材料成形技术基础答案_第2版_施江澜_赵占西主编
材料成形技术基础答案_第2版_施江澜_赵占西主编
材料成形技术基础答案_第2版_施江澜_赵占西主编材料成形技术基础答案_第2版_施江澜_赵占西主编第一章金属液体成型1。
液态合金的填充能力是多少?它与合金的流动性有什么关系?为什么不同化学成分的合金有不同的流动性?为什么铸钢的填充能力比铸铁差?①液态合金的填充能力是指液态合金填充型腔并获得轮廓清晰、形状完整的高质量铸件的能力②流动性好,合金熔体充型能力强,容易获得尺寸准确、外观完整的铸件如果流动性不好,填充能力差,铸件容易出现冷隔、气孔等缺陷。
不同成分的③合金具有不同的结晶特征。
共晶合金的流动性最好,其次是纯金属,最后是固溶体合金④与铸钢相比,铸铁更接近共晶成分,结晶温度范围更小,流动性更好。
2.既然提高浇注温度可以提高液态合金的填充能力,为什么要防止浇注温度过高呢?铸造温度过高()会增加合金的收缩率,增加空气吸力,并导致严重氧化。
相反,铸件容易出现缺陷,如缩孔、缩松、粘砂、夹杂物等。
3。
缩孔和气孔的存在会减小铸件的有效承载面积,并引起应力集中,导致铸件的力学性能下降。
缩孔大且集中,容易发现。
它可以通过特定的工艺从铸件主体上移除。
缩孔较小且分散,多多少少存在于铸件中。
对于普通铸件来说,它通常不被视为缺陷,只有当铸件具有高气密性时,才可以防止它液态合金填充型腔后,如果在冷却和凝固过程中液态收缩和凝固收缩的量没有得到补充,在铸件的最终凝固部分将形成一些型腔。
大而集中的空洞变成了缩孔,而小而分散的空洞被称为缩孔的不足之处是砂类充填不充分。
冷绝缘是指在施加一定的力之后,铸造工件出现裂纹或断裂,并且氧化物夹杂出现在断裂表面或没有熔合在一起。
出风口的作用是在铸造过程中排出型腔内的气体,防止铸件产生气孔,便于观察铸件情况。
冒口是附加在铸件顶部或侧面的辅助部件,以避免铸造缺陷。
在分步凝固过程中,其横截面上的固相和液相被边界线清楚地分开。
在定向凝固中,熔融合金根据所需的晶体取向在与热流相反的方向上凝固。
5。
定向凝固的原理是将冒口放置在铸件可能出现缩孔的厚而大的部分,同时采用其他技术措施,从铸件远离冒口的部分到冒口建立逐渐增加的温度梯度,从而实现从远离冒口的部分如冒口方向的顺序凝固。
材料成型工艺基础第二版课后答案
材料成型工艺基础第二版课后答案【篇一:《材料成型工艺基础》部分习题答案】class=txt>第一章⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:①合金的流动性是指合金本身在液态下的流动能力。
决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。
②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。
⑷.何谓合金的收縮?影响合金收縮的因素有哪些?答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。
②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。
⑹.何谓同时凝固原则和定向凝固原则?答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。
②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
第二章⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。
答:石墨在灰铸铁中以片状形式存在,易引起应力集中。
石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。
灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。
石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。
⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:①主要因素:化学成分和冷却速度。
②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。
在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。
⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?答:①经孕育处理后的灰铸铁称为孕育铸铁。
材料成形技术基础习题集答案要点
作业2 铸造工艺基础专业_________班级________学号_______姓名___________2-1 判断题(正确的画O,错误的画×)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。
提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。
因此,浇注温度越高越好。
(×)2.合金收缩经历三个阶段。
其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。
(O)3.结晶温度范围的大小对合金结晶过程有重要影响。
铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。
(O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。
(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。
所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。
(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。
共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。
因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。
(×)7.气孔是气体在铸件内形成的孔洞。
气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。
(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。
(O)2-2 选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。
A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。
2.顺序凝固和同时凝固均有各自的优缺点。
材料成形技术基础第2版
2 影响因素
探索影响塑性变形的因素,如温度、变形速率和材料的性质。
材料成形工艺
1
基本流程
了解成形工艺的基本流程,包括原料准备、成型、加工和表面处理。
2
常见的方法
探索一些常见的成形工艺方法,如压力成形、拉伸成形和挤工艺,如注塑成形和铸造等方法。
3
自动化和人工智能
了解自动化和人工智能在材料成形技术中的应用,如机器学习和智能控制系统。
材料成形工艺的应用
工业中的应用
发现材料成形技术在工业生产线中的广泛应用, 如汽车制造和航空工程等。
日常生活中的应用
了解材料成形技术在我们日常生活中的应用,如 家居用品和电子产品等。
材料成形技术的发展趋势
1
国内外技术
探索国内外材料成形技术的最新发展,如数字化制造和新材料的应用。
2
绿色成形
了解绿色成形技术的兴起,包括可持续发展和环境友好的制造方法。
材料成形技术基础第2版
欢迎来到材料成形技术基础第2版的介绍。本课程将涵盖材料成形技术的概述、 塑性变形、成形工艺、应用和发展趋势。
材料成形技术概述
1 定义
2 分类
探索材料成形技术的定义,了解其在制造 过程中的重要性。
学习材料成形技术的不同分类,从热成形 到冷挤压等多种方法。
材料的塑性变形
1 基本概念
材料成形技术基础(问答题答案整理)
第二章铸造成形问答题:1.合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法:(1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质;(2)铸型性质:较小铸型与金属液的温差;(3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统;(4)铸件结构:改进不合理的浇注结构。
