人教版高中数学必修三学案:1.1.1算法的概念

合集下载

高中数学人教版必修3教案1-1-1算法的概念1

高中数学人教版必修3教案1-1-1算法的概念1
3.情感、态度与价值观通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
教学重点
算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点
把自然语言转化为算法语言。
教学方法
写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用.
举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河题.
③练习:写出解方程组 的算法.
活动三:合作学习,探究新知学(18分钟)
典例剖析:
2.教学几个典型的算法:
1出示例1:任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.
提问:什么叫质数?如何判断一个数是否质数?→写出算法.
教学过程:
批注
活动一:创设情景,揭示课题(5分钟)
我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2.提问:①小学四则运算的规则?(先乘除,后加减)②初中解二元一次方程组的方法?(消元法)③高中二分法求方程近似解的步骤?(给定精度ε,二分法求方程根近似值步骤如下:A.确定区间 ,验证 ,给定精度ε;B.求区间 的中点 ;C.计算 :若 ,则 就是函数的零点;若 ,则令 (此时零点 );若 ,则令 (此时零点 );D.判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤2~4.
课题:1.1.1算法的概念(一)第个教案
课型:新授课年月日




(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。

最新人教A版数学必修三《1.1.1算法的概念(2)》教案设计

最新人教A版数学必修三《1.1.1算法的概念(2)》教案设计

最新人教版数学精品教学资料
高中新课程数学必修③
1.1.1 算法的概念
一、三维目标:
1.知识与技能:
(1)了解算法的含义,体会算法的思想。

(2)能够用自然语言叙述算法。

(3)掌握正确的算法应满足的要求。

(4)会写出解线性方程(组)的算法。

(5)会写出一个求有限整数序列中的最大值的算法。

(6)会应用Scilab求解方程组。

2.过程与方法:
通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。

由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。

3.情感态度与价值观:
通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的有力工具,进一步提高探索、认识世界的能力。

二、重点与难点:
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。

难点:把自然语言转化为算法语言。

本节课主要讲了算法的概念,算法就是解决问题的步骤,平时列论我们做什么事都离不开算法,算法的描述可以用自然语言,也可以用数学语言。

【高中数学必修三】1.1.1 算法的概念

【高中数学必修三】1.1.1 算法的概念

b2c1 b1c2 第二步:解(3)得:x a1b2 a2b1
(2) a1 (1) a2 : (a1b2 a2b1 ) y a1c2 a2c1 (4) 第三步:
a1c2 a2c1 第四步: 解(4)得:y a1b2 a2b1
b2 c1 b1c2 x a1b2 a 2 b1 a c a 2 c1 y 1 2 a1b2 a 2 b1
第三步:取区间中点 m
含零点的区间为 [m, b]. 将新得到的含零点的区间仍记为 [a, b]. 第五步:判断 [a, b] 的长度是否小于d或f(m)是否等于0. 若是,则m是方程的近似值;否则,返回第三步.
【例2】 x 2 2 0( x 0) 写出用“二分法”求方程 法. 取d=0.005,可以得到以下表格:
【例1】(1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.
第一步:用2除35,得余数为1,所以2不能整除35. 第二步:用3除35,得余数为2,所以3不能整除35. 第三步:用4除35,得余数为3,所以4不能整除35. 第四步:用5除35,得余数为0,所以5能整除35. 因此,35不是质数.
简单地说,算法就是解决 问题的程序或步骤。
问题创设
小品“钟点工”片段
问: 要把大象装冰箱,分几步?
答:分三步:
第一步:打开冰箱门 第二步:把大象装冰箱 第三步:关上冰箱门
算法:就是解决一个问题的程序与步骤.
问题创设
x 2 y 1 ① 解二元一次方程组 , 2 x y 1 ② 并写出具体求解步骤
算法分析:按照逐一相加的程序进行. 算法1 第一步:计算1+2,得3;

