高中数学《函数的单调性》优秀教案

合集下载

高中数学函数单调性教案

高中数学函数单调性教案

高中数学函数单调性教案
一、教学目标:
1.了解函数的单调性概念;
2.掌握函数单调递增和单调递减的定义;
3.能够根据函数图像确定函数的单调性;
4.能够应用函数的单调性解决实际问题。

二、教学重点:
1.函数的单调性定义;
2.函数单调递增和单调递减的判定方法;
3.函数单调性在实际问题中的应用。

三、教学难点:
1.理解函数的单调性概念;
2.根据函数图像确定函数的单调性。

四、教学准备:
1.教师准备:课件、黑板、粉笔等;
2.学生准备:课本、笔记、习题册等。

五、教学步骤:
1.引入:教师通过举例子引入函数的单调性概念,并与学生讨论函数单调递增和单调递减
的定义。

2.讲解:教师详细讲解函数单调递增和单调递减的判定方法,包括导数的应用。

3.练习:教师让学生进行练习,通过观察函数图像判断函数的单调性,并完成相关计算题。

4.拓展:教师引导学生探讨函数单调性在实际问题中的应用,并展示相关案例。

5.归纳:教师与学生一起总结本节课的内容,强化理解和记忆。

6.作业:布置相关习题作为课后作业,以巩固学生的学习成果。

六、教学反馈:
1.教师及时回答学生提出的疑问;
2.对学生的作业进行批改,并及时反馈;
3.鼓励学生积极参与课堂讨论,提高学生的学习兴趣和主动性。

函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。

在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。

本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。

二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。

2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。

3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。

4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。

三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。

当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。

2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。

当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。

四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。

解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。

2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。

3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。

二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。

2. 学会利用导数、图像以及定义法判断函数的单调性。

3. 能够运用单调性解决实际问题,提高解决问题的能力。

三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。

2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩笔、函数图像绘制工具。

五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。

例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。

(2)利用图像:引导学生观察函数图像,判断函数的单调性。

(3)利用定义法:讲解如何利用定义法判断函数的单调性。

4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。

5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。

六、板书设计1. 函数单调性的定义。

2. 单调性的判断方法:导数法、图像法、定义法。

3. 单调性在实际问题中的应用。

七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。

求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。

举例说明函数单调性的两种类型:单调递增和单调递减。

1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。

通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。

第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。

引导学生学会识别函数图像中的单调区间。

2.2 导数法介绍导数与函数单调性的关系。

教授如何利用导数的正负来判断函数的单调性。

第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。

通过例题让学生掌握求解极值的方法。

3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。

通过例题让学生理解最值的求解过程。

第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。

通过例题展示导数在单调区间判断中的应用。

4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。

通过实际例子让学生学会如何运用单调性解决实际问题。

第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。

引导学生学会如何运用所学知识来解决问题。

5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。

提供一些拓展问题,激发学生的学习兴趣和思考能力。

第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。

通过例题展示函数单调性在其他数学领域的应用。

6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。

通过实际例子让学生学会如何运用函数单调性来解决优化问题。

高中数学函数的单调性教学设计

高中数学函数的单调性教学设计

高中数学函数的单调性教学设计一、教学任务及对象1、教学任务本节课的教学任务是围绕高中数学中函数的单调性展开,使学生能够理解并掌握函数单调性的概念、判定方法及其在实际问题中的应用。

