高等光学教程-第2章参考答案
光学第2章习题与答案
第二章习题答案2—1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:光电效应方程212m mv h =ν-Φ (1) 由题意知 0m v = 即 0h ν-Φ=14151.9 4.59104.13610ev Hz h ev s -Φν===⨯⨯⋅ 1.24652.61.9c hc nm Kev nm evλ⋅====νΦ(2) ∵ 21 1.52m mv ev =∴ 1.5cev h h λ=ν-Φ=-Φ 1.24364.71.5 1.5 1.9hc nm Kevnm ev ev evλ⋅===+Φ+2-2 对于氢原子、一次电离的氢离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)电子在基态的结合能; (3)由基态带第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长。
解:(1)由波尔理论及电子的轨道半径公式r 1为氢原子第一波尔半径22201122204()(197.3)0.0530.511e e c r a nm nm m e m c e 6πε====≈/4πε⨯10⨯1.44h h氢原子第二波尔半径可知:He + (Z=2)Li + + (Z=3)电子在波尔轨道上的速率为 于是有 H :61161212.19101371.1102v c m s m s cv m s 8--=α=⨯3⨯10/=⨯⋅α==⨯⋅21n n r r z=221140.212r n r r nm===112210.0265220.1062ar nmr a nm====112210.0176320.07053ar nmr a nm====nzv c n=αHe + :6116122 4.3810102v c m s c v m s--=α=⨯⋅2α==2.19⨯⋅ Li + + :6116123 6.5710102v c m s c v m s--=α=⨯⋅3α==3.28⨯⋅ (2) 电子在基态的结合能E k 在数值上等于原子的基态能量 由波尔理论的能量公式 可得故有 H : 13.6k E ev =He + : 213.6254.4k E ev =⨯= Li ++ : 213.63122.4k E ev =⨯=(3)以电压加速电子,使之于原子碰撞,把原子从基态激发到较高能态,用来加速电子的电势差称为激发电势,从基态激发到第一激发态得相应的电势差称为第一激发电势。
《光学教程》(姚启钧)课后习题解答之欧阳引擎创编
《光学教程》(姚启钧)习题解答欧阳引擎(2021.01.01)第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)课后习题解答之欧阳道创编
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学教程答案(第二章)
1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以 42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。
光学教程第二版习题答案(一至七章)
∴ d1
=
h1 − h2 tan u1′
= 1.5 −1 0.015
= 33.33mm
tan u2 ′ = tan u2
+
h2 f 2′
= 0.015 +
1 = 0.011
− 250
∴d2
=
h2 − h3 tan u2 ′
1 − 0.9 =
0.011
= 9.091mm
2-13 一球形透镜,直径为 40mm,折射率为 1.5,求其焦距和主点位置。
= −200mm
lH
= dϕ2 ϕ
= 50 × 5 = −100mm − 2.5
2-11
有三个透镜,
f1′
= 100mm,
f2′
= 50mm,
f
′
3
=
−50mm,其间隔 d1
= 10mm,
d 2 = 10mm ,设该系统处于空气中,求组合系统的像方焦距。
解:设 h1 = 100mm, u1 = 0 ,则:
tan u3′
= tan u3 +
h3 f3′
= 2.8 +
62 − 50
= 1.56
∴组合系统的像方焦距为:
f
′=
h1 tan u3′
100 =
1.56
= 64.1mm
2-12
一个三 片型望远镜 系统,已知
f
′
1
= 100mm,
f
′
2
=
−250mm ,
f
′
3
= 800mm,入
射平行光在三个透镜上的高度分别为: h1 = 1.5mm, h2 = 1mm , h3 = 0.9mm ,试求合成
光学教程第四版姚启钧课后题答案
目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
光学教程第2章_参考答案
2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,0r k R hk λ=。
第一半波带半径067.011045001100=⨯⨯⨯==-r k R hk λcm 。
2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,k k r k R hk 414.14105000100=⨯⨯⨯==-λmm 。
K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。
(2)P 点最亮时,由p 点的振幅)(211k k a a a +=,所以当k=1时,k a 为最大所以2828.021==h R d cm 。
2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,圆环内径对应的半波带数1)1111(105000)105.0()11(10230211=+⨯⨯=+=--R r R k h λ圆环外径对应的半波带数4)1111(105000)101()11(10230212=+⨯⨯=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(21a a a a k ≈+=,而1121)(21a a a a ≈+=∞∞所以光强之比4220==∞a a I I k。
高等光学教程-第2章参考答案
与 z 轴夹角分别为 、 0、 。 2.7 如图 p2-7 所示, 三束相干平行光传播方向均与 xz 平面平行, 光波波长为 ,振幅之比 A1 : A2 : A3 1 : 2 : 1 。设它们的偏振方向均垂直于 xz 平面,在原 点 o 处的初相位 10 20 30 0 。求在 z 0 的平面上 (1) 合成振幅分布 (2) 光强分布 (3) 条纹间距
d V ( x) cos k x D
(2)可见度变化周期
lT
d k D
D
k d
条纹间距为
2 2 D d k d k D 在可见度变化的一个周期中明暗的变化次数为 N ,则有 l
D lT ( x) kd k N 2D 2k 2 l kd
从光源来的光分成强度相等的两束,设这两束光再度 时的偏振方向相同,光程差为 S ,试求: (1)两光束干涉后所得光强的表达式 I( S ) (2)干涉条纹的对比度 V( S ) (3)对比度 V 的第一个零点所对应的 S ? 图 p2-11 解答:两束光的每一束在 dk 范围内光的强度为 I dk I1 I 2 0 , 2 k (1)
2( Z 0 z )a d 2a z Z0 f
2a d z f
条纹总数
N
X 2d (2af dz ) 2 2 l ( d 2 4 f 2 )1/ 2 f d 4 f 2d
2.9 在图 P2-9 所示的维纳驻波实验中,设光不是垂直入射而是以 45 角入射。对于以下两种 情况,求电能密度的时间平均值 (1) 入射光的偏振方向垂直于入射面; (2) 入射光的偏振方向平行于入射面; (3) 以上两种情形中那一种会使感光乳胶在曝光、显影后得到明暗相间的条纹。当图中 乳胶膜与镜 M 成 角时,求乳胶膜 F 上条纹的间距。
