第五章 固定化酶

合集下载

第五章酶固定化

第五章酶固定化
Chapter 5 The immobile of Enzyme,Cell and
Protoplast 酶、细胞、原生质体固定化
第五章酶固定化
游离酶的缺点
➢ 酶的稳定性差,易受外界因素影响而失活 ➢ 酶不易回收利用(酶的一次性使用) ➢ 产物不易分纯,且难连续化生产 ➢ 酶的催化效率不够高
第五章酶固定化
下表是某酶的纯化总结表,试计算比活力,回收率及纯化倍数。
步骤 step
粗酶 乙醇沉淀
总体积 Volume
(ml)
1040 90
总活力 Total activity (u)
460070
142574
DEAE-
11
Sepharos
e柱层析
HiTrap- 19 Q柱层析
46629 42218
总蛋白 Total protein (mg)
➢ 酶的固定化步骤: (1)每组取5块尼龙布洗净、晾干,浸入含18.6% CaCl2溶液和18.6%水的甲醇溶液中,在室温下 保温10s左右,并轻轻搅拌至尼龙布发粘。取出 后用水冲去污物,用吸水纸吸干。 (2)将尼龙布用3.65mol/L HCl溶液在室温下水解 45min,用水洗至pH值中性。 (3)将尼龙布用5%戊二醛溶液在室温下浸泡偶联 20min。
3)产物性质对最适pH的影响; ➢ 产物酸性,其最适pH↑。 ➢ 产物碱性,其最适pH↓。 ➢ 产物中性,其最适pH不变。
第五章酶固定化
(5)底物特异性——发生改变 ➢ 对作用于低分子底物的酶,固定化前后的底物特异
性没有明显变化; ➢ 对于可作用于大分子底物,又可作用于小分子底物
的酶,固定化酶的底物特异性往往会发生变化。 ➢ 固定化酶底物特异性的改变,是由于载体的空间位

第五章 固定化酶和细胞

第五章 固定化酶和细胞

制备固定化酶的依据
1.固定化酶必须能保持酶原有的专一性、 1.固定化酶必须能保持酶原有的专一性、高效催化 固定化酶必须能保持酶原有的专一性 能力和常温、常压下能起催化反应等特点。 能力和常温、常压下能起催化反应等特点。 2.固定化酶应能回收、贮藏,利于反复使用。 2.固定化酶应能回收、贮藏,利于反复使用。 固定化酶应能回收 3.固定化酶应用于机械化和自动化操作 固定化酶应用于机械化和自动化操作, 3.固定化酶应用于机械化和自动化操作,所用载体 常有一定的机械强度。 常有一定的机械强度。 4.固定化酶应能保持甚至超过原有酶液的活性 固定化酶应能保持甚至超过原有酶液的活性。 4.固定化酶应能保持甚至超过原有酶液的活性。即 要保护活性中心基团。 要保护活性中心基团。 5.固定化酶应能最大程度与底物接近 固定化酶应能最大程度与底物接近, 5.固定化酶应能最大程度与底物接近,从而提高产 具有最小的空间位阻。 量。具有最小的空间位阻。 6.固定化酶应有最大的稳定性 固定化酶应有最大的稳定性。 6.固定化酶应有最大的稳定性。 7.固定化酶应易与产物分离 固定化酶应易与产物分离。 7.固定化酶应易与产物分离。
随着固定化技术的发展,出现固定化菌体 1973年 随着固定化技术的发展,出现固定化菌体 。1973年,日 本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨 酸酶,由反丁烯二酸连续生产L 天门冬氨酸。 酸酶,由反丁烯二酸连续生产L-天门冬氨酸。 在固定化酶和固定化菌体的基础上,70年代后期出现了 在固定化酶和固定化菌体的基础上,70年代后期出现了 固定化细胞技术 技术。 1976年 固定化细胞技术。 1976年,法国首次用固定化酵母细胞 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 粉酶,开始了用固定化细胞生产酶的先例。 粉酶,开始了用固定化细胞生产酶的先例。 1982年 日本首次研究用固定化原生质体生产谷氨酸, 1982年,日本首次研究用固定化原生质体生产谷氨酸, 固定化原生质体生产谷氨酸 取得进展。固定化原生质体由于解除了细胞壁的障碍, 取得进展。固定化原生质体由于解除了细胞壁的障碍, 更有利于胞内物质的分泌, 更有利于胞内物质的分泌,这为胞内酶生产技术路线的 变革提供了新的方向。 变革提供了新的方向。

酶与细胞的固定化课件.ppt

酶与细胞的固定化课件.ppt

采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶的热稳定性
固定化果胶酯酶的pH稳定性
采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶作用的最适温度
固定化果胶酯酶作用的最适pH值
5、酶的动力学特征 固定化酶的表观米氏常数Km随载体的带电性能变化。 二者电荷不同,因静电作用,固定化酶的表观Km值低于溶液的Km值; 电荷相同,由于亲和力降低,固定化酶的表观Km值显著增加。
Cefaclor(R1=H,R3=Cl) Cephalexin(R1=H,R3=Me) Cefadroxil(R1=OH,R3=Me)
酶促合成头孢类抗生素
CHCOOCH3 + H2N
NH2
O
S
Synthetase
N CH3
COOH
Esterase
CHCOOH +
NH2
CHCONH
NH2 O
S
N CH3
交联法有2种形式即酶直接交联法和酶辅助蛋白交联法。
酶直接交联法:在酶液中加入适量多功能试剂,使其形成不溶性衍生物。 固定化依赖酶与试剂的浓度、溶液pH和离子强度、温度和反应时间之间 的平衡。
酶辅助蛋白交联法:为避免分子内交联和在交联过程中因化学修饰而引起 酶失活,可使用第二个"载体"蛋白质(即辅助蛋白质,如白蛋白、明胶、 血红蛋白等)来增加蛋白质浓度,使酶与惰性蛋白质共交联。
二、固定化酶和固定化细胞的性质与表征 (一)固定化酶的性质 1、酶的活性 多数情况下固定化酶的活力常低于天然酶。原因:酶结构变化与空间
位阻。
2、酶的稳定性 大多数固定化酶具有较高的稳定性、较长的操作寿命和保存寿命。