具体包括:单调性的定义、单调递增和单调递减的判定、单调区间的确定,以及单调性在函数图像绘制、最值求解和不等式证明等方面的应用。

2、教学对象教学对象为高中二年级的学生,他们在之前的学习中已经掌握了函数的基本概念、图像及其基本性质,具备了一定的数学思维能力和逻辑推理能力。

在此基础上,通过本节课的学习,学生将进一步完善对函数性质的认识,为后续学习导数、极限等概念打下坚实基础。

二、教学目标1、知识与技能(1)理解函数单调性的定义,能够准确区分单调递增和单调递减的函数。

(2)掌握利用定义法、图像法和符号法判断函数单调性的方法,并能够熟练运用。

(3)学会求解函数的单调区间,并能将其应用于实际问题中。

(4)掌握单调性在求解函数最值、证明不等式等中的应用,提高解题能力。

2、过程与方法(1)通过分析实例,引导学生自主探究函数单调性的概念,培养学生的观察力和思考能力。

(2)运用数形结合的方法,使学生能够将抽象的数学概念与具体的图像相结合,提高直观想象能力。

(3)通过小组合作、讨论交流,培养学生合作解决问题的能力,拓展解题思路。

(4)设计具有梯度的问题,引导学生由浅入深地掌握函数单调性的相关知识,提高学生的逻辑推理能力。

3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养积极主动探究数学问题的态度。

(2)通过解决实际问题,使学生认识到数学知识在实际生活中的应用价值,增强学生的社会责任感。

(3)引导学生树立正确的价值观,认识到数学学习不仅仅是追求分数,更重要的是培养思维能力和解决问题的能力。

(4)鼓励学生勇于面对困难和挑战,培养坚持不懈、克服困难的意志品质。

(5)在小组合作过程中,培养学生相互尊重、团结协作的精神,提高人际沟通能力。

三、教学策略1、以退为进在本节课的教学中,采用“以退为进”的策略,即在教学过程中有意识地从已知的简单概念或问题出发,逐步引导学生深入探讨,从而掌握更复杂的概念。

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。

函数的单调性优秀教案

函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。

掌握函数单调性的证明方法,能运用定义证明函数的单调性。

2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。

通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。

3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。

通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。

二、教学重难点1、教学重点函数单调性的概念。

运用定义证明函数的单调性。

2、教学难点函数单调性定义的理解。

利用定义证明函数的单调性。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。

引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。

强调定义中的关键词:定义域、区间、任意、都有。

通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。

3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。

分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。

解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。

1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。

1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。

第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。

2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。

2.3 练习:判断一些复杂函数的单调性,并进行验证。

第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。

3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。

3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。

第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。

4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。

4.3 练习:运用性质与定理解决一些实际问题。

第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。

5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。

5.3 练习:判断函数的单调性,并找出其极值点。

第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。

6.2 讲解:复合函数单调性的定义和判断方法。

6.3 练习:判断复合函数的单调性,并进行验证。

第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。

7.2 讲解:反函数单调性的性质和判断方法。

高中数学函数单调性的教案

高中数学函数单调性的教案

高中数学函数单调性的教案一、教学目标1. 理解函数的单调性的概念,了解函数单调递增和单调递减的定义及特点。

2. 能够通过函数的导数或图像来判断函数的单调性。

3. 能够应用函数的单调性解决实际问题。

二、教学重点1. 函数的单调性的概念和特点。

2. 通过导数或图像判断函数的单调性。

三、教学难点1. 如何通过导数或图像来判断函数的单调性。

2. 应用函数的单调性解决实际问题。

四、教学内容1. 函数的单调性的定义和特点。

2. 利用导数判断函数的单调性。

3. 利用图像判断函数的单调性。

4. 单调性在实际问题中的应用。

五、教学过程1. 导入教学:通过一个生活实例引入函数的单调性的概念。

2. 讲解函数的单调性的定义和特点,引导学生理解。

3. 通过对几个函数的图像进行观察,讨论函数的单调递增和单调递减的特点。

4. 讲解如何通过导数或导数图像判断函数的单调性。

5. 练习:让学生通过计算导数或观察导数图像判断给定函数的单调性。

6. 应用:给学生一个实际问题,让他们利用函数的单调性来解决问题。

7. 总结:回顾本节课所学内容,强调函数的单调性在解决问题中的重要性。

六、教学资源1. 课件2. 教科书3. 练习题七、教学评估1. 课堂练习题2. 作业布置并检查八、拓展延伸1. 思考函数的极值点与单调性的关系。

2. 探究其他函数性质与单调性的联系。

以上是本节课的教学内容和组织安排,希望能够帮助学生更好地理解和掌握函数的单调性。

祝学习顺利!。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。

2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。

1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。

2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。

第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。

2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。

2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。

第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。

2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。

3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。

2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。

第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。

“函数的单调性”教案

“函数的单调性”教案

“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。

2. 能够运用函数单调性解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。

二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。

2. 通过例题讲解,让学生掌握判断函数单调性的方法。

3. 结合实际问题,培养学生运用函数单调性解决问题的能力。

五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。

2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。

3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。

4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。

5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。

6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。

六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。

2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。

3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。

七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。

2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。

3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。

八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》word版章节一:引言1.1 课程背景本节课主要讲解函数的单调性。

函数单调性是数学中的一个重要概念,也是高中数学的核心内容之一。

通过学习函数单调性,学生可以更好地理解函数的性质,提高解决问题的能力。

1.2 教学目标1. 理解函数单调性的概念及意义。

2. 学会判断函数的单调性。

3. 能够应用函数单调性解决实际问题。

章节二:单调性的定义与性质2.1 单调性的定义本节课我们将引入单调性的定义。

一个函数在某个区间内,如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≤f(x2),则称该函数在区间内是单调递增的;如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≥f(x2),则称该函数在区间内是单调递减的。