新人教A版必修3 高中数学1.1算法的概念学案

新人教A版必修3 高中数学1.1算法的概念学案
y 1
① ②
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元 学 的方法,请用加减消元法写出它的求解过程. 习 解:第一步: ; 过 第二步: ; 程 与 第三步: 。 方 法 探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一 步完善? 评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的 解法。下面写出求方程组的解的算法: 2.试写出求方程 组
达标训练 1.写出解方程 x -2x-3=0 的一个 算法。
2
2.求 1×3×5×7×9×11 的值,写出其算法。
3
3.有蓝和黑两个墨水瓶,但现在却错把蓝墨 水装在了黑墨水瓶中,黑墨水错装在了蓝 墨水瓶中,要 求将其互 换,请你设计算法解决这一问题。
4.课本练习。 课 1.算法概念和算法的基本思想 堂 (1)算法与一般意义上具体问题的解法的联系与区别; (2)算法的五个特征。 小 结 2.利用算法的思想和 方法解决实际问题,能写出一此简单问题的算法 作 业 20 页习题 1-1A 组 2、3; 布 置 学 习 小 结
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的 算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解 决,如心算、计算器计算 都要经过有限、事先设计好的步骤加以解决. 合作探究: 例 1、任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n 是否为质数做出判 断. 分析: (1)质数是只能被 1 和自身整除的大于 1 的整数. (2)要判断一个大于 1 的整数 n 是否为质数,只要根据质数的定义,用比这个 整数小的数去除 n,如果它只能被 1 和本身整除,而不能被其它整数整除,则这个数 便是质数. 解:

人教版 必修3 1.1.1算法的概念

人教版 必修3  1.1.1算法的概念

必修3第一章 算法初步1.1.1 算法的概念(学案)学案设计:绵阳市开元中学 王小凤老师 学生姓名【学习目标】1.正确理解算法的概念,掌握算法的基本特点; 2.通过例题学习,体会设计算法的基本思路;3.通过有趣的实例了解算法这一概念,激发学习数学的兴趣. 【学习重点】算法的含义及应用. 【学习难点】写出解决一类问题的算法. 【学习过程】 一.导入新课思路1(情境导入)大家都看过2000年春晚赵本山与宋丹丹演的小品《钟点工》吧,宋丹丹说了一个笑话:“把大象装进冰箱总共分几步?”答案:第一步:把冰箱门打开; 第二步:把大象装进去; 第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法.思路2(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题。

在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据等,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 二.学习过程 (一)实例探究用加减消元法.....解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的步骤:第一步,①+②⨯2,得 .③ 第二步,解③,得 . 第三步,②﹣①⨯2,得 .④ 第四步,解④,得 .第五步,得到方程组的解为【归纳总结】利用加减消元法.....,对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a (其中01221≠-b a b a ),可以写出类似的求解步骤:第一步,①×b 2﹣②×b 1,得 .③ 第二步,解③,得=x .第三步,②×1a ﹣①×2a ,得 .④ 第四步,解④,得=y .第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x (二)概念理解 【定义】算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照 解决某一类问题的 和 的步骤. 【理解】1. 算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. “不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.2.在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.(三)应用示例例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数 .因为余数不为0,所以2不能整除7.第二步, 第三步,用4除7,得到余数 .因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步, 因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35. 第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步, 因此,35不是质数.思考:用上述算法判断1997是否为质数,能否可行?【变式训练】写出判断)2(>n n 是否为质数的算法.分析:对于任意的整数)2(>n n ,若用i 表示2~()1-n 中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n ,得到余数r .判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于()1-n 为止. 算法如下:第一步,给定大于2的整数n .第二步,令2=i第三步,第四步,判断“0=r ”是否成立.若是,则 ,结束算法;否则, ,仍用i 表示.第五步,判断“()1->n i ”是否成立. 若是,则n 是质数,结束算法;否则,返回第三步. 例2 见教材4P (四)课堂练习 教材5P 练习 第1,2题 (五)课后拓展例 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下: 算法步骤:第一步:人带两只狼过河,并自己返回. 第二步: 第三步: 第四步: 第五步: 第六步:第七步: (备注:所需步骤数目不定)。

