格式: #define 符号常量 常量
第3章 数据类型、运算符与表达式
▪ 计算机中数的表示 ▪ C语言的基本数据类型 ▪ 常量和变量 ▪ 数据类型转换 ▪ 运算符与表达式

二进制ppt课件

二进制ppt课件
如:十进制数968.45=9× 102 +6× 101 +8× 100 +4 × 10-1 +5 × 10-2
二进制数1001.01=1* 23 +0* 22 +0* 21 +1* 20 +0* 2-1 +1* 2-2
2.二进制数转换为八、十六进制
8和16都是2的整数次幂,即8= 23 ,16= 24
一、计算机中的各种数制与进位计数制
(2)基数 基数是指进制中允许选用的基本数码的个数,每一
种进制都有固定数目的计数符号。 十进制:基数为10,10个计数符号0,1,……9。 二进制:基数为2,2个计数符号0,1。 八进制:基数为8,8个计数符号0,1,2,……7。 十六进制:基数为16,16个计数符号0,1,……9,
八进制和十六进制是为了弥补二进制数字长 过长而出现在计算机中的,它们主要用来描 述存储单元的地址。
一、计算机中的各种数制与进位计数制
2. 进位计数制
(1)数制的概念 ①数制:用一组固定的数字和一套统一的规则来
表示数目的方法。 ②进位计数制:按照进位方式计数的数制叫进位
计数制。十进制即逢十进一,六十进制即逢六十进一。
标准的ASCII码是7位码,用1个字节表示,最高 位总是0,可以表示128个字符。
扩展的ASCII码是8位码,也是一个字节表示, 其前128个码与标准的ASCII码是一样的,后128个 码(最高位为1)则有不同的标准。
请您欣赏
励志名言
The best classroom in the world is at the feet of an elderly person.
3.八、十六进制数转换为二进制数
将每位八(十六)进制数展开位3(4)位二进 制数。

《二进制数的运算》课件

《二进制数的运算》课件
添加标题
仔细核对运算步骤:在进行二进制数运算时,需要仔细核对运算步骤,确保每一步的运算都正确无误,避免因为运算步骤错误而导致结果不正确。
添加标题
避免溢出错误:在进行二进制数运算时,需要注意溢出问题,确保运算结果不会超出二进制数的表示范围,避免因为溢出错误而导致结果不正确。
添加标题
避免进位错误:在进行二进制数运算时,需要注意进位问题,确保每一位的运算结果都正确无误,避免因为进位错误而导致结果不正确。
二进制数的加法规则:0+0=0,0+1=1,1+1=0,进位为1
二进制数的减法规则:0-0=0,0-1=1(借位),1-1=0
二进制数的乘法规则:0*0=0,0*1=0,1*1=1
二进制数的除法规则:除法相当于连续减法,如10除以2等于5,等于5次2减去1的结果
二进制数运算在计算机科学中的重要性 * 计算机内部数据表示的基础 * 计算机程序运行的基本原理
二进制数的基数为2
二进制数的表示形式为0和1
二进制数的运算速度比十进制数更快
二进制数的运算规则为“逢二进一”
二进制数的基数是2
二进制数可以表示计算机中的所有信息
二进制数的运算规则是逢二进一
二进制数只有0和1两个数字
二进制数的运算规则
二进制数的加法规则
0+0=0, 1+0=1, 1+1=10
二进制数的进位规则
总结与回顾
二进制数的定义:二进制数是一种以0和1为基本符号的数制系统
二进制数的特点:二进制数的运算规则简单,易于实现,适合计算机内部运算
二进制数的应用:在计算机科学中,二进制数被广泛应用于计算机内部的数据表示和运算
二进制数与十进制数的转换:了解二进制数与十进制数的转换方法,方便我们在不同数制之间进行转换