2.2 单调性的性质本节课我们将学习单调性的几个重要性质。

如果函数在某个区间内是单调递增的,它在该区间内的任意子区间内也是单调递增的;同样地,如果函数在某个区间内是单调递减的,它在该区间内的任意子区间内也是单调递减的。

如果两个函数在某个区间内具有相同的单调性,它们的和函数在该区间内也具有相同的单调性。

章节三:判断单调性3.1 判断单调性的方法本节课我们将介绍几种判断函数单调性的方法。

可以通过求导数来判断函数的单调性。

如果函数在某个区间内的导数大于0,则函数在该区间内是单调递增的;如果函数在某个区间内的导数小于0,则函数在该区间内是单调递减的。

可以通过观察函数的图像来判断函数的单调性。

如果函数的图像在某个区间内是上升的,则函数在该区间内是单调递增的;如果函数的图像在某个区间内是下降的,则函数在该区间内是单调递减的。

3.2 判断单调性的应用本节课我们将通过一些实际问题来应用单调性的判断方法。

例如,我们可以通过判断函数的单调性来确定函数的最大值和最小值所在的区间,或者判断两个函数的交点位置等。

章节四:单调性与实际应用4.1 单调性与最值本节课我们将学习单调性与函数最值的关系。

3.1.2 高中必修一数学教案《函数的单调性》

3.1.2  高中必修一数学教案《函数的单调性》

高中必修一数学教案《函数的单调性》教材分析函数的单调性与最值指的是在初中基础上对函数的单调性的再认识,是利用集合与对应的思想理解函数的定理,从而加深对抽象函数单调性的定义理解,根据定义,证明函数的单调性,理解单调区间以及理解函数最大(小)值的定义并掌握其求法。

因为函数的单调性是初等数学与高等代数学衔接的枢纽,是函数的第一个也是最基本的性质,为研究指数函数、对数函数、幂函数、三角函数以及导函数的内容,对函数定性分析、求极值最值、比较大小、解不等式、判定零点都有重要的作用,所以具有重要的地位。

学情分析本节课的教学对象是高一理科的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣,不过由于年龄和思维原因,看问题容易片面。

在之前的学习中,学生已经掌握了函数的三要素,并且学生初中学过y随x的增大而增大(或减小),这些都有利于学生的理解。

但是本节课的单调性的定义更抽象,对学生而言是一个较大的考验。

教学目标1、理解增函数、减函数、单调区间、单调性等概念;2、掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质,能利用函数图象划分函数的单调区间。

教学重点形成增减函数的定义。

教学难点在形成增减函数概念的过程中,从函数升降的直观认识,过渡到增减函数的数学符号语言表述;用定义证明函数的单调性。

教学方法讲授法,演示法,讨论法,练习法教学过程一、情境导学我们知道,“记忆”在我们的学习过程中扮演着非常重要的角色,因此有关记忆的规律一直都是人们研究的课题。

德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似图3-1-7所示的记忆规律。

如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图3-1-7中,y是x的函数,记这个函数为y = f(x)这个函数反映出记忆具有什么规律?你能从中得到什么启发?二、教学过程1、单调性的定义与证明情境中的函数y = f(x)反映出记忆的如下规律:随着时间间隔x的增大,记忆保持量y将减小。

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿(附教案)

《函数的单调性》说课稿一、教学内容分析:函数的单调性是学生在掌握了函数概念等基础知识后,学习函数的第一个性质,主要刻画了函数在某区间上图象的变化趋势(上升或下降),为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、定义域、最大值、最小值等性质中有重要应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

而且在解决解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、教学目标的确定:根据本课教材内容的特点、学生现有知识基础、认知能力以及所任教班级学生的特点,本节课从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的理解;强调判断、证明函数单调性的方法的落实;突出逻辑思维能力、类比化归、数形结合能力的培养。

三、教学诊断分析:在函数单调性这节课中,对于函数的单调性,学生在认知过程中主要存在两个方面的困难:(1)“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难。

困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述。

即把某区间上“随着x 的增大,y 也增大”(单调增)这一特征用该区间上“任意的21x x <,有)()(21x f x f <”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的12x x 、。

(2)利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求对高一的学生同样比较困难。

针对这两方面学生存在的困难,在教学中我所采用的教师启发引导,学生探究学习的教学方法,以及多媒体直观教学和反例的恰当应用,较好的解决了学生在这两方面的困惑。

此外,在教学过程中,单调性定义还需要注意以下易错点和疑点:(1)单调性是函数的一个区间上的性质,函数在不同的区间上可以有不同的单调性。

高中数学函数的单调性教案

高中数学函数的单调性教案

高中数学函数的单调性教案一、教学目标:1.掌握函数的单调性概念。

2.能判断函数在给定区间内的单调性。

3.能应用函数的单调性解决实际问题。

二、教学重点与难点:重点:函数的单调性概念及判断方法。

难点:如何应用函数的单调性解决实际问题。

三、教学内容:1.函数的单调性定义:设函数y=f(x),若对于区间[a,b]上的任意两个数x1,x2,若x1<x2,则有f(x1)≤f(x2),则称函数f(x)在区间[a,b]上是单调递增的;若对于区间[a,b]上的任意两个数x1,x2,若x1<x2,则有f(x1)≥f(x2),则称函数f(x)在区间[a,b]上是单调递减的。