高中数学教案1.1.1算法的概念1新课标必修三

高中数学教案1.1.1算法的概念1新课标必修三
二、讲授新课:
1.算法概念:
在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
广义地说,算法就是做某一件事的步骤或程序。
2.算法的特点:(Fra bibliotek)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的;
第二步:解③得 ;
第三步:将 代入①,得 。
例3、(1)设计一个算法,判断7是否为质数。
(2)设计一个算法,判断35是否为质数。
分析:(1)质数是只能被1和自身整除的大于1的整数.(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决;
3.教学几个典型的算法:
例1:解二元一次方程组:
分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.
解:第一步:②-①×2,得:5y=3;③
教学目标:(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)判断一个数为质数的算法、用二分法求方程近似根的算法。
教学重点:解二元一次方程组等几个典型的的算法设计..
教学难点:解二元一次方程组等几个典型的的算法设计..
2、利用算法的思想和方法解决实际问题,能写出一此简单问题的算法
3、两类算法问题

高一数学人教A版必修3课件:1.1.1 算法的概念 一

高一数学人教A版必修3课件:1.1.1 算法的概念 一

必须是明确和有效的,而且能够在有限步内
完成.
例1 下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+ 1=4,„,99+1=100; ③从青岛乘火车到济南,再从济南乘飞机到广 州市观看亚运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12,„.
把较大数放在前面,依次类推,由大到小排列
这三个数.
变式训练2
写出能找出a、b、c三个数中最小
值的一个算法.
解:第一步:输入a、b、c,并且假定min=a;
第二步:若b<min成立,则用b的值替换min;
否则直接执行下一步;
第三步:若c<min成立,则用c的值替换min, 否则直接执行下一步; 第四步:输出min的值,结束.
【解析】
第一步,若a<b,交换a,b的值后,
则是大数在前,小数在后.
第二步,比较a与c,若a<c,则c在a的前面.
第三步,则c在b的前面.
这样得出的结论是由大到小的顺序.
【答案】
B
【思维总结】
这是一个比较大小的算法,必
须先任意取出两个数进行比较,并把两者中的
较大数找出,然后再将它与第三个数比较,并
第二步,令i=1,S=1.
第三步,判断“i≤n”是否成立,若不是,输出
S,结束算法;若是,执行下一步.
第四步,令S的值乘i,仍用S表示,令i的值增加 1,仍用i表示,返回第三步.
【思维总结】
法一称为累乘法,将步骤一
直写下去,便得到任意有限个数相乘的算法. 法二具有代表性,重复做同一种动作时,可 以用这种算法来解决,能节约大量的程序步 骤.同时它还体现了算法的本质:对一类问 题的机械的、统一的求解方法,其中S称为累 乘变量,i称为计数变量.

高中数学必修三导学案:1.1.1 算法的概念

高中数学必修三导学案:1.1.1 算法的概念

第一章算法初步1.1.1 算法的概念【学习目标】1.了解算法的含义,体会算法的思想;2.能够用自然语言叙述算法,知道正确的算法应满足的要求;3.会写出数值性计算的算法问题和解线性方程(组)的算法;【新知自学】问题1.你知道在家里烧开水的基本过程吗?问题2.两个大人和两个小孩一起渡河,渡口只有一条小船,每次最多能渡1 个大人或两个小孩,他们四人都会划船,但都不会游泳。