光学教程习题解教材
[《光学教程》(姚启钧)]习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答欧阳学文第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
高等光学教程参考答案
高等光学教程参考答案高等光学教程参考答案光学是一门研究光的传播和性质的学科,涉及到光的产生、传播、干涉、衍射、偏振等多个方面。
在高等光学教程中,学生需要掌握各种光学理论和实验技巧。
下面将为大家提供一些参考答案,希望能够帮助大家更好地理解和掌握光学知识。
1. 什么是光的干涉?光的干涉是指两束或多束光波相互叠加而产生的干涉现象。
干涉可以分为两种类型:构造干涉和干涉条纹。
构造干涉是指两束光波在空间中相遇并叠加形成明暗交替的干涉图案。
干涉条纹是指两束光波在光屏上产生的明暗条纹,用以描述光波的相位差。
2. 什么是光的衍射?光的衍射是指光波通过一个有限孔径或障碍物时,光波的传播方向发生偏离并呈现出一定的分布规律。
衍射现象是光的波动性质的重要体现。
光的衍射可以通过菲涅尔衍射和菲拉格衍射来进行描述和分析。
3. 什么是光的偏振?光的偏振是指光波中的电场矢量沿特定方向振动的现象。
偏振光是指只沿一个方向振动的光。
光的偏振可以通过偏振片来实现,偏振片可以选择性地通过或阻挡某个方向的光振动。
4. 什么是光的折射?光的折射是指光波从一种介质传播到另一种介质时,光波传播方向的改变现象。
光的折射遵循斯涅尔定律,即入射光线和折射光线的折射角和入射角之间的正弦比等于两种介质的折射率之比。
5. 什么是光的反射?光的反射是指光波从一个介质传播到同一介质中另一个方向上的现象。
光的反射遵循反射定律,即入射角等于反射角。
6. 什么是光的散射?光的散射是指光波与物质微粒或表面不规则结构相互作用而改变传播方向的现象。
散射可以分为弹性散射和非弹性散射。
弹性散射是指光波与物质微粒发生碰撞后,光波的能量和频率不发生改变。
非弹性散射是指光波与物质微粒发生碰撞后,光波的能量和频率发生改变。
7. 什么是光的吸收?光的吸收是指光波被物质吸收而转化为其他形式的能量,如热能。
光的吸收取决于物质的性质和光波的频率。
8. 什么是光的色散?光的色散是指光波在不同介质中传播时,不同频率的光波传播速度不同的现象。
高等光学答案最终PDF版
1-2 从麦克斯韦方程组出发,导出电磁场在两种电介质分界面处的边值关系。
解:(ⅰ)ln t E E l d E ∆×⋅−=⋅∫)()(21当回路短边趋于零时,回线面积为零,而t B ∂∂有限,所以0)()(21=⋅∂∂−=∆×⋅−=⋅∫∫∫Σσd t B l n t E E l d E高等光学作业习题参考答案2012.12.10即l E E n t ∆−⋅×)()(21l E E n t ∆−×⋅=))((210=得0)(21=−×E E n,即t t E E 21=(ⅱ)l t d t DJ l n t H H l d H ∆⋅=⋅∂∂+=∆×⋅−=⋅∫∫∫Σασ)()()(21t H H n t n t H H⋅=−×⋅=×⋅−α))(()()(2121当没有电流分布时0=α,得,0)(21=−×H H n即t t H H 21=(ⅲ)s n D D ds n D d D ∆⋅−=⋅=⋅∫∫)(21σ当不存在自由电荷时,0=sρ,积分0=∫∫∫Ωdv s ρ,所以0)(21=∆⋅−s n D D,即n n D D 21=(ⅳ)0)(21=∆⋅−=⋅=⋅∫∫s n B B ds n B d Bσ即n n B B 21=1-5 已知电场E 和磁场H 在直角坐标中的分量分别为:)cos(t kz A E x ω−=;);sin(wt kz B E y −=0=z E )sin(t kz B H x ωε−−=;)cos(t kz A H y ωε−=;0=z H试求电磁场的能量密度w 和玻印亭矢量S 。
解:HB E D µε==,电磁场能量密度)(21B H D E w ⋅+⋅=)(2122H E µε+= )]()([21222222z y x z y x H H H E E E +++++=µε )](sin )(cos [2)1(2222t kz B t kz A ωωµε−+−+=玻印亭矢量H E S ×=zyxz y xH H H E E E z y x =z H E H E y H E H E x H E H E x y y x z x x z y z z y)()()(−+−+−=z H E H E x y y x)(−=z t kz B t kz A))]((sin ))((cos [2222ωεωε−+−=1-6 设某一无限大介质中,,0,0==σρε、µ只是空间坐标的函数,试从麦克斯韦方程和物质方程出发证明:{}0)](ln [)()(ln 22=∇⋅∇+×∇×∇++∇εµεµωE E E E证明:)(),(r rµµεε==H B E Dµε==,E E E D⋅∇+⋅∇=⋅∇=⋅∇εεε由麦克斯韦方程 0=⋅∇D得 (ln )EE E εεε∇⋅∇⋅=−=−∇⋅取麦克斯韦方程组微分式第一式的旋度,)()(B tE ×∇∂∂−=×∇×∇其中,E E E 2)()(∇−⋅∇∇=×∇×∇2[(ln )]E E ε=−∇∇⋅−∇)()(H tB t µ×∇∂∂−=×∇∂∂− )(H H t×∇+×∇∂∂−=µµ)(µµµB t Dt×∇+∂∂∂∂= t B tE ∂∂×∇+∂∂= )(ln 22µεµ)()(ln 22E t E×∇×∇−∂∂=µεµ)()(B tE ×∇∂∂−=×∇×∇即222(ln )()[(ln )]0E E E E t εµµε∂∇−+∇×∇×+∇∇⋅=∂若ti e E E ω0 =,则22(ln )()[(ln )]0E E E E εµωµε∇++∇×∇×+∇∇⋅=1-7 从麦克斯韦方程组出发导出电磁场在有色散的非均匀介质中所满足的亥姆霍兹方程。
《光学教程》(姚启钧)课后习题解答之欧阳与创编
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学第二三章部分答案
2-1 在杨氏实验中,用波长为632。
8nm 的氦氖激光束垂直照射到间距为1.00mm 的两个小孔上,小孔至屏幕的垂直距离为100cm. 试求在下列两种情况下屏幕上干涉条纹的间距: (1)整个装置放在空气中;(2)整个装置放在n=1。
33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()sin xn r r nd nd Dδθ=-==所以相邻干涉条纹的间距为D x d nλ∆=⋅(1) 在空气中时,n =1。
于是条纹间距为10431.0632810 6.3210(m)1.010D x d λ---∆==⨯⨯=⨯⨯ (2) 在水中时,n =1。
33.条纹间距为10431.0632810 4.7510(m)1.010 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯2-2 在杨氏干涉装置中,双缝至屏幕的垂直距离为2.00m 。
测得第10级干涉亮纹至中央亮纹之间的距离为 3.44cm ,双缝间距为0.342mm, 试求光源的单色光波长。
解:在杨氏干涉装置中,两束相干光的光程差为:sin xd d D δθ==根据出现亮条纹的条件0λδk ±=,对第10级亮条纹,k 取10,于是有:010λ=Dxd带入数据得:0231021044.310342.0λ=⨯⨯⨯--由此解出:nm 24.5880=λ2-4因为:λθj Dxd d ==sin 所以:λ∆=∆j D xd)(102.24m djD x -⨯=∆=∆λ2-5 用很薄的云母片(n =1.58)覆盖在双缝干涉实验装置的一条缝上,观察到干涉条纹移动了9个条纹的距离,光源的波长为550.0 nm ,试求该云母片的厚度。