《有趣的二进制》课件

《有趣的二进制》课件

二进制在计算机中的其他应用
二进制在计算机中的控制作用
计算机中的各种硬件设备,如CPU、内存、硬盘等,都通过二进制数来进行控制。控制 信号通常以高低电平的形式表示二进制数,通过不同的控制信号可以实现设备的启动、
停止、读写等操作。
二进制在计算机网络中的应用
在计算机网络中,数据传输采用二进制形式。网络协议中的各种控制信息也是以二进制 数来表示。通过不同的二进制组合可以表示不同的控制命令和状态信息,从而实现网络
二进制在计算机中的运算原理
二进制数的加法原理
二进制数的加法运算规则简单,只有0+0=0、0+1=1、 1+0=1、1+1=0四种情况,进位时采用进一位的方式。通过 逐位相加的方式可以实现二进制数的加法运算。
二进制数的减法原理
二进制数的减法运算可以通过加法来实现,即A-B=A+(-B)。 在进行减法运算时,先将减数B取反(变为补码),然后加到 被减数A上即可得到结果。
通信的控制和管理。
03
二进制与十进制的转换
十进制转二进制的方法
除2取余法
将十进制数除以2,取余数作为二 进制数的最低位,然后继续除以2 ,直到商为0,将所有余数从低位 到高位排列即可。
表格法
通过查表或计算得出十进制数对 应的二进制数。
二进制转十进制的原理
• 二进制转十进制是通过将二进制数转换为十进制数的过程,即 将每一位的权值相加得到结果。例如,二进制数1010转换为十 进制数为1×2^3 + 0×2^2 + 1×2^1 + 0×2^0 = 8 + 0 + 2 + 0 = 10。
二进制数在现实生活中的应用
01

二进制运算及转换(课件)

二进制运算及转换(课件)
二进制运算及转换(课件)
二进制运算及转换(课件)是一个关于二进制基础概念、历史、应用领域以及运 算和转换的课程。让我们一起探索这个引人入胜的主题吧!
引言
二进制基础概念
二进制的历史和应用领域
二进制数的表示与转换
二进制的表示方式
展示方式:补码,原 码,反码
从十进制到二进制的 转换
从二进制到十进制的转换
二进制运算与转换的 发展前景
参考文献
二进制运算与转换相关书籍、文献以及网站资源的推荐
不同进制数的转换
二进制的运算
二进制数的加减法 位运算符:与、或、非、异或
二进制数的乘除法 按位运算
二进制存储
计算机存储的基本单位:位、字节、KB、MB等 计算机存储方式:大端存储和小端存储
存储ቤተ መጻሕፍቲ ባይዱ构
应用案例
IP地址的二进制表示法和二进制的运算
位图存储的实现
总结
二进制运算与转换的 基本原理
二进制运算与转换的 实际应用

二进制与十进制的转换(共8张PPT)

二进制与十进制的转换(共8张PPT)

(1010)= 1x23+0x2 2+1x2 +10x2 =010
十进制转二进制
21= 10101
45= 101101 32=
100000
德国数理哲学大师莱布尼兹
二进制是计算技术中广泛采用的一种数制。
321
0
由0和1两个数码来表示,进位规则是“逢二进一”。
21=
45=
32=
321
0
二进制是计算技术中广泛采用的一种数制。
321
0
13
课堂引入
定义及产生
转换运算
进制转换
课课堂堂练练习习
课后作业
二进制转十进制
(1111)= 1x2 3+1x2 2+1x2 1+1x2 =015
德国数理哲学大师莱布尼兹
二进制是计算技术中广泛采用的一种数制。
(1111)=
321
0
21=
45=
32=
21=
45=
32=
321
0
二进制是计算技术中广泛采用的一种数制。
321
0
(1010)=
321
0
321
0
德国数理哲学大师莱布尼兹
(1010)=
321
0
321
0
二进制是计算技术中广泛采用的 一种数制。由0和1两个数码来表示, 进位规则是“逢二进一”。
德国数理哲学大师莱布尼兹 由《易经》中的八卦符号联想而创造
发明
课堂引入
Байду номын сангаас
定义及产生
表转示换方运算法
进制转换
课堂练习
课后作业
110表示 ?

《进制转换教程》课件

《进制转换教程》课件
进制转换教程
contents
目录
• 进制转换概述 • 二进制转换 • 八进制转换 • 十六进制转换 • 进制的混合使用与注意事项
01 进制转换概述
进制转换的定义
进制转换
进制转换是指将一个数从一个进制转换为另一个进制 的过程。
常见进制
常见的进制包括二进制、八进制、十进制和十六进制 。
转换方法
进制转换的方法包括除法定理、乘法定理和表格法等 。
的八进制表示为123。
八进制的其他转换
要点一
总结词
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。
要点二
详细描述
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。具体的转换方法和步骤与上述转换 类似,需要根据不同进制的转换规则进行计算和转换。在 计算机科学中,八进制、二进制和十六进制之间的转换是 非常常见的操作,因此掌握这些转换方法对于计算机专业 人员来说非常重要。
03 八进制转换
八进制转换为十进制
总结词
将八进制数转换为十进制数需要使用相应的 数学公式,并按照一定的计算规则进行。
详细描述
首先,将八进制数表示为十进制数的形式, 需要使用数学公式进行转换。具体来说,将 八进制数的每一位分别乘以对应的权值(从 右往左分别为1, 8, 64, ...),然后将得到的 数值相加即可得到十进制数。例如,八进制 数123可以转换为十进制数为1 * 8^2 + 2 * 8^1 + 3 * 8^0 = 64 + 16 + 3 = 83。
在数学和工程领域,经常需要进行不同进制的转换,以满足计算、建模和设计的需要。
进制转换的基本原则
01Байду номын сангаас