试问他们怎样渡过河去?请写出一个渡河方案。

问题3.猜物品的价格游戏:现在一商品,价格在0~8000元之间,解决这一问题有什么策略?新知梳理:1.算法的概念:数学中的算法通常是指;现代算法通常是指 .2.算法与计算机计算机解决任何问题都要依赖于 ,只有将解决问题的过程分解为若干个 ,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能解决问题.3.算法的特点:(1)确定性;(2)有限性;(3)普遍性;(4)不唯一性. 对点练习:1. 下列关于算法的描述正确的是( )A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完以后,可能没有结果.2.下列可以看成算法的是( )A.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再作业,之后做适当的练习题B.今天餐厅的饭真好吃C.这道数学题难做D.方程0122=+-x x 无实数根3.下列各式的值不能用算法求解的是()A.2222100321++++= TB.501413121++++= T C. +++++=54321TD.100994321-++-+-= T【合作探究】典例精析例题1.给出求1+2+3+4+5的一个算法.变式练习:1.给出求1+2+3+…+100的一个算法.例题2.写出解方程0322=--x x 的一个算法.变式练习:2.写出解方程组⎩⎨⎧=+=--30132y x y x 的一个算法.例题3.设计一个问题2的算法.变式练习:3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?试写出一个算法.【课堂小结】【当堂达标】1.下列关于算法的叙述中,不正确的是()A.计算机解决任何问题都需要算法B.只有将要解决的问题分解为若干步骤,并且用计算机能够识别的语言描述出来,计算机才能解决问题C.算法执行后可以不产生确定的结果D.解决同一个问题的算法并不唯一,而且每一个算法都要一步一步执行,每一步都要产生确切的结果2.下列叙述能称为算法的个数为()①植树需要运苗、挖坑、栽苗、浇水这些步骤.②顺序进行下列运算:211=+,312=+, ,413=+,100199=+.③从枣庄乘火车到徐州,从徐州乘飞机到广州.④求所有能被3整除的正数,即3,6,9,12,….3.求1197531⨯⨯⨯⨯⨯的值的一个算法是:第一步:求31⨯得到结果3;第二步:将第一步所得结果3乘5,得到结果15;第三步: ;第四步:再将105乘9得到945;第五步:再将945乘11,得到10395,即为最后结果.【课时作业】1.下列关于算法的说法,正确的个数是( )①求解某一问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊.A. 1B. 2C. 3D. 02.关于方程0652=+-x x 的求根问题,下列说法正确的是( )A.只能设计一种算法B.可以设计两种算法C.不能设计算法D.不能根据解题过程设计算法3.早上从起床到出门需要洗脸刷牙(5分钟)、刷水壶(2分钟)、烧水(8分钟)、泡面(3分钟)、吃饭(10分钟)、听广播(8分钟)几个步骤.从下列选项中选出最好的一种算法.A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶4.给出下列算法:第一步,输入x 的值.第二步,当4>x 时,计算2+=x y ;否则执行下一步.第三步,计算x y -=4.第四步,输出y . 当输入0=x 时,输出y = .5.求二次函数)0(2≠++=a c bx ax y 的最值的一个算法如下,请将其补充完整: 第一步,计算ab ac m 442-=.第二步, .第三步, .6.一般一元二次方程组⎩⎨⎧=+=+222111c y b x a c y b x a(其中01221≠-b a b a )的求解步骤(参照课本填空)第一步,第二步,第三步,第四步,7. 写出判断整数)2(>n n 是否为质数的算法.第五步, .8.已知直角坐标系中的两点)0,1( A ,)2,3(B ,写出求直线AB 的方程的一个算法.9.写出求c b a ,,中最小值的算法.。

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

高中数学必修3导学案:1.1.1算法的概念 Word版缺答案

高中数学必修3导学案:1.1.1算法的概念 Word版缺答案

《1.1.1算法的概念 》导学案【学法指导】(可根据自身学科特点增删内容)1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己! 学 习 目 标知识与技能 过程与方法 情感态度与价值观1.让学生对算法的概念有一个初步认识,并了解算法是如何表示的。

2.学习算法的自然语言表示,认识算法的特征、作用和优势。

3.在得出用二分法求方程一个近似解的算法的过程中,初步运用算法概念,体会算法自然语言描述形成的过程,会初步用自然语言描述算法。

(1)逻辑思维能力.通过分析消去法的过程,体会算法的思想,发展有条理的清晰的思维的能力,提高学生的算法素养。

(2)创新能力.算法的多样性.让学生感受算法思想的重要性,感受现代信息技术的能力,提高学生的学习兴趣.学习重点 算法的概念和算法的合理表述.学习难点 算法的合理表述、消去法.【学习过程】什么是算法呢?1、6+5*(4—2)2、写出解方程组{32324x y x y -=+=②① 的步骤3、变一变{32324x y x y -=+=写出解第二个方程组的算法归纳算法概念:问题:1.有人对歌德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤: 第一步:检验6=3+3第二步:检验8=3+5第三步:检验10=5+5。