解:设云母片厚度为h ,覆盖在双缝中的1r 光路上,此时两束相干光的光程差为:21()(1)xr r h nh dn h k Dδλ''=--+=--= 当没有覆盖云母片,两束相干光的光程差为:21xr r d k Dδλ=-==因为条纹移动了9个,则:9k k '-=由①、②两式得:(1)9n h λ-=由此可得云母片的厚度为:9699550.0108.5310(m)1 1.581h n λ--⨯⨯===⨯--2-13nm 8.6420=λ2-14 将两块平板玻璃叠合在一起,一端互相接触。
《光学教程》(姚启钧)课后习题解答之欧阳学创编
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
高等光学_第二章_部分习题答案
w 2π × 3 ×104 V= = = g k 2π × 3 ×10
2.5 Solved:
3 ×103
这题的题目应该出错了。如果不是出错的话,那么空间频率太大了, 导致 z 分量会很大, 计算会很麻烦。 因此, 应该将复振幅的公式改为:
3 × E ( x, y ) = exp i 2 10 π ( x + 1.5 y )
= λ
1 = fs
3 = 102 + 102 + 102 30
→
1
6.相位速度:相速度公式的推导可得:
常数 对于等相面,我们有: wt − k r =
0 ,于是我们得出: 两边取全微分,有: wdt − k d r =
→
Vp =
dr w = dt k
→
这里的 w 代表时间圆频率,k 代表总波数。故由题目可得:
2.13 Solved:
由于光波的群速度与 n,w,V p 都有关系,这里只要根据题目给出的 已知,选取合适的公式以简化计算就行了。题目不止一种解法,而且 选用的公式不同,得出的答案也会不同,都是正确的,但可能有的答 案比较复杂。以下只给出最简单的答案。 (1)对于给出折射率 n 的变化公式,由于题目说明是正常的色散介 质,所以可使用简化的群速度公式:
c 出发,变形可得: n c n = k w
两边对 w 取一阶导数(k 与 w 有关 ):
dn c c dk = −k 2 + dw w w dw
c dw V p = ,得出: 利用 Vg = n dk 和
dn n c 1 = − + dw w w Vg
整理公式,最后可得:
Vg =
c n + w dn dw
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答之吉白夕凡创作第一章光的干与1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干与条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离. 解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比. 解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片拔出杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变成中央亮条纹,试求拔出的玻璃片的厚度.已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干与图样,求干与条纹间距和条纹的可见度. 解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干与条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干与条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ.解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干与条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到不雅察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中央.⑴若光波波长500nm λ=,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干与的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在不雅察屏上可以看见条纹的区域为P1P2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 规模内可看见条纹.7、试求能产生红光(700nm λ=)的二级反射干与条纹的番笕膜厚度.已知番笕膜折射率为1.33,且平行光与法向成300角入射. 解:2700, 1.33nm n λ==由等倾干与的光程差公式:22λδ=8、透镜概略通常镀一层如MgF2( 1.38n =)一类的透明物质薄膜,目的是利用干与来降低玻璃概略的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚? 解: 1.38n =物质薄膜厚度使膜上下概略反射光产生干与相消,光在介质上下概略反射时均存在半波损失.P 2 P 1 P 0由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行不雅察,问在玻璃片单位长度内看到的干与条纹数目是多少?设单色光源波长为500nm 解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干与条纹数目为: 即每cm 内10条.10、在上题装置中,沿垂直于玻璃概略的标的目的看去,看到相邻两条暗纹间距为1.4mm .已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长. 解:当光垂直入射时,等厚干与的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l∆=∆,即lh H l∆∆=11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强.解:61.210, 1.5h m n -=⨯=由光正入射的等倾干与光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干与仪的反射镜M2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长.解:光垂直入射情况下的等厚干与的光程差公式:22nh h δ== 移动一级厚度的改动量为:2h λ∆=13、迈克耳逊干与仪的平面镜的面积为244cm ⨯,不雅察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少?解:由光垂直入射情况下的等厚干与的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '组成的空气尖劈的两边高度差为:M 1M 21M2M '14、调节一台迈克耳逊干与仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹.若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径.(提示:圆环是等倾干与图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系.) 解:500nm λ=出现同心圆环条纹,即干与为等倾干与 对中心 2h δ=15、用单色光不雅察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长.