2.影响合金收缩的因素有哪些?答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力)3.分别说出铸造应力有哪几类?答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同)(2)相变应力(固态相变、比容变化)(3)机械阻碍应力4.铸件成分偏析分为几类?产生的原因是什么?答:铸件成分偏析的分类:(1)微观偏析晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。
(因为不平衡结晶)晶界偏析:(原因:①两个晶粒相对生长,相互接近、相遇;②晶界位置与晶粒生长方向平行。
)(2)宏观偏析正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度)逆偏析产生偏析的原因:结晶速度大于溶质扩散的速度5.铸件气孔有哪几种?答:侵入气孔、析出气孔、反应气孔6.如何区分铸件裂纹的性质(热裂纹和冷裂纹)?答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。
七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。
(ΣF内<ΣF横<F直下端<F直上端)开放式浇注系统:从浇口杯底孔到内浇道的截面逐渐加大,阻流截面在直浇道上口的浇注系统。
(ΣF内>ΣF横>F直下端>F直上端)8.浇注位置和分型面选择的基本原则有哪些?答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷)(2)铸件的宽大平面朝下或倾斜浇注;(3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。
材料成形技术基础课程试题答案及评分标准
材料成形技术基础课程试题答案及评分标准第一篇:材料成形技术基础课程试题答案及评分标准一、判断题(每题1分,共20分。
正确的打√,错误的打×)1.淬火的主要目的是为了提高钢的硬度,因此,淬火钢就可以不经回火而直接使用。
(×)2.钢中的含碳量对钢的力学性能具有重要的影响,40钢与45钢相比,后者的强度和硬度高,而塑性较差。
(√)3.浇注温度是影响铸造合金充型能力和铸件质量的重要因素,提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件,因此,浇注温度越高越好。
(×)4.气孔是气体在铸件中形成的孔洞。
气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。
(√)5.灰口铸铁组织中由于存在着大量片状石墨,因而抗拉强度和塑性远低于铸钢。
但是片状石墨的存在,对灰口铸铁的抗压强度影响很少,所以灰口铸铁适合于生产承受压应力的铸件。
(√)6.铸造生产的显著特点是适合于制造形状复杂,特别是具有复杂内腔的铸件。
(√)7.为了避免缩孔、缩松或热应力、裂纹的产生,铸件壁厚应该尽可能均匀,所以设计零件外壁和内壁,外壁和筋,其厚度应该相等。
(×)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它增加了造型的复杂程度,并耗费了许多金属液体,同时增大了铸件产生变形和裂纹的倾向。
(√)9.芯头是砂芯的一个组成部分,它不仅能使砂芯定位、排气,还能形成铸件内腔。
(×)10.浇注位置选择原则之一是将铸件的大平面朝下,主要目的是防止产生缩孔缺陷(×)11.分型面是为起模或取出铸件而设置的,砂型铸造、熔模铸造和金属型铸造所用的铸型都有分型面。
(×)12.压力加工是利用金属产生塑性变形获得零件或毛坯的一种方法。
在塑性变形的过程中,理论上认为金属只产生形状的变化而其体积是不变的。
(√)13.板料弯曲时,弯曲后两边所夹的角度越小,则弯曲部分的变形程度越大。
(×)14.板料冲压落料工序中的凸凹模间隙是影响冲压件剪断面质量的关键。
材料成形技术基础(第二版)知识点总结
合金的收缩三个阶段:液态收缩、凝固收缩、固态收缩定向(顺序)凝固:在可能出现缩孔的厚大部位安放冒口,并同时采取其他措施,先使铸件上远离冒口或浇注部位凝固,然后使靠近冒口部位凝固,最后冒口本身凝固。
使先凝固的收缩量由后凝固的液体补充,最后将缩孔转移至冒口中。
措施:合理安放冒口;在该厚大部位设置冷铁,以加快其冷却速度,使其最先凝固,以实现自下而上的顺序凝固。
同时凝固的原则:(1)减小铸件各部分间的温度差,使其均匀冷却。