固定化酶

固定化酶

固定化技术 水不溶性酶 (固定化酶)
酶的固定化技术和固定化酶

可溶
固定化
间歇
吸附
包埋
间歇
交联
化学偶联
连续
固定化酶的优缺点

可重复使用

可以装塔连续反应
优点: 纯化简单,易与产物分离

提高产物质量

应用范围广

固定化过程中酶易失活
缺点: 首次投入成本高

大分子底物较困难
二、固定化酶的性质及其影响因素
常用于固定化酶的交联剂 交联剂 戊二醛 二重氮联苯胺-2,2‘-二磺酸 4,4‘-二氟-3,3’-二硝基二苯砜 二苯基-4,4‘-二硫氰酸-2,2’-二磺酸 1,5-二氟-2,4-二硝基苯 酚-2,4-二磺酰氯 3-甲氧基二苯基甲烷-4,4‘-二异氰酸盐
酶共价交联有2种形式: 酶直接交联法 酶辅助蛋白交联
(1) 酶的性质 (2) 载体的性质 (3) 制备方法的选择
四、辅酶固定化
原因
有机辅因子中具有某些特殊的化学基团,参与酶的催化 反应
有机辅因子在使用过程中要流失,并且不能自行再生 有机辅因子价格昂贵
——工业上应用全酶的关键是有机辅因子的保留和再生
辅酶固定化的方法:
固定化方法与酶相似,一般采用溴化氰法,碳二亚 胺法以及重氮偶联法等共价偶联,或将其进行适当 的化学修饰后固定在超滤器中。
这样避免颗粒太细的缺点,同时制得的固定化酶稳定性 好。
5、共价偶联法
图 7-11 酶分子之间共价交联和与水不溶性载体共价偶联
• 酶分子;(a)酶分子之间用双功能基团的化学交联试剂相互交联成水不溶性
的固定化酶;(b)酶分子被偶联到水不溶性载体上形成水不溶性的固定化酶

《酶的固定化》课件

《酶的固定化》课件
稳定性等
稳定性评估可 以帮助选择合 适的固定化方 法,提高酶的
固定化效果
稳定性评估还 可以帮助优化 固定化酶的生 产工艺,降低
生产成本
固定化酶的使用寿命
固定化酶的稳定性:在固定化过程中,酶的活性和稳定性得到提高
固定化酶的寿命:固定化酶的寿命通常比游离酶长,可以延长酶的使用寿命
固定化酶的再生:固定化酶可以通过再生技术恢复活性,延长使用寿命
添加标题
酶的固定化可以减少污染,提高环 保性能
酶的固定化可以简化生产工艺,提 高生产效率
酶的固定化未来 发展展望
新技术的开发与应用
酶固定化技术的发展:从传统的物理吸附到新型的化学键合 新型酶固定化技术的应用:在生物催化、生物制药、环境保护等领域的应用 酶固定化技术的挑战:如何提高酶的活性和稳定性,降低成本 酶固定化技术的未来:开发新型酶固定化材料,提高酶的固定化效率和稳定性,拓展应用领域
酶的固定化应用
环境保护:酶的固定化可以用 于污水处理、废气处理等领域
生物催化:酶的固定化可以 提高反应速率和选择性
食品加工:酶的固定化可以用 于食品加工,如酿酒、制糖等
医药工业:酶的固定化可以用 于药物合成、药物分析等领域
酶的固定化技术
吸附法
原理:利用酶与载体之间的物理或化学作用力,使酶固定在载体上 优点:操作简单,成本低,固定化效果好 缺点:酶活性易受载体影响,固定化后酶活性降低 应用:广泛应用于生物催化、生物制药等领域
提高固定化酶的稳定性与活性
改进固定化技术:提高酶的固 定化效率和稳定性
优化酶分子结构:提高酶的活 性和稳定性
筛选和优化固定化载体:提高 酶的固定化效率和稳定性
研究酶的固定化机制:为提高 酶的稳定性与活性提供理论支 持