解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中不雅察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离. 解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4r r r r r mm ∆=-==-== 第2章光的衍射1、单色平面光照射到一小圆孔上,将其波面分红半波带.求第k 个带的半径.若极点到不雅察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径. 解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改动大小.问:⑴小孔半径应满足什么条件时,才干使得此小孔右侧轴线上距小孔中心4m 的P 点的光强辨别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm .解:⑴04400r m cm ==当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮.10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径辨别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I·S1R m =与没有光阑时的光强0I 之比. 解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点?⑵要使P 点酿成与⑴相反的情况,至少要把屏辨别向前或向后移动多少? 解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点.则 0113k r R⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k =,03 1.5, 1.510.52r m r m '==∆=-=向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成.第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域.已知1234:::r r r r =,用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上. 解:由1234:::r r r r =带片具有透镜成像的作用,2HkR f k λ'=波⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度.⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m …6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).另外100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I . 解:由波带片成像时,像点的强度为:由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm .辨别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离.解:对沿θ标的目的的衍射光,缝的两边光的光程差为:sin b δθ=相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P`点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长. 解:对θ方位,600nm λ=的第二个次最大位 对 λ'的第三个次最大位 即:5722bbλλ'⨯=⨯9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离辨别为多少?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上.所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少?若改用X 射线(0.1nm λ=)做此实验,问底片上这两个最小值之间的距离是多少? 解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标暗示强度,横坐标暗示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包含缝与缝之间的干与)图样.设缝宽为b ,相邻缝间的距离为d ,3d b =.注意缺级问题.12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少?(设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm ) 解:每毫米50条刻痕的光栅,即10.0250d mm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光(760400nm )照射光栅时,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠规模是多少?解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末 即第三级光谱的400506.7nm 的光谱与第二级光谱重叠. 14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少?解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅不雅察波长为589nm 的钠光谱.试问:⑴光垂直入射时,最多功效能不雅察到几级光谱?⑵光以030角入射时,最多能不雅察到几级光谱?解:61,58910400d mm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o 角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光?其颜色如何? 解:1250d mm =在30o 的衍射角标的目的出现的光,应满足光栅方程:sin 30o d j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条.求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱?⑶谱线的半宽度为多少? 解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条(级)光谱 ⑶由多缝干与最小值位置决定公式:sin j Ndλθ'=⋅第3章几何光学的基来源根底理1、证明反射定律合适费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y 入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'=-=-=即:sin sin i i '=*2、按照费马原理可以导出近轴光线条件下,从物点收回并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物像公式. 3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm .求物体PQ 的像P`Q`与物体PQ 之间的距离2d 为多少?