(2)改善铸型和型芯的退让行;(3)去应力退火浇注位置的选择:1铸件上重要加工面或质量要求高的面或大平面,尽可能置于铸型的下部或处于侧立位置。
(防气孔、砂眼、夹渣、拱起或开裂等缺陷)3面积较大的薄壁部分置于铸型下部或使其垂直或倾斜。
(免浇不足和冷隔)4厚大部分置于铸型的顶部或侧面。
(补缩)5尽量减少型芯数量,且便于安放、固定分型面的选择:1选择分型面应考虑方便起模和简化造型:应选在最大截面处,尽量平直,尽可能减少分型面数目、活块数目和型芯的数目。
2尽可能将铸件的重要加工面或大部分加工面与加工基准面放在同一砂箱内,以保证其精度。
3应便于下芯、扣箱(合型)及检查型腔尺寸等操作,尽量使型腔和主要型芯位于下箱。
铸造工艺参数的确定:机械加工余量和最小铸出孔槽、起模斜度、收缩率、型芯及芯头铸件结构工艺过程简化:1外形结构力求简单(避免外侧侧凹,减少分型面;使铸件分型面平直,避免圆角;加强肋、凸台的设计应便于起模;侧壁应具有斜度)2铸件的内腔结构应简单实用,避免不必要的复杂结构(应尽量少用或不用型芯;应便于型芯的固定、排气、定位和清理)熔模铸造:制造蜡模、制造型壳、脱蜡、型壳焙烧、浇注、脱壳清理金属型铸造:1铸型排气(型腔上设排气孔、通气塞,分型面开通气槽)2铸型涂料(金属性与高温金属液接触面喷刷耐火涂料)3铸型预热压力铸造:不能进行热处理离心铸造:不用铸芯即可铸出中空回旋铸件、铸件组织致密、充型能力强、便于制造双金属铸件实型铸造:无分型面,无需起模,无分型面,无型芯;铸件尺寸精度高金属塑性:塑性和变形抗力综合衡量塑性变形规律:最小阻力定律,加工硬化,体积不变定律自由锻:(是大型锻件的唯一加工方法,锻件形状简单精度低)镦粗、拔长、冲孔、弯曲、扭转、错移、切割绘制锻件图因素:敷料、锻件余量、锻件公差自由锻件的结构工艺性:尽量避免锥体或斜面结构、避免交接处形成空间曲线、避免加强筋、凸台、工字形、椭圆形或其他非规则截面及外形、合理采用组合结构模膛:制坯模膛(拔长、滚挤、弯曲),模锻模膛(预锻、终锻)绘制模锻件图:1分模面(顺利取出锻件,通常选最大截面。
材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载
第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?1 液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
2 流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
3 成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
4 相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
《材料成形技术基础》习题集 答案(37页).doc
作业1金属材料技术基础1-1判断题(正确的画0,错误的MX)1.纯铁在升温过程屮,912°C时发生同素异构转变,由体心立方晶格的-Fe转变为面心立方晶格的K-Feo这种转变也是结晶过程,同样遵循晶核形成和晶核长大的结晶规律。
(0 )2.奥氏体是碳溶解在y-Fe屮所形成的同溶体,具有瓯心立方结构,而铁素体是碳溶解在a-Fe屮所形成的固溶体,具有体心立方结构。
(O )3•钢和生铁都是铁碳合金。
其屮,碳的质量分数(又称含碳量)小于0.77%的叫钢,碳的质量分数大于2.11%的叫生铁。
(X )4.珠光体是铁索体和渗碳体的机械混合物,珠光体的力学性能介于铁素体和渗碳体Z间。
(O)5•钢中的碳的质量分数对钢的性能有重要的影响。
40与45钢相比,后者的强度高,硬度也高,但后者的劇性差。
(O )6.为了改善低碳钢的切削加T性能,可以用正火代替退火,因为正火比退火周期短,正火后比退火后的硬度低,便于进行切削加工。
(X )7.淬火的主要目的是为了提高钢的硬度。
因此,淬火钢就可以不经I叫火而直接使用。
(X )8.铁碳合金的基本组织包括铁素体(F)、奥氏体(A)、珠光体(P)、渗碳体(F®C)、马氏体(M)、索氏体(S)等。
(X )1-2选择题1.铁碳合金状态图中的合金在冷却过程中发生的(F )是共析转变,(B )是共晶转变。
A.液体屮结晶出奥氏体;B.液体屮结晶出莱氏体;C.液体屮结晶出一次渗碳体;D.奥氏体屮析出二次渗碳体;E.奥氏体屮析出铁索体;F.奥氏体转变为珠光体。