利用计算机无穷地进行下去!请问,利用这种程序能够证明猜想的正确性吗?这是一种算法吗?2.算法的基本特征:例题例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n 是否为质数做出判定.{111222a x b y c a x b y c +=+=① ② 1221(0)a b a b -≠例2.用二分法设计一个求方程 x2 — 2=0 的近似根的算法.课堂练习1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.2.你要乘火车去外地办一件急事,请你写出从自己房间出发到坐在车厢内的三步主要算法.3.任意给定一个大于1 的正整数n,设计一个算法求出n的所有因数.作业:写出求1+2+3+ 。

高中数学教案必修三:1.1 算法的含义

高中数学教案必修三:1.1 算法的含义

教学目标:1.通过实例体会算法的思想,了解算法的含义;2.能按照步骤用自然语言写出简单问题的算法过程;3.了解算法的主要特点.教学重点:算法的概念.教学难点:算法的理解及设计.教学过程:一、问题情境情境1:现代科学技术的发展,给我们的日常生活带来了很大的变化,和远方的朋友相联系,很少再有人去写纸质的信了,代之以打电话或上网发电子邮件等,我们在座的各位同学可能都有收发电子邮件的经历,有哪位同学能把发电子邮件的方法和步骤说一下?情境2:大家可能都看过中央电视台李咏曾经主持的“猜价格,赢商品”的节目,竞猜者如果在规定的时间内猜出某种商品的价格,就可赢得该商品.现有一商品,价格在0~8000元之间,如果让你去猜,你如何在较短的时间内猜中价格?二、学生活动1.第一步:上网打开电子邮箱;第二步:点击“写邮件”;第三步:输入发送地址;第四步:输入主题;第五步:输入信件内容;第六步:点击“发送邮件”.2.第一步:报“4000元”;第二步:若主持人说“高”了(说明价格在0~4000之间),就报“2000”,否则(价格在4000~8000之间)报“6000”;第三步:重复第二步的报数方法,直到得到正确的结果.3.小结:从以上两例可以看出,我们都是在按一定的程序进行了一系列机械的操作来完成一事件,其中就蕴含了算法的思想.三、建构数学1.算法的概念.对于一项任务,按照事先设计好的步骤,一步一步地执行,并在有限步内完成任务,则这些步骤称为完成该任务的一个算法.2.算法的特征.(1)确定性:即求解的过程是事先确定的,有确定的步骤.在执行算法的过程中,我们只是机械地一步一步地照着做.(2)可行性:即算法执行过程中的每一步都是能够做到的.(3)有穷性:即算法在有穷步骤之后结束,这包含着算法运行的时间是有限的,运行时(在计算机中需要的存储)空间也是有限的.不满足有穷性的算法是没有实际意义的.(4)通用性:一般来说,算法应有某种通用性,可以解决某一类问题.(5)有输出特征:算法执行之后应有结果,应完成给定的任务.四、数学运用1.例题.例1给出求1+2+3+4+5+6+7的一个算法.解析:本例主要是培养学生理解概念的程度,了解解决数学问题都需要算法.算法一:按照逐一相加的程序进行.第一步计算1+2,得到3;第二步将第一步中的运算结果3与3相加,得到6;第三步将第二步中的运算结果6与4相加,得到10;第四步将第三步中的运算结果10与5相加,得到15;第五步将第四步中的运算结果15与6相加,得到21;第六步 将第五步中的运算结果21与7相加,得到28.算法二:可以运用公式1+2+3+…+n =n (n +1)2直接计算. 第一步 取n =7;第二步 计算n (n +1)2; 第三步 输出运算结果.例2 给出求解方程组⎩⎪⎨⎪⎧2x +y =5 ①4x +5y =13 ②的一个算法. 解析:消元法,步骤:第一步 方程①不动,将方程②中的x 的系数除以方程①中x 的系数,得到乘数m =42 =2;第二步 方程②减去m 乘以方程①,消去方程②中的x 项,得到⎩⎪⎨⎪⎧2x +y =53y =3第三步 将上面的方程组自下而上回代求解,得到y =1,x =2,所以原方程组的解为⎩⎪⎨⎪⎧x =2y =1 ,这种消元回代的算法适用于一般线性方程组的求解.点评:一个算法,就是一个有穷规则的集合,它为某个特定类型问题提供了解决问题的运算序列.其中的每条规则必须是明确定义的、可行的.序列的终止表示问题得到解答或指出问题没有解答.2.练习.课本P36页第1题.五、要点归纳与方法小结本节课学习了以下内容:算法的概念和算法的特征.。