第五章固定化酶和细胞

第五章固定化酶和细胞
缺点: 1.固定化过程中往往会引起酶的失活 2.固定化酶在化学催化反应中存在空间位阻
2 固定化酶的研究历史
固定化酶的研究从50年代开始,1953年德国的 Grubhofer 和Schleith采用聚氨基苯乙烯树脂为载体与羧肽酶、淀粉 酶、胃蛋白酶、核糖核酸酶等结合,制成固定化酶。
60年代后期,固定化技术迅速发展起来。1969年,日本的 千烟一郎首次在工业上生产应用固定化氨基酰化酶从DL氨基酸连续生产L-氨基酸,实现了酶应用史上的一大变革。
交联法
借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固 定化酶的方法。
常用的双功能试剂有戊二醛、 己二胺、顺丁烯二酸酐、双偶 氮苯等。其中应用最广泛的是 戊二醛。
戊二醛有两个醛基,这两个醛基都可与酶或蛋白质的游离氨基反 应,形成席夫(Schiff)碱,而使酶或菌体蛋白交联,制成固定 化酶或固定化菌体。
在使用固定化酶时,必须引起注意。影响固定化酶最适pH值的因素 主要有两个,一个是载体的带电性质,另一个是酶催化反应产物的 性质。 固定化酶的底物特异性与游离酶比较可能有些不同,其变化与底物 分子量的大小有一定关系。固定化酶底物特异性的改变,是由于载 体的空间位阻作用引起的。
本章 目录
5 固定化酶的应用
中通CO2气体进行反应 实现了辅酶的内部循环 该固定化系统表现出较好的
循环使用的稳定性
酶和辅酶 共固定化
( Ei-Zahab, et al. 2008; Matsuda T. et al. 2009 )
E2 E1
环氧琥珀酸水解酶生产L-(+)-酒 石酸
江苏 常茂生化
底 物
产 物
常茂生化利用凝胶包埋固定化含环氧琥珀酸水解酶的
DL-乙酰氨基酸拆分

固定化酶的方法和应用

固定化酶的方法和应用

固定化酶是将酶固定在载体上,形成固定化酶催化系统的过程。

通过固定化,可使酶的活性和稳定性得到提高,并能够重复使用。

常用的固定化酶方法包括吸附法、共价连接法、包埋法和交联法等。

1. 吸附法:利用载体表面与酶相互吸附的原理将酶固定在载体表面。

常用的载体包括硅胶、纤维素、聚丙烯酰胺凝胶等。

2. 共价连接法:通过将酶分子与载体分子之间的化学键共价连接,在载体表面上固定酶。

常用的共价连接剂包括辛二酸二酐、戊二酸二酐等。

3. 包埋法:将酶包裹在聚合物中,在聚合物内部形成微观环境,保护酶免受外界环境的影响。

常用的包埋材料包括明胶、蛋白质和聚乙烯醇等。

4. 交联法:将酶和载体分子之间形成交联结构,将酶牢固地固定在载体表面上。

常用的交联剂包括戊二醛、葡萄糖等。

固定化酶在生物技术、食品工业、医药工业等领域有着广泛的应用。

其中,利用固定化酶在生物技术领域中最为突出。

例如,固定化酶可以应用于产生大量纯度高的特定酶,用于DNA重组、制备抗体和识别特定分子等。

此外,在医药工业中也广泛使用固定化酶,如利用固定化酶制备药物、检测生物标志物等方面。

在食品工业中,固定化酶可用于生产乳制品、果汁、啤酒等食品中。

总之,固定化酶是一种重要的生物技术手段,具有广泛应用前景,可推动生物技术、食品工业、医药工业等领域的发展。

第五章 固定化酶讲解

第五章 固定化酶讲解
• 缺点:酶与载体相互作用力弱、酶易脱落 等。
2.离子结合法 酶通过离子键结合于具有离子交换剂的水不溶 性载体的固定化方法。
• 常用载体:各种阴、阳离子交换剂。 如CM-纤 维素、DEAE-纤维素、DEAE-葡聚糖凝胶等
• 优点:操作简单,酶活性中心不易被破坏和酶 高级结构变化少,酶活力损失很少。
• 缺点:载体和酶的结合力 比较弱,酶易脱落。
3.共价结合法 酶与载体以共价键结合的固定化方法。
① 将载体有关基团活化,然后与酶有关基团发生 偶联反应。
② 在载体上接上一个双功能试剂(常用的如戊二 醛),然后将酶偶联上去。
• 优点:酶与载体结合牢固,不易轻易脱落。 • 缺点:反应条件苛刻,操作复杂,易引起酶蛋
1.构象改变、立体屏蔽
• 构象改变:指固定化过程及酶和载体的 相互作用,引起了酶的活性中心构象发 生改变,从而导致酶活性改变的—种效 应。
• 立体屏蔽:指由于载体的孔径太小,或 是由于固定化的方式与位置不当,给酶 的活性中心或/和调节中心造成了空间障 碍,底物与效应物等无法直接和酶接触, 从而影响酶活性的一种效应。
白高级结构变化,破坏部分活性中心。
常用载体: • 多糖、多孔玻璃、聚酯、聚胺、尼龙等
• 酶的功能团有:氨基或、羧基、巯基、羟基、 咪唑基、酚基等。
常用的活化方法:
1)重氮化法: 载体:含有芳香族氨基。 酶的反应基团:游离氨基、咪唑基、酚基等。
2)溴化氰法: • 载体:含羟基,即多糖类物质。 • 酶的反应基团:氨基
优点:结合牢固,可以长时间使用 缺点:因交联反应激烈,酶分子多个基团
被交联,酶活损失大,颗粒较小,机械 强度差,使用不便。
5.包埋法
酶分子包埋在高分子凝胶或高分子半透 膜中。