解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=- ⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角. 解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308o i '= 5、(略)6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,(并作光路图) 解:由球面成像公式: 代入数值 1121220s +='-- 得:60s cm '=- 由公式:0y y ss '+=' 7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s sr+=' 5r cm =(为凸面镜)8、某不雅察者通过一块薄玻璃板去看在凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起.若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距不雅察者眼睛的距离为多少?解:由题意,凸面镜焦距为10cm ,即2110r=玻璃板距不雅察者眼睛的距离为1242d PP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两概略互相平行的玻璃板,其厚度为1d ,折射率为n .试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同.证明:设物点P 不动,由成像公式112s s r+=' 由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 收回的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+-- 凹面镜向物移动d 之后,物距为s d + (0,0s d <>)2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远收回的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少? 解:由球面折射成像公式:n n n ns sr''--='解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球概略6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向缩小率. 解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ (利用P194:y s n y s n ''=⋅') 球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡.看上去一个恰好在球心,另一个从最近的标的目的看去,好像在概略与球心连线的中点,求两气泡的实际位置. 解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n n ns s r''--=' 110s cm =-, 即气泡1P 就在球心处另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外不雅察者所看到的小鱼的表不雅位置和横向缩小率.解:由球面折射成像公式:n n n ns sr''--='解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm .将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向缩小率,并作光路图. 解:由球面折射成像公式:s s r-=' 15、有两块玻璃薄透镜的两概略均各为凸球面及凹球面,其曲率半径为10cm .一物点在主轴上距镜20cm 处,若物和镜均浸入水中,辨别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两概略均为凸球面的薄透镜: 对两概略均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS2中(CS2的折射率为1.62),其焦距又为多少?解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n == 而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基来源根底理1、眼睛的机关简单地可用一折射球面来暗示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于 1.试计算眼球的两个焦距.用肉眼不雅察月球时月球对眼的张角为01,问视网膜上月球的像有多大? 解:由球面折射成像公式:n n n ns sr''--='令43, 5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜.有人能看清距离在100cm 到300cm 间的物体.试问:⑴此人看远点和近点时,眼y '睛透镜的焦距是多少?⑵为看清25cm 远的物体,需配戴怎样的眼镜?解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -=''对于近点:2211121001.961f f cm-='-'=⑵对于25cm由两光具组互相接触0d =组合整体:110.030cm f -=''(近视度:300o ) 3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离? 解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s sf -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少? 解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜.三个物镜的焦距辨别为16mm 、4mm 和1.9mm ,两个目镜的缩小本领辨别为5和10倍.设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的缩小本领各为多少?解:由显微镜的缩小本领公式:其最大缩小本领: 其最小缩小本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm .不雅察者看到的像在无穷远处.试求物体到物镜的距离和显微镜的缩小本领.解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的缩小本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、(略)8、已知望远镜物镜的边沿即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置. 9、 10、*13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑.求不计透镜中光的吸收时,圆斑的中心照度.解:230S d Id Iφ=Ω= (S 为透镜的面积)P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm .若底片后移1cm ,则像的弥散斑宽度为1mm .试求照相机镜头的F 数. 解:由y s y s''= 1550s '= 得10s cm '= 由透镜物像公式:111s s f -=''由图可见,100.11d =1d cm = F 数:508.336f d '== 15、某种玻璃在靠近钠光的黄色双谱线(其波长辨别为589nm 和589.6nm )邻近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分mm辩钠光双谱线的三棱镜,底边宽度应小于多少? 