人教版高中数学必修3教案:1.1.1 算法的概念

人教版高中数学必修3教案:1.1.1 算法的概念

1.1.1 算法的概念一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解: 算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+=直接计算 第一步:取=5;第二步:计算; 第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性)例4:用“待定系数法”求圆的方程的大致步骤是:第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于,,或,,的方程组;第三步:解出,,或,,,代入标准方程或一般方程.三、算法的概念通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些 n 2)1(+n n n 2)1(+n n a b r D E F a b r D E F在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程例6:(课本第4页例2)练习2:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050. 算法2 可以运用公式1+2+3+…+=直接计算 第一步:取=100;第二步:计算; 第三步:输出运算结果.练习3:(课本第5页练习1)任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:第一步:输入任意正实数;第二步:计算;第三步:输出圆的面积.五、课堂小结1. 算法的特性:①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.④输入:一个算法中有零个或多个输入..⑤输出:一个算法中有一个或多个输出.2. 描述算法的一般步骤:①输入数据.(若数据已知时,应用赋值;若数据为任意未知时,应用输入) ②数据处理. n 2)1(+n n n 2)1(+n n r 2r S π=S③输出结果.。

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。

通过回顾解二元一次方程组的方法,了解算法的思想。

2。

了解算法的含义和特征。

3.会用自然语言表述简单的算法。

提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。

人教b版数学必修三:1.1.1《算法的概念》导学案(含答案)

人教b版数学必修三:1.1.1《算法的概念》导学案(含答案)