2.下列牌号的钢材经过退火后具有平衡组织。
其屮,(C )的%最高,(D )的HBS最高,(A )的5和心最高。
在它们的组织中,(A )的铁素体最多,(C )的珠光体最多,(D )的二次渗碳体最多。
A.25;B. 45;C. T8;D. T12。
3.纯铁分别按图作1・1所示不同的冷却曲线冷却。
其中,沿(D )冷却,过冷度最小;沿(D )冷却,结晶速度最慢;沿(A )冷却,晶粒最细小。
工程材料及成形技术基础课课后习题参考答案
工程材料及成形技术基础课课后习题参考答案第一章:1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。
力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。
1-3 σs、σ0.2和σb含义是什么?什么叫比强度?什么叫比刚度?答:σs-P s∕F0,屈服强度,用于塑性材料。
σ0.2-P0.2∕F0,产生0.2%残余塑性变形时的条件屈服强度,用于无明显屈服现象的材料。
σb-P b∕F0,抗拉强度,材料抵抗均匀塑性变形的最大应力值。
比强度-材料的强度与其密度之比。
比刚度-材料的弹性模量与其密度之比。
思考1-1、1-2.2-3 晶体的缺陷有哪些?可导致哪些强化?答:晶体的缺陷有:⑴点缺陷——空位、间隙原子和置换原子,是导致固溶强化的主要原因。
⑵线缺陷——位错,是导致加工硬化的主要原因。
⑶面缺陷——晶界,是细晶强化的主要原因。
2-5 控制液体结晶时晶粒大小的方法有哪些?答:见P101.3.4.2液态金属结晶时的细晶方法。
⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。
2-8 在铁-碳合金中主要的相是哪几个?可能产生的平衡组织有哪几种?它们的性能有什么特点?答:在铁-碳合金中固态下主要的相有奥氏体、铁素体和渗碳体。
可能产生的室温平衡组织有铁素体加少量的三次渗碳体(工业纯铁),强度低塑性好;铁素体加珠光体(亚共析钢),珠光体(共析钢),珠光体加二次渗碳体(过共析钢),综合性能好;莱氏体加珠光体加二次渗碳体(亚共晶白口铸铁),莱氏体(共晶白口铸铁),莱氏体加一次渗碳体(过共晶白口铸铁),硬度高脆性大。
材料成形技术基础习题集答案
作业2铸造工艺基础专业班级学号姓名2-1判断题(正确的画O,错误的画X)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。
提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。
因此,浇注温度越高越好。
(X2.合金收缩经历三个阶段。
其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。
(O3.结晶温度范围的大小对合金结晶过程有重要影响。
铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。
(O4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。
(O5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。
所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。
(X6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。
共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。
因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。
(X)7.气孔是气体在铸件内形成的孔洞。
气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。
(O8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。
(O2-2选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D )。
A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D. A、B和C;E. A和C。