解:由色分辩本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辩其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级.求出其缝宽、缝数、光栅常数和总宽度.用这块光栅总共能看到600nm 的几条谱线? 解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯= 由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辩相距0.000375mm 的两点,用波长为550nm 的可见光照明.试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点缩小后的视角为2',则显微镜的缩小本领是多少?解:⑴由显微镜物镜的分辩极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m .如将眼睛的瞳孔看成产生衍射的圆孔,试估量视力正常的人在多远处才干分辩出光源是两个灯.设眼睛瞳孔的直径为3mm ,设光源收回的光的波长λ为550nm .解: 1.5U L=当0.610U Rλθ==才干分辩出19、用孔径辨别为20cm 和160cm 的两种望远镜能否分辩清月球上直径为500m 的环形山?(月球与地面的距离为地球半径的60倍,面地球半径约为6370km .)设光源收回的光的波长λ为550nm . 解:63500 1.31060637010U rad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不克不及分辩清 1U θ''>,即用孔径160cm 望远镜能分辩清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辩距离.若人眼能分辩在明视距离处相距26.710mm -⨯的两点,则此显微镜的缩小倍数是多少? 解: 3.144sin sin 4180o n u u u ⨯====第五章 光的偏振1、试确定下面两列光波 的偏振态.解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光2、为了比较两个被自然光照射的概略的亮度,对其中一个概略直接进行不雅察,另一个概略通过两块偏振片来不雅察.两偏振片的透振标的目的的夹角为060.若不雅察到两概略的亮度相同.则两概略实际的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的0010.解:由于被光照射的概略的亮度与其反射的光的光强成正比.设直接不雅察的概略对应的光强为1o I ,通过两偏振片不雅察的概略的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I == 则:120.1ooI I = 3、两个尼科耳N1和N2的夹角为060,在它们之间放置另一个尼科耳N3,让平行的自然光通过这个系统.假设各尼科耳对很是光均无吸收,试问N3和N1的透振标的目的的夹角为何值时,通过系统的光强最大?设入射光强为0I ,求此时所能通过的最大光强. 解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播标的目的旋转(见题5.4图),若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角.求由分界面上反射的光强占入射光1N23N60强的百分比. 解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行份量为:1cos 30o P A A = 入射光垂直份量为:1sin 30o S A A = 由:21sin603sin i =得:230o i = 由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角.两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动标的目的成050角.计算两束透射光的相对强度.解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于概略的方解石波片上,光的振动面和波片的主截面成030角.求:⑴透射出来的寻常光和很是光的相对强度为多少?⑵用钠光入时如要产生090的相位差,波片的厚度应为多少?(589nm λ=) 解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴标的目的切成一块黄光的14波片,问这块石英片应切成多厚?石英的01.552, 1.543,589e n n nm λ===.解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个概略和光轴平行的波片,透射出来后,原来在波片中的寻常光及很是光产生了大小为π的相位差,问波片的厚度为多少?0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才干使透射出来的光是线偏振光,并且它的振动面和入射光的振动面成090的角? 解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动标的目的与晶体主截面成45o 角10、线偏振光垂直入射到一块概略平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和很是光透射出来后的相对强度如何? 解:cos 25o e A A =11、在两正交尼科耳棱镜N1和N2之间垂直拔出一块波片,发明N2后面有光射出,但当N2绕入射光向顺时针转过020后, N2的视场全暗,此时,把波片也绕入射光顺时针转过020,N2的视场又亮了,问:⑴这是什么性质的波片;⑵N2要转过多大角度才干使N2的视场以变成全暗.解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o .只有当波片为半波片时,才干使入射线偏振光出射后仍为线偏振光.⑵把波片也绕入射光顺时针转过020,2N 要转过040才干使2N 后的视场又变成全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态.解:在xy 平面上,圆偏振光的电矢量为:()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射概略上为 ⑴波片为14波片时,2πϕ∆=即透射光为振动标的目的与晶片主截面成45o 角的线偏振光⑵波片为18波片时,4πϕ∆=即透射光为椭圆偏振光.13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光. 解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴标的目的切出,其厚度为0.0343mm,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光(589.3nm )而言,晶体的折射率为1.658, 1.486o e n n ==.问通过第二尼科耳棱镜后,光束产生的干与是加强还是减弱?如果两个尼科耳棱镜的主截面是互相平行的,结果又如何? 解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干与是减弱的. ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干与是加强的. 15、单色光通过一尼科耳镜N1,然后射到杨氏干与实验装置的两个细缝上,问:⑴尼科耳镜N1的主截面与图面应成怎样的角度才干使光屏上的干与图样中的暗条纹为最暗?⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线标的目的继续旋转,问在光屏上的干与图样有何改动?解:⑴尼科耳镜N1的主截面与图面应成90的角度时,光屏。