第五章-固定化酶

第五章-固定化酶

2.离子结合法 酶通过离子键结合于具有离子交换剂的水不溶 性载体的固定化方法。 • 常用载体:各种阴、阳离子交换剂。 如CM-纤
维素、DEAE-纤维素、DEAE-葡聚糖凝胶等
• 优点:操作简单,酶活性中心不易被破坏和酶
高级结构变化少,酶活力损失很少。
• 缺点:载体和酶的结合力 比较弱,酶易脱落。
3.共价结合法
• 相对活力:固定化酶活力与同量蛋白量
的溶液酶活力的比值
固定化酶活力 相对活力 100% 溶液酶总活力 残留酶活力
四、固定化酶(细胞)的半衰期
• t1/2 :固定化酶(细胞)的活力下降为最 初活力1/2所经历的连续工作时间;衡量 操作稳定性的指标。
Fig. 2. Kinetic of ROL adsorption on the silica aerogels. The activity was measured using olive oil emulsion as substrate at pH 8.5 and 37 °C.
第五章 固定化酶与固定化细胞
第一节 酶的固定化
一、固定化酶(immobilized enzyme):是 指在一定空间内呈闭锁状态存在的酶,能 连续进行反应,反应后的酶可以回收重复 使用。
优点:
①极易将固定化酶与底物、产物分开,简 化了提纯工艺,提高酶的使用效率; ②在大多数情况下,能够提高酶的稳定;
(五)固定化酶的米氏常数(Km)变化 • 中性载体:固定化酶的表观Km值上升。
• 载体与底物电荷相同:表观Km值显著 上升; • 载体与底物电荷相反:Km

四、影响固定化酶性能的因素
1.构象改变、立体屏蔽
• 构象改变:指固定化过程及酶和载体的 相互作用,引起了酶的活性中心构象发 生改变,从而导致酶活性改变的—种效 应。

第五章酶的固定化ppt课件

第五章酶的固定化ppt课件

“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
概念
固定化酶是指固定在载体上并在一定的 空间范围内进行催化反应的酶。固定化酶既 保持了酶的催化特性,又克服了游离酶的不 足之处,具有增强稳定性,可反复或连续使 用以及易于和反应产物分开等显著特点。直 接固定菌体或菌体碎片的,称为固定化菌体 或固定化死细胞。
(2)半透膜包埋法 将酶包埋在由各种高分子聚合物制成的小
球内,制成固定化酶. 制备方法: 酶, 水, 乙二胺
癸二酰氯+氯仿
包埋法 优点:结合力牢、活力回收高、底物专一性不变。
缺点:制备较难,载体无法回收、扩散限制。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
三 固定化酶的性质
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

《固定化酶》课件

《固定化酶》课件
《固定化酶》课件

CONTENCT

• 酶的介绍 • 固定化酶的原理与技术 • 固定化酶的制备与表征 • 固定化酶的实际应用 • 固定化酶的发展前景与挑战
01
酶的介绍
酶的定义与特性
酶的定义
酶是由生物体产生的一种具有催化作 用的有机物,能够加速化学反应的速 率而自身不发生化学变化。
酶的特性
高效性、专一性和作用条件温和的特 性。
在化学工业中的应用
固定化酶在化学工业中广泛应用于有机合成和手性合成。通过固定化酶技术,可 以将酶固定在载体上,实现高效、环保的有机合成,降低生产成本和环境污染。
固定化酶还可以用于药物的生产和研发,通过酶促反应实现药物的合成和修饰, 提高药物的疗效和降低副作用。
在环境保护中的应用
固定化酶在环境保护中广泛应用于废水处理和污染物降解。通过固定化酶技术,可以将酶固定在载体上,实现高效、稳定的 废水处理和污染物降解,降低环境污染和生态风险。
固定化酶的技术方法
总结词
固定化酶的技术方法
详细描述
固定化酶的技术方法主要包括吸附法、包埋法、交联法和共价结合法等。这些方法各有特点,可根据不同的应用 需求选择适合的方法。
固定化酶的应用领域
总结词
固定化酶的应用领域
详细描述
固定化酶的应用领域广泛,包括生物传感器、生物反应器、药物制造、环境保护等领域。通过固定化 酶技术,可以实现酶的重复利用,提高反应效率,降低生产成本,为相关领域的发展提供有力支持。
智能化
通过与人工智能技术的结合,实现固定化酶的智能 化调控和优化,提高酶的利用效率和生产效益。
固定化酶面临的挑战
80%
稳定性问题
固定化酶在使用过程中可能会受 到环境因素的影响,如温度、pH 值等,导致酶的活性降低或失活 。

固定化酶定义

固定化酶定义

固定化酶定义固定化酶固定化酶是指将天然酶或人工合成的酶固定在载体上,形成固定化酶催化剂的一种技术。

定义1.固定化酶:固定化酶是将酶与固体载体相结合形成的催化剂。

固定化酶具有较高的催化活性、稳定性和重复使用能力,可应用于多个领域。

2.载体:载体是指将酶固定在其上的固体材料。

常用的载体材料包括炭、纤维素、凝胶、金属氧化物等。

3.固定化技术:固定化技术是将酶与载体结合的过程,常见的固定化技术包括吸附、交联和共价结合等。

理由固定化酶相比于游离酶具有以下优势,使其在许多领域得到广泛应用:1.增强催化活性:固定化酶在催化反应中通常具有较高的催化活性,能够在相对温和的条件下实现高效催化。