第一章算法初步§1.1算法与程序框图1.1.1算法的概念自主学习学习目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.自学导引1.算法可以理解为由基本运算及规定的____________所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.算法具有________、________、________、____________、________等特征.3.算法通常可以编成____________,让计算机执行并解决问题.对点讲练知识点一算法的概念例1下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果点评算法实际上是解决问题的一种程序性方法,它通常指向某一个或一类问题,而解决的过程是程序性和构造性的.算法也可以看成解决问题的特殊的、有效的方法.变式迁移1下列关于算法的说法,正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1个B.2个C.3个D.4个知识点二直接法设计算法例2写出求1+2+3+4+5+6值的一个算法.点评方法一是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+…+10 000,再用这种方法是不可取的;方法二与方法三都是比较简单的算法,但比较而言,方法二最为简单,且易于在计算机上执行操作.因此,当我们考虑算法设计时,要刻意去发展有条理的表达能力,提高逻辑思维能力,从而简单地解决问题.变式迁移2写出解方程x2-x-6=0的一个算法.知识点三 选择执行的算法例3 函数y =⎩⎪⎨⎪⎧ -x +1 (x >0)0 (x =0),x +1 (x <0)写出给定自变量x 求函数值的算法.点评 这是分段函数算法的一个模型,算法设计的关键是根据x 的范围选择相应的解析式,即相应的步骤,设计算法时,一定要考虑到x 的所有可能情况及各种情况下算法的执行情况.变式迁移3 设计一个算法,对任意三个整数a 、b 、c ,求出其中的最小数.1.算法有以下几个特征(1)概括性:写出的算法必须能解决一类问题,并能重复使用.(2)逻辑性:即顺序性和正确性.算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能执行下一步,并且每一步都准确无误,才能解决问题.(3)有穷性:算法的步骤序列是有限的,一个算法必须总是在执行有穷步之后结束,且每一步都可在有穷时间内完成.(4)不唯一性:求解某个问题的算法不是唯一的,对一个问题可以有不同的算法.2.算法设计要求(1)写出的算法必须能解决一类问题,并且能重复使用.(2)要使算法尽量简单,步骤尽量少.(3)算法过程要能一步一步执行,每一步都准确无误,且在有限步后能得出结果.课时作业一、选择题1.我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的个数为( )A .1个B .2个C .3个D .4个2.下列四种叙述中能称为算法的是( )A .解方程时需要验根B .在野外做饭叫野炊C .做米饭时需要刷锅、淘米、添水、加热这些步骤D .以上都不是算法3.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N ) A .①② B .①③ C .②③ D .①②③4.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法5.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数二、填空题6.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法_____________________________________________.(只写编号)7.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.以下是求他的总分和平均成绩的一个算法,在横线上填入算法中缺的两个步骤.第一步,取A =89,B =96,C =99.第二步,__________________________.第三步,__________________________.第四步,输出计算的结果.8.下面给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则执行第三步,否则执行第四步.第三步,输出2a-1.第四步,输出a2-2a+3.问题:(1)这个算法解决的问题是___________________________________________________.(2)当输入的a值为________时,输出的数值最小.三、解答题9.求1×3×5×7×9×11的值,写出其算法.10.设计算法,求方程5x+2y=22的正整数解.第一章算法初步§1.1算法与程序框图1.1.1算法的概念自学导引1.运算顺序2.概括性逻辑性有穷性不唯一性普遍性3.计算机程序对点讲练例1C[算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C 正确.]变式迁移1C[解决某一类问题的算法不唯一,第①个说法错误,②③④正确,故选C.]例2解方法一S1计算1+2得到3.S2将S1中的运算结果3与3相加得到6.S3将S2中的运算结果6与4相加得到10.S 4 将S 3中的运算结果10与5相加得到15.S 5 将S 4中的运算结果15与6相加得到21.S 6 输出运算结果.方法二S 1 取n =6.S 2 计算n (n +1)2. S 3 输出运算结果.方法三S 1 将原式变形为(1+6)+(2+5)+(3+4)=3×7.S 2 计算3×7.S 3 输出运算结果.变式迁移2 解 第一步,计算方程的判别式并判断符号Δ=1+4×6=25>0;第二步,将a =1,b =-1,c =-6代入求根公式x =-b±b 2-4ac 2a,得x 1=-2,x 2=3; 第三步,输出方程的两个根.