高等光学教程-第2章参考答案要点
第二章 干涉理论基础和干涉仪2.1用迈克耳逊干涉仪进行精密测长,光源波长为633nm ,其谱线宽度为104-nm ,光电接收元件的灵敏度可达1/10个条纹,问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为l δ,则l δ由探测器接受灵敏度10λδ=N 所决定,N l δδ=2∴ m 032.02μδδ≈=Nl (32nm )一次测长量程M l 由相干长度c l 所决定,c M l l =2∴ m l l c M221212≈∆==λλ2.2 雨过天晴,马路边上的积水上有油膜,太阳光照射过去,当油膜较薄时呈现出彩色,解释为什么油膜较厚时彩色消失。
解答:太阳光是一多色光,相干长度较小。
当油膜较厚时光经上下两界面反射时的光程差超过了入射光的相干长度,因而干涉条纹消失。
2.3计算下列光的相干长度(1)高压汞灯的绿线,546.15nm nm λλ=∆=(2)HeNe 激光器发出的光,6331nm MHz λν=∆=解答:计算相干长度(1) m 6.592μλλ≈∆=c L(2) 300m c cL ν=≈∆2.4在杨氏双缝实验中(1)若以一单色线光源照明,设线光源平行于狭缝,光在通过狭缝以后光强之比为1:2,求产生的干涉条纹可见度。
(2)若以直径为0.1mm 的一段钨丝作为杨氏干涉实验的光源,为使横向相干宽度大于1mm ,双缝必须与灯丝相距多远?设λ=550nm解答:(1) δcos 2220000I I I I I ⋅++= V ∴=(2)由(2-104)式 dbP λ=0 λdP b =∴ 182.0>b M2.5图p2-5所示的杨氏干涉实验中扩展光源宽度为p ,光源波长为5893A ,针孔P 1、P 2大小相同,相距为d ,Z 0=1m , Z 1=1m(1)当两孔P 1、P 2相距d=2mm 时,计算光源的宽度由p =0增大到0.1mm 时观察屏上可见度变化范围。
(2)设p=0.2mm ,Z 0、Z 1不变,改变P 1P 2之间的孔距d ,当可见度第一次为0时 d=? (3)仍设p=0.2mm ,若d=3mm , 01Z m =.求0∑面上z 轴附近的可见度函数。
高等光学教程-第2章参考答案
0.82
d
pd Z 0
Z 0 2.95 mm p
sin
(3)
V
pd Z 0
sin 3.19 4.76 10 3 3.19
2.6
有两束振幅相等的平行光,设它们相干,在原点处这两束光的初相位 10 20 0 , 偏振方向均垂直于 xoy 平面,这两束光的入射方向与 x 轴的夹角大小相等(如图 p2-6 所示) ,对称地斜射在记录面 yoz 上,光波波长为 633 nm 。 (1) 作出 yoz 平面,并在该平面上大致画出干涉条纹的形状,画三条即可。 (2) 当两束光的夹角 10 和 30 时,求 yoz 平面上干涉条纹的间距和空间频率。 (3) 设置于 yoz 平面上记录面感光物质的空间分辨率为 2000 条/mm,若要记录干涉条 纹,问上述相干涉的两束光波波矢方向的夹角 最大不能超过多少度。
第二章 干涉理论基础和干涉仪
2.1 用迈克耳逊干涉仪进行精密测长,光源波长为 633nm,其谱线宽度为 10
4
nm,光电接
收元件的灵敏度可达 1/10 个条纹, 问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为 l ,则 l 由探测器接受灵敏度 N 10 所决定, 2 l N
所以电矢量的振幅以及电能密度的时间平均值沿 z 方向是周期变化的。由(1-81)式,电能 密度的时间平均值
Re( E D * )
1 4
0n2
4
(i ) Re( E E * ) 0 n 2 E 0
2
2 sin 2 2 kz
结果与坐标 z 有关,与坐标 x 、 y 无关。
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 干涉理论基础和干涉仪2.1用迈克耳逊干涉仪进行精密测长,光源波长为633nm ,其谱线宽度为104-nm ,光电接收元件的灵敏度可达1/10个条纹,问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为l δ,则l δ由探测器接受灵敏度10λδ=N 所决定,N l δδ=2∴ m 032.02μδδ≈=Nl (32nm )一次测长量程M l 由相干长度c l 所决定,c M l l =2∴ m l l c M221212≈∆==λλ2.2 雨过天晴,马路边上的积水上有油膜,太阳光照射过去,当油膜较薄时呈现出彩色,解释为什么油膜较厚时彩色消失。
解答:太阳光是一多色光,相干长度较小。
当油膜较厚时光经上下两界面反射时的光程差超过了入射光的相干长度,因而干涉条纹消失。
2.3计算下列光的相干长度(1)高压汞灯的绿线,546.15nm nm λλ=∆=(2)HeNe 激光器发出的光,6331nm MHz λν=∆=解答:计算相干长度(1) m 6.592μλλ≈∆=c L(2) 300m c cL ν=≈∆2.4在杨氏双缝实验中(1)若以一单色线光源照明,设线光源平行于狭缝,光在通过狭缝以后光强之比为1:2,求产生的干涉条纹可见度。
(2)若以直径为0.1mm 的一段钨丝作为杨氏干涉实验的光源,为使横向相干宽度大于1mm ,双缝必须与灯丝相距多远?设λ=550nm解答:(1) δcos 2220000I I I I I ⋅++= V ∴=(2)由(2-104)式 dbP λ=0 λdP b =∴ 182.0>b M2.5图p2-5所示的杨氏干涉实验中扩展光源宽度为p ,光源波长为5893A ,针孔P 1、P 2大小相同,相距为d ,Z 0=1m , Z 1=1m(1)当两孔P 1、P 2相距d=2mm 时,计算光源的宽度由p =0增大到0.1mm 时观察屏上可见度变化范围。
(2)设p=0.2mm ,Z 0、Z 1不变,改变P 1P 2之间的孔距d ,当可见度第一次为0时 d=? (3)仍设p=0.2mm ,若d=3mm , 01Z m =.求0∑面上z 轴附近的可见度函数。
图p2-5解答:(1)由(2-106)式 000sin sin 0.82pd Z pd V c pd Z Z πλπλλ⎛⎫ ⎪⎝⎭==≈(2)由(2-107)式 0 2.95Z d pλ=≈mm (3) 301076.419.319.3sin sin-⨯≈==Z pd Z pd V λπλπ2.6 有两束振幅相等的平行光,设它们相干,在原点处这两束光的初相位02010==δδ,偏振方向均垂直于xoy 平面,这两束光的入射方向与x 轴的夹角大小相等(如图p2-6所示),对称地斜射在记录面yoz 上,光波波长为633nm 。
(1) 作出yoz 平面,并在该平面上大致画出干涉条纹的形状,画三条即可。
(2) 当两束光的夹角 10和 30时,求yoz 平面上干涉条纹的间距和空间频率。
(3) 设置于yoz 平面上记录面感光物质的空间分辨率为2000条/mm ,若要记录干涉条纹,问上述相干涉的两束光波波矢方向的夹角α最大不能超过多少度。
图p2-6-1解答:参考教材(2-31)式,干涉条纹的间距θλsin 2=d(1) 在yoz 平面上干涉条纹的大致形状如图p2-6-2所示。
图p2-6-2(2)两光束夹角0110α=时, 51=θ,110.633m 3.63m 2sin 2sin5d λμμθ==≈ , 111276f d =≈条/mm两光束夹角0230α=时, 215θ=,220.633m 1.22m 2sin 2sin15d λμμθ==≈ , 221820f d =≈条/mm(3) 由120002sin 2mm λα=和633nm λ=计算得到078.5α≈ 2.7如图p2-7所示,三束相干平行光传播方向均与xz 平面平行,与z 轴夹角分别为θ、0、θ-。