2.顺序凝固和同时凝固均有各自的优缺点。
为保证铸件质量,通常顺序凝固适合于(D ),而同时凝固适合于(B )。
A.吸气倾向大的铸造合金;B.产生变形和裂纹倾向大的铸造合金;C.流动性差的铸造合金;D.产生缩孔倾向大的铸造合金。
材料成形技术基础答案_第2版_施江澜_赵占西主编
第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
定向凝固主要用于体收缩大的合金,如铸钢、球墨铸铁等。
同时凝固适用于凝固收缩小的合金,以及壁厚均匀、合金结晶温度范围广,但对致密性要求不高的铸件。
6. 不均匀冷却使铸件的缓冷处受拉,快冷处受压。
零件向下弯曲。
8 手工造型,机器造型各有哪些优缺点?适用条件是什么?9分模造型,挖沙造型,活块造型,三箱造型各适用于那种情况?10.什么是铸件的结构斜度?它与起模斜度有何不同?图示应该怎样改铸件的结构斜度指的是与分型面垂直的非加工面的结构斜度,以便于起模和提高铸件精度。
结构斜度是零件原始设计的结构;拔模斜度是为了造型拔模(起模)方便,而在铸件上设计的斜度。
无法起模,结构可改为下图所示;1.12 无法起模,可将凸台延伸至分型面1.13 结构圆角可减少热节,缓解应力集中。
分型面的圆角不合理,应该为直角。
1.14 如图所示两个设计方案,分析哪个方案的结构工艺好,简述理由a 方案存在较大的水平面,不利于浇铸,左上角的结构距离太近,不利于铸造。
b 方案有较好的结构斜度,利于浇铸,但存在锐角连接,可能会产生热节等缺陷,但其方向不影响液体流动。
综合比较,b较好1.15 某场生产的支腿铸铁件不仅机械加工困难,而且在使用中曾发生多次断腿事故,试分析原因,并重新设计腿部结构加工困难是因为外形结构存在凹面,起模困难,断腿是因为直角连接处存在应力集中。
可将直角改为圆角,适当增加壁厚。
根据结构需要,可将内凹弧面改为平面或者其他利于铸造的结构。
1.16a : 铸造需要型芯。
可改为工字型结构b : 铸造时,型芯无法固定。
开设工艺孔,增加型芯头。
c : 结构过于复杂。
可将口开成与内壁宽度相同,平滑连接,减少型芯数量。
圆弧外的凸起,无法起模,可以将分型面转换到与凸起物垂直的面上。
d :缺少圆角,且中间部分太厚,容易产生缩孔等缺陷。
过渡处倒圆角,尤其是半径转换的地方。
在不改变结构的情况下,可以从底部加一块型芯,既可以避免过厚,又可以减少重量。
1.18 熔模铸造又称失蜡铸造,是利用蜡来制作外壳,形成模具,浇铸成型的铸造方法。
①制造蜡模,将糊状蜡料压入金属模具,冷凝后取出。
②制造型壳,在蜡模组表面涂上涂料,然后硬化,重复多次,形成耐火坚硬型壳。
③脱蜡,将蜡模浸入热水中,融化蜡料④型壳焙烧,将型壳放入800-950度加热炉中保温,去除残余蜡和水分⑤浇注,趁热浇入合金液,凝固冷却。
⑥脱壳和清理,人工或机械去除型壳,切除冒口。
1.19 金属型制造有和优越性?为什么金属型铸造未能广泛取代砂型铸造。
①有较高的尺寸精度和较小的表面粗糙度,机械加工余量小。
②导热性好,冷却速度快,铸件的晶粒细小,力学性能好。
③可实现一型多铸,提高劳动生产率,节约造型材料,减轻环境污染。
金属型因不透气且无退让性,铸件容易产生冷隔冷缺陷,加上金属型无溃散性,因此不宜铸造形状复杂、薄壁、大型铸件。
制造成本高,周期长,不宜单件小批生产,受金属型材料熔点的限制,不宜生产高熔点合金铸件。
而砂型铸造尽管精度低,但适用范围广,成本低,因此金属型不能取而代之。
1.22 离心铸造时将熔融金属浇入旋转的铸型中,在离心力的作用下充填铸型并凝固成形的一种铸造方法。
不用型芯即可铸造出圆筒件,省去了浇铸系统的冒口;金属由表向内定向凝固,改善了补缩条件;离心力的作用提高了金属液的充型能力;便于制造双金属铸件。
1.261.28 可锻铸铁的碳、硅含量低,流动性差,而且冷却速度快,故适宜铸造薄壁小型铸件,铸造厚壁大铸件,可能会产生浇不到等缺陷。
1.29 不正确,不同壁厚的灰铸铁的力学性能不一样,壁厚为5mm的抗拉强度σb≥175mpa, 满足条件,而其余的两个不满足。
31下列在大批量生产时铸件采用什么铸造方法为宜?大口径铸铁污水管缝纫机头车床床身铝活塞摩托车汽缸体气轮机叶片气缸套汽车喇叭大口径铸铁污水管:离心铸造缝纫机头:砂型铸造车床床身:砂型铸造铝活塞:金属型铸造摩托车汽缸体:压力铸造气轮机叶片:熔模铸造气缸套:离心铸造汽车喇叭:压力铸造第二章金属塑性成形2-1 什么是最小阻力定律?为什么闭式滚挤或拔长模膛可以提高滚挤或拔长效率?答:最小阻力定律是指金属在塑性变形过程中,如果金属质点有向几个方向移动的可能时,则金属各质点将向阻力最小的方向移动。