2.提高稳定性:固定化酶能够耐受极端条件(如高温、酸碱环境等),具有更长的寿命和持久的催化效果。

3.可重复使用:固定化酶在催化反应后可以通过简单的分离和再生步骤进行回收和重复使用,降低了生产成本。

4.易于分离产物:固定化酶的载体通常具有良好的物理化学特性,可以实现催化产物的高效分离和纯化。

书籍简介《固定化酶:原理与应用》该书通过系统的介绍固定化酶的原理、固定化技术以及应用案例,深入探讨了固定化酶在各个领域的潜在应用价值。

内容包括:1.固定化酶的原理和分类;2.常见的固定化技术及其优缺点;3.固定化酶在生物医药、生物能源、环境保护等领域的应用;4.商业化生产中的固定化酶案例分析;5.未来固定化酶研究的发展趋势和挑战等。

本书内容深入浅出,既适合科研人员了解固定化酶的基本知识,也适合工程技术人员应用固定化酶技术解决实际问题。

无论是酶学研究新手还是经验丰富的专业人士,都能从中获得宝贵的参考和指导。

总结固定化酶是一种具有高催化活性、稳定性和重复使用能力的酶催化剂。

通过固定化技术,酶能够与载体结合从而实现其优势的应用。

固定化酶在各个领域具有广泛的应用前景,并且已经在医药、能源等领域取得了重要的成果。

《固定化酶:原理与应用》一书对固定化酶的原理、技术与应用进行了深入分析和讨论,是该领域学术研究者和工程技术人员的重要参考资料。

第五章固定化酶及固定化技术 ppt课件

第五章固定化酶及固定化技术  ppt课件
能对底物产生立体影响的 扩散层以及静电的相互作用等引起的变化。
载体与酶的相互作用:
载体与酶的直接作用可能表现为活力丧失、破坏酶结 构、封闭酶活性部位等。
改变之一:构象改变、立体屏蔽
构象改变: 酶分子构象发生某种扭曲,导致
酶与底物结合能力或催化能力下降
4.包埋法
是指将酶或含酶微生物包裹在多孔的载体中。 网格型; 微囊型。
网格法
——将酶分子或微生物包埋在凝胶格子里。 天然凝胶:琼脂凝胶、海藻酸钙凝胶、角叉菜胶、明胶等 合成材料:聚丙烯酰胺、聚乙烯醇和光敏树脂等。
网格型包埋法是固定化微生物中用得最多、最有效的方法。
微囊型
半透膜包埋法(微囊化法): 将酶包埋在有各种高分子聚合物制成的小囊中,
固定化酶的过程中还存在几个亟待解决解决的难题 :
酶的活性中心发生物理化学变化导致酶活力降低 酶固定化后多了空间屏障,增加了传质阻力 酶和载体结合不牢固,容易脱落,酶活力损失大 固定化颗粒成型困难
固定化技术的改进
定点固定化技术 抗体偶联、生物素-亲和素亲和、氨基酸置换(Cys)
质量转移效应:
分配效应(催化剂颗粒内外不同的溶质浓度),外部或内部(微孔)扩散效应;这些给 出了游离酶在合适反应条件下的效率。
稳定性:
操作稳定性(表示为工作条件下的活性降低),贮藏稳定性
效能:
生产力(产品量/单位活性或酶量),酶的消耗(酶单位数/公斤产品)
包括:
酶本身的变化:
主要由于活性中心的氨基酸残基、高级结构和电荷状 态等发生变化;
但是载体和酶的结合力比较弱,容易受缓冲液种 类或pH的影响,在离子强度高的条件下进行反应 时,酶往往会从载体上脱落。
共价结合法

固定化酶简述 PPT课件 通用

固定化酶简述 PPT课件 通用
固定化酶的应用固定能源开发化学分析生物工程临床诊断医学环境保护酶的固定化及应用研究已得到长足进展开发新型固定化技术进传统固定化方法和注重天然高分子载体改性是酶固定化研究的主要趋生物学及生物工程医学及生命科学仍是固定化酶应用的重要场合适于化学化工及环境科学领域应用的固定化酶具有生态环境材料的鲜明特应给予足够重视
不足:由于包埋 优点:酶不参加化
学反应,整体结 构保持不变,酶 的催化活性得到 很好保留。
物或半透膜具 有一定的空间 或立体阻碍作 用,因此对一 些反应不适用
• 形式较物理法少 • 过程较物理法复杂 • 与物理法比较可形成相对 分子质量更大、不溶性的 固定化酶
传统固定化技术的改进
• 基于传统载体材料的各自优点与不足,通 过改性充分发挥其优势并弥补不足,将会 显著提高所得固定化酶的性能,已成为固 定化酶载体材料研究的主要内容之一。 • 经过近几十年的不断发展,已经产生了很 多制备载体固定化酶的新方法。
水不溶性大分子载体结合或把酶包 埋在水不溶性凝胶或半透膜的微囊 体中制成的。
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ │景┆等┆生┆的┆酶┆于┆便┆制┆系┆稳│ │。┆方┆产┆酶┆是┆自┆于┆,┆统┆定│ │ ┆面┆、┆应┆近┆动┆运┆能┆中┆性│ │ ┆有┆化┆用┆十┆化┆输┆反┆分┆增│ │ ┆诱┆学┆技┆余┆生┆和┆复┆离┆加│ │ ┆人┆分┆术┆年┆产┆贮┆多┆,┆,│ │ ┆的┆析┆,┆发┆。┆存┆次┆且┆易│ │ ┆应┆和┆在┆展┆固┆,┆使┆易┆从│ │ ┆用┆医┆工┆起┆定┆有┆用┆于┆反│ │ ┆前┆药┆业┆来┆化┆利┆。┆控┆应│ └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
简讯
我国自主开发成功固定化酶技术
“ 十五” 国家科技攻关计划’ 纳米材料 技术及应用开发 ’ 延续项目——纳米结构固 定化酶组装技术的开发,上 周在北京通过了 中国石油和化学工业协会、 中国钢协粉末冶 金协会共同组织的专家验收。这一成果可望 使我国 摆脱依赖进口载体生产固定化青霉素 酰化酶催化剂的被动局面,促进我国固定化 酶技术提升和抗生素产业可持续发 展。