《进制数之间的转换》课件

《进制数之间的转换》课件
十六进制数是一种数字表示方式,使用0-9和A-F共16个字符表示。
十六进制数的每一位可以表示4位二进制数,因此十六进制数可以方便地转换为二进制数。
十六进制数的每一位可以表示3位八进制数,因此十六进制数可以方便地转换为八进制数。
十六进制数在计算机编程和网络通信中广泛使用,因为它可以方便地表示二进制数和八 进制数。
THANK YOU
汇报人:
示例6:将八进制数GHI转 换为十六进制数
十六进制数转二进制数的示例
示例:将十六进制数1A转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
步骤:将1A拆分为1和A,分别转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
结果:1转换为0001,A转换为1010,合并结果为00十 六进制数转二进制数的示例
单击此处输入你的项正文,请尽量言简意阐述观点。
示例:将十六进制数1A转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
步骤:将1A拆分为1和A,分别转换为二进制数
单击此处输入你的项正文,请尽量言简意阐述观点。
结果:1转换为0001,A转换为1010,合并结果为*** *. 结论:十六进制数1A转换为二进制数为***
八进制数的每一位 数字代表一个8的 幂次,从右到左依 次为8^0、8^1、 8^2、...
八进制数的表示方 法 通 常 为 前 缀 " 0 o" 或"0",例如 0o123表示八进制 数123。
八进制数在计算机 编程和硬件设计中 有广泛应用,例如 Unix和Linux系统 的文件权限表示。
十六进制数的定义
单击此处添加正文,文字是您思想的提炼,请
尽量言简意赅,单击此处添加正文;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/13
3
中国与十进制
中国是世界上第一个同时使用“十进制”和 “位值制”的国家。古埃及、古希腊和古罗马都没 有发明位值制。古代美洲玛雅人和两河流域的古巴 比伦人虽然发明了位值制,却分别使用的是20进制 和60进制计数法。
今天通用的十进制阿拉伯数字系统,实际上是 10世纪后由印度传入地中海沿岸及西欧各国。 考证 历史,直到6世纪末以后,印度才开始使用十进制 计数法。于是,有学者认为,印度的十进制计数法 可能源自中国,古代中国才是今天通行的十进制计 数法的真正源头。
2020/10/13
2
中国与十进制
中国古代使用的是十进制计数法,即每满10个 数目就进一个单位,如10个1进为10,10个10进为 100等。十进制起源于何时已不可考,但至迟春秋时 期,中国古人就已经能够熟练使用十进制进行计数 和运算了。
中国古代的十进制计数方法实际包括了“位值
制”十进制”和“位值制”两种计数方法。位值制 就是以位置定数目,如22,同样是两个2,第一个2 因位于十位上,故代表20,第二个2因位于个位上, 故代表2。可以看出,由于使用了位值制,就可以很 简捷地记录较大的数目。
104 万 1028 穰 1052 恒河沙 1076 全仕祥 10-23 阿摩罗
108 亿 1032 沟 1056 阿僧祇
10-24 涅盘寂静
5
十进制的定义
把0,1,2,3,4,5,6,7,8,9这十个数码放到相应的位 置来表示数。
数码所在的位置叫做数位,个位、十位、百位、 千位……等等。
每个数位上可以使用的数码的个数叫做这种计数 制的基数,十进制的基数是10。
每个数位所代表的数叫做位权数,进位规则“逢 十进一”。
2020/10/13
6
谢谢您的指导
TH方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXXX 日期:20XX年XX月XX日
7
§11.1二进制及其转换
2020/10/13
1
十进制的起源
人类算数采用十进制,可能跟人类有 十根手指有关.亚里士多德称人类普遍使 用十进制,只不过是绝大多数人生来就有 10根手指这样一个解剖学事实的结果.实 际上,在古代世界独立开发的有文字的记 数体系中,除了巴比伦文明的楔形数字为 60进制,玛雅数字为20进制外,几乎全部 为十进制.只不过,这些十进制记数体系 并不是按位的.
2020/10/13
4
位值对照表
100 个 1012 兆 1036 涧 1060 那由他 10-16 瞬息
101 十 1016 京 1040 正 1064 不可思议 10-17 弹指
102 百 1020 垓 1044 载 1068 无量 10-18 刹那
2020/10/13
103 千 1024 秭 1048 极 1072 大数 10-22 阿赖耶
相关文档
最新文档