光波波长为λ,振幅之比1:2:1::321=A A A 。
设它们的偏振方向均垂直于xz 平面,在原点o 处的初相位0302010===δδδ。
求在0=z 的平面上 (1) 合成振幅分布(2) 光强分布 (3) 条纹间距图p2-7解答:(1)三束光在xoy 平面上的复振幅分布分别为)sin exp(),(2),()sin exp(),(321θθjkx A y x Ay x jkx A y x -===U U U总的复振幅分布[])sin cos(12),(321θkx A y x +=++=U U U U(2)在xoy 平面上光强分布[]222)sin cos(14),(),(θkx A y x y x I +==U(3)条纹间距 θπsin 2k x =∆ 2.8 如图p2-8所示,S 为一单色点光源,P 1、P 2为大小相同的小孔,孔径间距为d ,透镜的半径为a ,焦距为f ,P 1、P 2关于z 轴对称。
(1)若在观察平面∑上看到干涉条纹,条纹的形状和间距如何?(2)当观察屏∑的位置由Z=0开始增大时,求∑面上观察到的条纹横向总宽度,讨论条纹总数与Z 的关系。
图p2-8-1解答:图p2-8-2由P 1P 2点发出的光波经透镜后变成两束平行光,设这两束光与z 轴的夹角大小为θ,两束光重叠区域z 坐标的最大值为0Z 。
当观察屏∑由0=z 开始向右移动时屏上干涉区域的横向宽度为X ∆。
(1) 2/122)4(sin f d d +=θ条纹垂直于纸面,间距2/122)4(2sin 2f d dl +==∆λθλ(2)d af fd aa Z 22tg 0===θ增至0z Z ≥时条纹消失,由0012X Z z a Z ∆-= 当0<z <0Z 时,条纹的总宽度 002()2Z z a dX a z Z f-∆==-条纹总数 22221/222(2)4(4)2d a z X d af dz fN l f d fd f dλλ-∆-===∆++ 2.9 在图P2-9所示的维纳驻波实验中,设光不是垂直入射而是以 45角入射。
对于以下两种情况,求电能密度的时间平均值(1) 入射光的偏振方向垂直于入射面; (2) 入射光的偏振方向平行于入射面;(3) 以上两种情形中那一种会使感光乳胶在曝光、显影后得到明暗相间的条纹。
当图中乳胶膜与镜M 成α角时,求乳胶膜F 上条纹的间距。
图p2-9 维纳驻波实验解答:(1)入射光的偏振方向垂直于入射面时0)(//0=i E ,在入射角45=θ时由(2-41)式给出 0222exp 22sin 20)(0=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛-==⊥z i y x E kx t j kz E E E πω所以电矢量的振幅以及电能密度的时间平均值沿z 方向是周期变化的。
由(1-81)式,电能密度的时间平均值⎪⎪⎭⎫⎝⎛=⋅=⋅=⊥kz E n n i 22sin )Re(4)Re(4122)(020*20*εεωE E D E结果与坐标z 有关,与坐标x 、y 无关。
(2)入射光的偏振方向平行于入射面时,0)(0=⊥i E ,在入射角45=θ时,由(2-41)式给出⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛=kx t j kz E E E kx t j kz E E i z y i x 22exp 22cos 20222exp 22sin 2)(//0)(//0ωπω由(1-81)式电能密度的时间平均值2)(//020**20*20*2)(4)Re(4)Re(41i z z x x E n E E E E n n εεεω=+=⋅=⋅=E E D E经时间平均后电能密度与z 无关。
(3)比较以上结果,当入射光的偏振方向平行于入射面时,ω与z 无关因而感光乳胶在曝光、显影后变黑是均匀的。
当入射光的偏振方向垂直于入射面时,ω与z 有关,与x 、y 无关,在照像底片上能够得到明暗相间的条纹。
干涉条纹的间距 λθλ22sin 2==d考虑到乳胶膜与镜M 成α角,在乳胶膜上得到的条纹的间距αλαsin 22sin ==d D2.10 在杨氏实验中光源为一双谱线点光源,发出波长为1λ和2λ的光,光强均为I 0,双孔距离为d ,孔所在的屏与观察屏的距离为D ,求: (1)观察屏上条纹的可见度函数。
(2)在可见度变化的一个周期中干涉条纹变化的次数。
(3)设1λ=5890A ,2λ=5896A ,d=2mm,D=50cm,求条纹第一次取极小值及可见度函数第一次为0时在观察屏上的位置。
解答:(1)⎪⎪⎭⎫ ⎝⎛+=x D d I x I 1012cos 12)(λπ , ⎪⎪⎭⎫⎝⎛+=x D d I x I 2022cos 12)(λπ ∴ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∆+=+=x D d k x D d k I x I x I x I cos cos 14)()()(021其中 112λπ=k , 222λπ=k图p2.10212k k k +≈以及21k k k -=∆,)(x I 表达式中有一个函数⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∆x D d k x D d k cos cos ,它是周期函数⎪⎭⎫ ⎝⎛D kdx cos 被一个⎪⎭⎫⎝⎛∆x Dkdcos 的振幅包络所调制的结果(见图P2-10), 条纹的可见度 ⎪⎭⎫ ⎝⎛∆=x D d k x V cos )((2)可见度变化周期 d Dk D d k l T ∆=∆=ππ条纹间距为 d Dk Dd k l ππ22==∆ 在可见度变化的一个周期中明暗的变化次数为N ,则有λλππ∆=∆=∆=∆=222)(k k kdD kd Dlx l N T 式中 12λλλ-= (N2λλ=∆)(3)由2π=∆x D d k,得 23.482≅∆=kd Dx πmm (可见度函数第一次为0)由2π=x D d k,得 492Dx m dkπμ=≅ (条纹第一次消失)2.11 光源的光谱分布规律如图p2-11所示,图中以波数k 作为横轴,波数的中心值为0k 在光谱宽度k ∆范围内F(k )不变,将从光源来的光分成强度相等的两束,设这两束光再度 相遇时的偏振方向相同,光程差为S ∆,试求:(1)两光束干涉后所得光强的表达式I(S ∆) (2)干涉条纹的对比度V()S ∆(3)对比度V 的第一个零点所对应的S ∆=?图p2-11解答:两束光的每一束在dk 范围内光的强度为kdkI I I ∆==2021 , S k ∆=δ (1) )cos 1(22cos 2)(02121S k kdkI I I I I x dI ∆+∆=++=δ∴ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎪⎭⎫⎝⎛∆∆+=∆+∆=⎰∆+∆-S k S k S k I S k k dk I x I k k k k 00220cos 22sin 1)cos 1()(00 (2)可见度 0k k <<∆ sin 2()2k S V k S ∆∆⎛⎫ ⎪⎝⎭∴∆=∆∆(3)第一个零点处0)2sin(=∆∆k ,由这一关系式得到λλ∆=∆2||S2.12 如图p2-12所示,一辐射波长范围为λ∆、中心波长为λ的准单色点光源S 置于z 轴上,与透镜L a 相距a f (a f 为L a 的焦距)在与z 轴相垂直的屏∑0上有两个长狭缝S 1、S 2,它们垂直于纸面对称放置,透镜L b 紧靠在∑0在L b 的后焦∑面上观察干涉条纹,当X 由0增大时求条纹第一个零点所对应的X 值。