固定化酶

固定化酶

中等
活力回收率
载体再生 费用 底物专一性 适用性
较高
可能 低 不变 酶源多

不可能 高 可变 较广

可能 低 不变 广泛
中等
不可能 中等 可变 较广

不可能 低 不变 小分子底物、 药用酶
3 评价固定化酶指标
固定化后酶的考察项目
(1) (3)
测定固定化酶的活力,以
确定固定化过程的活力回收 率。
考察固定化酶最适反应 条件。
固定化后酶性质的变化
4
固定化酶和亲和色谱
• 亲和技术的基础:是生物活性化合物生物特异信 息的综合。 • 利用了生命现象中生物分子间特有的高亲和力、 高专一性,可逆结合而设计的纯化方法。 • 是唯一能够体现待分离物质间生物学功能差异的 分离方法。
THANK YOU
固定化后酶性质的变化
2
• 固定化青霉素酰化酶,只要改变pH值等条件,就可以生成不同的产物
固定化酶在医药治疗上的应用
青霉素酰化酶催化合成头孢类抗生素
H2N R1
O
R2
+
NH2 O N O
S
Penicillin G acylase H2O R
1
OH
NH2 H N S O N O O OH
1: D-(-)-PGA (R1 = H, R2 = NH2) 2: D-(-)-PGM (RI = H, R2 = OMe) 3. D-(-)-HPGA (R1 = OH, R2 = NH2) 4: D-(-)-HPGM (R1 = H, R2 = OMe
酶降低了酶的亲和力。
• (2) 载体与底物电荷相反,静电作用,Km'<Km
6 固定化酶的应用

理学食品酶学本固定化酶课件

理学食品酶学本固定化酶课件

(1)酶的底物为小分子化合物
一般来说,当酶的底物为小分子化合物时,固定化酶的底物特异性大多数情况下不发生变化。例如,氨基酰化酶、葡萄糖氧化酶、葡萄糖异构酶等,酶的底物为大分子化合物
当酶的底物为大分子化合物时,如蛋白酶、α-淀粉酶、磷酸二酯酶等,固定化酶的底物特异性往往会发生变化。这是由于载体引起的空间位阻作用,使大分子底物难以与酶分子接近而无法进行催化反应,酶的催化活力难以发挥出来,催化活性大大下降;而分子量较小的底物受到空间位阻作用的影响较小,与游离酶没有显著区别。 酶底物为大分子化合物时,底物分子量不同,对固定化酶底物特异性的影响也不同,一般随着底物分子量的增大,固定化酶的活力下降。例如,糖化酶用CMC叠氮衍生物固定化时,对分子量8000的直链淀粉的活性为游离酶的77%,而对分子量为50万的直链淀粉的活性只有15%~17%。
以上四种固定化酶方法各有其优缺点(见表4-1)。往往一种酶可以用不同方法固定化,但没有一种固定化方法可以普遍地适用于每一种酶。在实际应用时,常将两种或数种固定化方法并用,以取长补短。
各固定方法的特点与比较
四、 固定化酶的特性
(一)固定化酶的形状 (二)固定化酶的性质 (三)酶活力 (四)固定化酶的稳定性 (五)固定化酶的反应特性
酶经固定化后,其对蛋白酶的抵抗力提高。这可能是因为蛋白酶是大分子,由于受到空间位阻的影响,不能有效接触固定化酶。例如,千畑一郎发现,用尼龙或聚脲膜包埋,或用聚丙烯酰胺凝胶包埋的固定化天门冬酰胺酶,对蛋白酶极为稳定,而在同一条件下,游离酶几乎全部失活。另外固定化后酶对有机试剂和酶抑制剂的耐受性也得到了提高。
固定化可延长酶的贮藏有效期。但长期贮藏,活力也不免下降,最好能立即使用。如果贮藏条件比较好,亦可较长时间保持活力。例如,固定化胰蛋白酶,在0.0025mol/L磷酸缓冲液中,于20℃保存数月,活力尚不损失。