因为闭式的模膛使得材料发生塑性变形时,朝着填满型腔方向的阻力唯一最小(开式的可能朝几个方向的阻力都最小),因此效率要相对高一些。
2-2 纤维组织是怎样形成的?它的存在有何利弊?答:金属铸锭组织中存在着偏析夹渣物、第二相等,在热塑性变形时,随金属晶粒的变形方向或延伸呈条状、线状或破碎呈链状分布,金属再结晶后也不会改变,仍然保留下来,呈宏观“流线”状。
纤维组织使得金属的力学性能呈现出方向性,沿着纤维方向抗拉抗压强度增大,垂直于纤维方向的抗拉抗压强度减弱。
2-3 何为“过热”?何为“过烧”?它们分别会对锻件产生什么影响?答:金属塑性成形过程中,如果加热温度过高,导致金属的晶粒急剧增大,这种现象称为“过热”;如果温度过高接近熔点时,晶界发生氧化或者局部融化的现象称为“过烧”。
过热会导致金属塑性减小,塑性成形能力下降;过烧会导致金属的塑性变形能力完全消失。
2-4 判断以下说法是否正确?为什么?(1)金属的塑性越好,变形抗力越大,金属可锻性越好。
错误;塑性越好,变形抗力越小,可锻性越好。
(2)为了提高钢材的塑性变形能力,可以采用降低变形速度或在三相压应力下变形等工艺。
错误;当变形速度低于临界值时,降低变形速度可以提高材料塑性变形能力,但当变形速度高于临界值时,降低变形速度降低了材料的塑性变形能力。
(3)为了消除锻件中的纤维组织,可以采用热处理的方式实现。
错误;只能通过塑性变形改变纤维的方向和分布。
2-5 求将75mm长的圆钢拔长到165mm的锻造比,以及将直径50mm、高120mm的圆钢锻到60mm高的锻造比。
能将直径为50mm、高180mm的圆钢镦粗到60mm高吗?为什么?答:s0H0=s1H1Y锻=s0/s1=H1/H0=165/75=2.2;Y锻=120/60=2;不能,因为整体镦粗用圆形截面坯料的高度和直径比不大于2.5~3,此处的高径比为3.6。
2-7许多重要的工件为什么要在锻造过程中安排镦粗工序?镦粗可以提高后续拔长工序的锻造比,提高横向力学性能和减少异向性。
2-8 带头部的轴类零件,在单件小批量生产条件下,若法兰头直径D较小,杆长L较大时,应如何锻造?D较大,L较小时,又应如何锻造?答:自由锻。
D较小,L较大时,先将棒料拔长,然后局部镦粗,锻出头部;D较大,L较小时,先镦粗,然后锻轴杆。
2-9图示锻件在单间小批量生产时,结构是否适于自由锻,不当之处请修改?答:a)不适合,结构复杂且有肋板;b)不适合,有圆柱面与平面相交形成空间曲线,修改见图2-15(b);c)不适合,有梯型槽,去除梯型槽后可用于自由锻。
2-11 模锻时,如何合理确定分模面的位置?答:1、首先保证模锻件能从模膛中顺利取出2、分模面尽量选在能使模膛深度最浅的位置3、尽量使上下两模沿分模面的模膛轮廓一致4、尽量采用平面,并使上下模膛深度基本一致5、是模锻件上的敷料最少,锻件形状尽可能与零件形状一致。
2-12 模锻与自由锻有何区别?答:1、模锻需要模具及锻压设备,投资较大,生产效率高,适合批量生产。
自由锻设备简单,但是生产效率低,适合单件小批量生产2、模锻能锻造形状复杂的锻件,尺寸较为精确,并可使金属流线分布更为合理,力学性能较高。
减少切削加工工作量。
自由锻尺寸精度低,加工余量大,耗材多3、模锻操作简单、劳动强度低。
对工人技术水平要求不高,易于实现机制化、自动化。
自由锻劳动强度大,对工人技术水平要求较高2-14 修改见书图2-352-15 分模面均为对称面2-17 间隙对冲裁件断面质量有何影响?间隙过大或过小会对冲裁产生什么影响?答:凸凹模间隙会严重影响冲裁件的断口质量,间隙合适时,板料内形成的上、下裂纹重合一线,断裂带和毛刺均较小;间隙过大时,板料中拉应力增大,裂纹提前形成,板料内形成的上下裂纹向内错开,断口断裂带和毛刺均较大;间隙过小时,凸凹模受到板料的挤压作用大,摩擦加大,板料内形成的上、下裂纹向外错开,断口形成二节光面,在两节光面间夹有裂纹。
除此之外,凸凹模间隙还影响模具守门、冲裁力和冲裁件尺寸精度。
2-18 a)孔径过大,孔壁过薄,不易冲裁,增大壁厚,减小孔径b)将直角部分改为圆角,壁厚增大c)弯曲半径小于最小弯曲半径,应减小壁厚d)底边过短,不易弯曲,将底边改为20mm e)将凸台部分延长与基体相同,另外在过渡部分倒圆角f)增大冲孔部位与侧壁的距离,将R4增大。