例3 解 算法如下:第一步,输入x ;第二步,若x >0,则令y =-x +1后执行第五步,否则执行第三步;第三步,若x =0,则令y =0后执行第五步,否则执行第四步;第四步,令y =x +1;第五步,输出y 的值.变式迁移3 解 算法步骤如下:第一步,假定数a 为三个数中的最小数.第二步,将b 与a 比较,如果b <a ,则令a =b ,否则a 值不变.第三步,将c 与a 比较,如果c <a ,则令a =c ,否则a 值不变.第四步,a 就是a 、b 、c 中的最小数.课时作业1.D [题中对算法的几种描述分别对应算法的概括性、有穷性、逻辑性和普遍性.]2.C3.B [由算法的步骤是有限的,所以②不能设计算法求解.]4.B [算法具有不唯一性,对于一个问题,我们可以设计不同的算法.]5.A [此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到n -1一一验证,看是否有其他约数,来判断其是否为质数.]6.③②①⑤④⑥7.计算总分D =A +B +C 计算平均成绩E =D 38.(1)求分段函数f(a)=⎩⎪⎨⎪⎧2a -1, a ≥4,a 2-2a +3, a<4的函数值问题 (2)1 9.解 方法一第一步,先求1×3,得到结果3;第二步,将第一步所得结果3再乘以5,得到结果15;第三步,再将15乘以7,得到结果105;第四步,再将105乘以9,得到结果945;第五步,再将945乘以11,得到10 395,即是最后结果.方法二第一步,S =1;第二步,I =3;第三步,S =S ×I ;第四步,I =I +2;第五步,如果I 不大于11,返回重新执行第三步、第四步及第五步,否则,输出S 的值就是所求的结果,结束.10.解 第一步,将x =1代入原方程,得y =172,这组解不是方程的正整数解; 第二步,将x =2代入原方程,得y =6,这组解是方程的正整数解;第三步,将x =3代入原方程,得y =72,这组解不是方程的正整数解; 第四步,将x =4代入原方程,得y =1,这组解是方程的正整数解;第五步,方程的正整数解有两组:⎩⎪⎨⎪⎧ x =2,y =6或⎩⎪⎨⎪⎧x =4,y =1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 程序框图与算法的基本逻辑结构
第1课时 程序框图、顺序结构
学习目标 1.熟悉各种程序框及流程线的功能和作用;2.能够读懂简单的程序框图;3.能用程序框图表示顺序结构的算法.
一.问题“导”、“研”:
(一) 程序框图
思考 许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好?
答案 使用流程图好.因为使用流程图表达更直观准确. 程序框图的概念:
(1)程序框图又称 ,是一种用 、 及 来表示算法的图形. (2)常见的程序框、流程线及各自表示的功能
图形符号
名称 功能
终端框
(起止框)
输入、输出框
处理框(执行框)
判断某一条件是否成立,成立时在出口处
标明“是”或“Y ”;不成立时标明“否”或“N ”
流程线 ○
连接程序框图的两部分
一个或几 的组合表示算法中的一个步骤;有
的流程线将程序框连接起来,表示算法步骤的.(二)顺序结构
(1)顺序结构的定义
由若干个依次执行的步骤组成,这是任何一个算法都离不开的基本结构.(2)结构形式
二“生展”、“师升”:
类型一把自然语言描述的算法翻译成程序框图
例1已知一个算法如下:
第一步,输入x.
第二步,计算y=2x+3.
第三步,计算d=x2+y2.
第四步,输出d.
把上述算法用程序框图表示.
反思与感悟画程序框图的规则:
(1)使用标准的程序框符号;
(2)框图一般按从上到下,从左到右的方向画;
(3)描述语言写在程序框内,语言清楚、简练.
跟踪训练1算法如下,画出程序框图.
第一步,输入a,b,c的值-1,-2,3.
第二步,计算max =4ac -b 2
4a .
第三步,输出max .
类型二 顺序结构
例2 一个笼子里装有鸡和兔共m 只,且鸡和兔共n 只脚,设计一个计算鸡和兔各有多少只的算法,并画出程序框图.
反思与感悟 顺序结构的程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框. (2)各程序框从上到下用流程线依次连接. (3)处理框按计算机执行顺序沿流程线依次排列.
跟踪训练2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦-秦九韶公式(令p =a +b +c
2,则三角形的面积S =p (p -a )(p -b )(p -c ),设计一个计算三角形面积的算法,并画出程序框图.
类型三读懂程序框图
例3一个算法如图,它的功能是什么?
反思与感悟程序框图本就是为直观清晰表达算法而生,故只需弄清各种程序框、流程线的功能,再依次执行一下程序,不难读懂该图所要表达的算法.
跟踪训练3写出下列算法的功能:
(1)图①中算法的功能是(a>0,b>0) ________________________________;
(2)图②中算法的功能是________________.
三、质量检测:
1.一个完整的程序框图至少包含()
A.终端框和输入、输出框
B.终端框和处理框
C.终端框和判断框
D.终端框、处理框和输入、输出框
2.下列图形符号属于判断框的是()
3.任何一种算法都离不开的基本结构为()
A.逻辑结构
B.条件结构
C.循环结构
D.顺序结构
4.程序框图符号“”可用于()
A.输出a=10
B.赋值a=10
C.判断a=10
D.输入a=1
5.下面程序框图表示的算法的运行结果是________.
A.6
B.9
C.6 6
D.96
四、小组评价:
五、课堂小结:
六、课后作业:练习册《金银卷》同步练习
七、课外思考题(供学有余力的同学做):.下面的程序框图是顺序结构的是()
组别
名次得分。

相关文档
最新文档