一元二次方程经典测试题(国庆作业一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程测试题

考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育

题号一二三总分

得分

第Ⅰ卷(选择题)

评卷人得分

一.选择题(共12小题,每题3分,共36分)

1.方程x(x﹣2)=3x的解为()

A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5

2.下列方程是一元二次方程的是()

A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0

3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()

A.﹣1 B.1 C.1或﹣1 D.3

4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()

A.12(1+x)=17 B.17(1﹣x)=12

C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17

5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,

B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到

点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟

6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()

A.x(x+12)=210 B.x(x﹣12)=210

C.2x+2(x+12)=210 D.2x+2(x﹣12)=210

7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()

A.有两个正根B.有一正根一负根且正根的绝对值大

C.有两个负根D.有一正根一负根且负根的绝对值大

8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()

A.﹣1 B.或﹣1 C.D.﹣或1

9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根

C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大

10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()

A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根

B.如果方程M有两根符号相同,那么方程N的两根符号也相同

C.如果5是方程M的一个根,那么是方程N的一个根

D.如果方程M和方程N有一个相同的根,那么这个根必是x=1

11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()

A.7 B.11 C.12 D.16

12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()

A. B.C.D.

第Ⅱ卷(非选择题)

评卷人得分

二.填空题(共8小题,每题3分,共24分)

13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.

15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.

16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.

17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.

18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.

19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形

绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.

20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).

评卷人得分

三.解答题(共8小题)

21.(6分)解下列方程.

(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)

22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0

(1)若x=﹣1是方程的一个根,求m的值及另一个根.

(2)当m为何值时方程有两个不同的实数根.

23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.

(1)求a的最大整数值;

(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.

24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.

(1)求k的取值范围;

(2)若x1x2+|x1|+|x2|=7,求k的值.

25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.

(1)求每月销售量y与销售单价x之间的函数关系式.

(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.

相关文档
最新文档