第五章固定化酶

第五章固定化酶

一、固定化细胞的概念和目的
概念
细胞的固定化是利用物理、化学等因素将细胞约 束或限制在一定的空间界限内,但细胞仍能保留 其催化活性,并具有能被反复或连续使用的活力
目的
生产酶等各种代谢产物。可代替游离细胞进行酶 的发酵生产。具产酶率高、发酵周期短、可连续 发酵等优点
➢ 微生物细胞、植物细胞和动物细胞都可以制成 固定化细胞
6、相 对 活 力 = 加 入 酶 的 总 活 固 力 定 - 化 上 酶 清 总 液 活 中 力 未 结 合 酶 活 力 1 0 0 %
第二节结束 优点 固定化酶的优缺点
性固 质定 及化 其酶 评的 价特 指点 标、
缺点
固定化酶的性质变化
酶活力的变化 酶稳定性的变化 最适温度的变化 最适pH的变化 米氏常数(Km)的变化
4、最适pH的变化
➢ 最适pH、酶活力-pH曲线发生偏移
➢ 带负电荷载体(阴离子聚合物),最适pH偏高, 向碱性偏移
- --
-
--
-
---
--------------------------------
+ H+ +
+++ +
H+
H+
+
+
+
+ H+
+
-
OH-
-
-
OH-
-
OH- -
-OH-
-
-
-
-
5、米氏常数(Km)的变化
(2) 考察固定化酶稳定性 (3) 考察固定化酶最适反应条件
第三节提要
固定化酶的制备原则
尽可能地保持自然酶的催化活性 载体与酶结合牢固 空间位阻较小 成本尽可能低
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、固定化酶的制备原则
1. 尽可能地保持自然酶的催化活性和专一性
2. 载体与酶结合牢固;不能与底物、产物等 发生化学反应;且具有一定的机械强度 3. 空间位阻较小 4. 成本尽可能低
二、固定化酶的制备方法及特点
1、 一般方法及特点
2、 各种固定化方法的比较 3、 固定化后酶的考察项目
1、 一般方法及特点
(3) 交联法
双重固定法

通过酶分子间交联形成的固定化酶颗粒一般很 小,而且机械性能不是很好 吸附交联法
交联包埋法
(4) 包埋法

将酶或含酶菌体包埋在各种多孔载体中,使酶固定 化的方法 常用载体:琼脂、琼脂糖、海藻酸钠、角叉菜胶、 明胶、聚丙烯酰胺、火棉胶等 分类:网格型和微囊型


① 网格型
② 微囊型
载体上引进活泼基团
关键 活化该活泼基团 此活泼基团再与酶分子上某一基团形成共价键
② 共价键结合法

载体活化方法
A.重氮法 B.叠氮法 C.烷基化反应法 D.硅烷化法 E.溴化氰法
② 共价键结合法
共价键结合法的特点
优点:
酶与载体结合牢固,稳定性好。一般不会因底物浓度 高或存在盐类等原因而轻易脱落,有利于连续使用。
② 微囊型

微囊化法制备固定化酶的方法 界面沉淀法:物理方法,利用某些高聚物在水相和有机相 的界面上溶解度较低而形成的皮膜将酶包埋 界面聚合法:化学方法,利用油水界面上发生聚合反应形 成聚合体而将酶包裹起来
2、各类固定化方法的特点比较
载体结合法
比较项目 物理吸 附 易 弱 较高 交联法 离子键结合 共价键结合 易 中等 高 难 强 低 较难 强 中等 较难 强 高 包埋法
自然酶
DEAE-纤维素 DEAE-葡聚糖
23%
33% 87%
48%
53% 88%
增强对pH的耐受范围
青霉素酰化酶
游离 固定化
37 ℃
16h
pH 7.0-9.0 pH 5.5-10.3
2、酶稳定性的变化
原因
酶分子与载体多点连接,防止酶分子伸展变形 酶活力缓慢释放 抑制酶的自降解 阻挡外界不利因素的侵袭
载体
载体选择原则
a. 要有巨大的比表面积;b. 要有活泼的表面; c. 结合牢固; d. 便于装柱进行连续反应
酶活性中性不易被破坏,高级结构变化少,酶活损失少 酶与载体相互作用力弱,酶容易脱落
(2) 结合法
① 离子键结合法
② 共价键结合法
① 离子键结合法

通过离子键使酶与载体结合的固定化方法,也称离子交 换吸附法
酶活力的变化 酶稳定性的变化 最适温度的变化 最适pH的变化 米氏常数(Km)的变化
固定化酶的活力 蛋白质含量测定 操作半衰期 酶结合效率 活力回收率 相对活力
固定化酶的评价指标
第二节结束

点击返回
第三节 固定化酶的制备原则、固定化方 法及特点
一、 固定化酶的制备原则 二、 固定化酶的制备方法及特点
三、固定化酶的评价指标
一、固定化酶的优缺点
多次使用 反应操作方式多样(分批、连续) 提高了酶的稳定性 纯化简单、提高产物质量 反应过程可以严格控制
较游离酶更适合于多酶反应 降低酶活力 大分子底物较困难 缺点: 首次投入成本高 多酶反应不及完整菌株
优点:
二、固定化酶的性质变化
1、酶活力的变化
2、酶稳定性的变化
(4) 包埋法
① 网格型


将酶或含酶菌体包埋在凝胶细微网格中,制成一 定形状的固定化酶,称为网格型包埋法。也称为 凝胶包埋法
(4) 包埋法
② 微囊型

是将酶包埋在各种高分子聚合物制成的小球内, 制成固定化酶。由于固定化形成的酶小球直径一 般只有几微米至几百微米,所以也称为微囊化法
(4) 包埋法
三、固定化酶的评价指标
4、
或称偶联效率,酶的固定化率。
5、活力回收率=
活力保留百分数。
固定化酶总活力 100% 加入酶的总活力
6、相对活力=
固定化酶总活力 100% 加入酶的总活力-上清液中未结合酶活力
第二节结束
固定化酶的优缺点
性固 质定 及化 其酶 评的 价特 指点 标、
优点 缺点
固定化酶的性质变化
3、最适温度的变化
4、最适pH的变化Biblioteka 5、米氏常数(Km)的变化
1、酶活力的变化
酶活力降低,专一性改变
例:羧甲基纤维素做载体固定的胰蛋白酶,对高分子底 物酪蛋白只显示原酶活力的30%;而对低分子底物苯酞
精氨酸-对硝基酰替苯胺的活力保持80%
原因 作用于低分子底物的酶,特异性没有明显变化
(1) 空间构象变化 既可作用于低分子底物又可作用于大分子低物的酶,特 (2) 空间位阻 异性往往会变化 (3) 内扩散阻力 (4) 半透膜阻挡
3、最适温度的变化
最适温度提高
例:壳聚糖固定胰蛋白酶,最适温度为80 ℃;
比固定化前提高30 ℃
4、最适pH的变化
最适pH、酶活力-pH曲线发生偏移
带负电荷载体(阴离子聚合物),最适pH偏高,
向碱性偏移
+ - - - -- - - --- - - -- ---- -- --- - - -+ + H+ + -
2、酶稳定性的变化
表现
增加了酶的耐热性
氨基酰化酶
70℃ 15min
游离 DEAE-纤维素 DEAE-葡聚糖
活力丧失 60% 80%
增大了酶对有机试剂、抑制剂等的抵抗能力
脱乙酰酶
浆果赤霉素
DEAE-纤维素
提高51%
2、酶稳定性的变化
减轻了蛋白酶的破坏作用
氨 基 酰 化 酶 胰蛋白酶 (保存酶活力) 蛋白酶Pronase P (保存酶活力)

关键在于选择适当的固定化方法和必要的 载体以及稳定性研究、改进

四大类方法
(1)吸附法(包括电吸附法) (2)结合法(无机多孔材料) (3)交联法(双功能试剂) (4)包埋法(微胶囊法)
(1) 吸附法

物理吸附法。利用各种固体吸附剂将酶或含酶菌体吸附 在其表面上 无机:高岭土、皂土、硅胶、氧化铝、活性炭、微孔玻 璃、多孔玻璃等 有机:纤维素、胶原、火棉胶、树脂、陶瓷等

常用载体
天然高分子衍生物(纤维素、葡聚糖凝胶、琼脂糖等)
人工合成高聚物(聚丙烯酰胶、多聚氨基酸、乙烯、尼 龙、聚苯乙烯等) 无机载体(多孔玻璃、陶瓷等)

通常情况下,载体上的功能基团和酶分子上的非必需侧 链基团间不具有直接反应的能力。 活化载体有关基因 载体接一个双功能试剂
② 共价键结合法

共价键结合法制备固定化酶的“通式”
三、固定化细胞的分类
四、细胞固定化方法及特点
一、固定化细胞的概念和目的
概念

细胞的固定化是利用物理、化学等因素将细胞约 束或限制在一定的空间界限内,但细胞仍能保留 其催化活性,并具有能被反复或连续使用的活力
目的

生产酶等各种代谢产物。可代替游离细胞进行酶 的发酵生产。具产酶率高、发酵周期短、可连续 发酵等优点
制备难易 固定化程度 活力回收率
载体再生
费用
可能

可能

不可能

不可能
中等
不可能

底物专一性 适用性
不变 酶源多
不变 广泛
可变 较广
可变 较广
不变
小分子底 物、药用 酶
3、固定化后酶的考察项目
(1) 测定固定化酶的活力,以确定固定化过 程的活力回收率
(2) 考察固定化酶稳定性
(3) 考察固定化酶最适反应条件
微生物细胞、植物细胞和动物细胞都可以制成 固定化细胞
细胞特性比较
细胞种类 细胞大小/um 植物细胞 20-300 微生物细胞 1-10 动物细胞 10-100
倍增时间/h
营养要求 光照要求 对剪切力 主要产物
>12
简单 大多数要光照 敏感 色素、药物、香 精、酶等
0.3-6
简单 不要求 大多数不敏感
缺点:
反应条件苛刻,操作复杂;可能引起酶蛋白高级结构 变化,破坏部分活性中心,往往得不到比活力高的固 定化酶。
(3) 交联法

借助双功能试剂使酶分子之间发生交联作用,制 成网状结构的固定化酶的方法称为交联法。也可 用于含酶菌体或菌体碎片的固定化

常用试剂:戊二醛、己二胺、顺丁烯二酸酐、双 偶氮苯等。应用最广泛的是戊二醛
H+
+ + + + + H+ H+
OH+ OH-
OH-
+
OH-
5、米氏常数(Km)的变化
表观Km随载体的带电性能变化 电中性载体,Km ;载体与底物电荷性质相
反,Km ;相同,Km
S+ S+ S+ S+ S+
-- - - - -- - - -- ----- - - -
S+
三、固定化酶的评价指标
(3) 交联法
方法
酶直接交联法:在酶液中加入适量多功能试剂,使其形
(无载体固定化)
成不溶性衍生物
依赖酶与试剂的浓度、溶液pH和离子强度、温度和反
应时间之间的平衡
酶辅助蛋白交联:使用辅助蛋白(白蛋白、明胶、血红蛋
(共交联法)
白等)来增加蛋白质浓度,使酶与惰 性蛋白质共交联
可避免分子内交联和在交联过程中因化学修饰而引起 酶失活
白酶等结合固定在聚苯乙烯树脂重氮化载体上, 在实验室实现了酶的固定化
相关文档
最新文档