2.函数单调性的判断方法:利用函数的导数或函数的增减性。

3.函数单调性的应用:可利用函数的单调性解决极值问题、最值问题等。

四、教学方法:1.讲授结合实例:通过具体实例讲解函数的单调性概念及判断方法。

2.让学生自主探究:设计相关问题,让学生自主探索函数的单调性并提出解决方法。

3.小组合作:让学生分组合作,共同研究函数单调性的应用问题,并讨论解决方案。

五、教学过程:1.引入:通过一个实际例子引入函数的单调性概念,并提出相关问题。

2.讲解:讲解函数单调性的定义及判断方法,并通过例题演示如何判断函数的单调性。

3.练习:让学生在课堂上完成一些相关练习题,巩固所学内容。

4.应用:设计一些应用题,让学生应用函数的单调性解决实际问题。

5.总结:对本节课所学内容进行总结,并展示相关实例。

六、板书设计:1.函数单调性概念及定义。

2.函数单调递增、单调递减的条件。

3.函数单调性的判断方法:导数、增减性。

七、教学反馈:1.课后布置相关练习题,巩固所学内容。

2.定期对学生进行单调性知识的测试,检查学生掌握情况。

以上是高中数学函数的单调性教案范本,希望对你有所帮助。

祝你教学顺利!。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:引言1.1 现实背景(1) 学生通过观察生活中的实例,如商品价格与销售量的关系,了解函数的单调性在实际问题中的应用。

(2) 引导学生思考:如何判断一个函数在其定义域内的单调性?1.2 知识准备(1) 回顾函数的定义及其图像表示。

(2) 复习导数的概念及其性质。

第二章:函数单调性的定义与性质2.1 函数单调性的定义(1) 介绍函数单调递增和单调递减的定义。

(2) 引导学生通过实例理解单调性的概念。

2.2 函数单调性的性质(1) 分析单调性在函数图像上的表现。

(2) 引导学生总结单调性的基本性质。

第三章:利用导数判断函数单调性3.1 导数与单调性的关系(1) 讲解导数在判断函数单调性方面的应用。

(2) 引导学生理解导数正负与函数单调性的关系。

3.2 利用导数判断函数单调性(1) 举例说明如何利用导数判断函数的单调性。

(2) 学生分组讨论,尝试自行判断给定函数的单调性。

第四章:单调性在实际问题中的应用4.1 实际问题建模(1) 引导学生将实际问题转化为函数单调性问题。

(2) 分析实际问题中函数单调性的应用。

4.2 求解最值问题(1) 讲解如何利用函数单调性求解最值问题。

(2) 学生练习求解具有单调性的最值问题。

第五章:总结与拓展5.1 课堂小结(1) 引导学生回顾本章所学内容,总结函数单调性的概念、性质及应用。

(2) 学生分享自己在实际问题中应用函数单调性的心得体会。

5.2 课后拓展(1) 布置课后习题,巩固函数单调性的相关知识。

(2) 鼓励学生探索函数单调性在其他领域的应用。

第六章:函数单调性的进一步探讨6.1 连续函数的单调性(1) 引入连续函数的概念,讨论连续函数的单调性。

(2) 引导学生理解连续函数单调性的重要性。

6.2 单调函数的图像特征(1) 分析单调函数图像的形状和位置。

(2) 学生通过绘制函数图像,加深对单调性的理解。

第七章:利用单调性解决实际问题7.1 最大值和最小值问题(1) 讲解如何利用单调性求解函数的最大值和最小值。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。

教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。

教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
书上通过两个函数y=x3(图三)、y=x2(图四)的图象(学生用电脑画出)
图三图四
说明某些函数在定义域内的某些区间上的y取值随着x的值增大而增大,进而抽象出增函数、减函数的定义(大屏幕显示):增函数、减函数的定义
如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f ( x )在这个区间上是增函数。
了解
理解
掌握
灵活运用
增函数与减函数的概念
单调区间的概念
单调性的判断方法
单调性的证明方法
单调性的初步应用
数形结合的方法意识
教学重点函数单调性的相关概念
《教学论》中指出了教科书中现有理论知识,要有应用的技能、技巧,教材的内容、要有反映生活、建设上的实际材料。这一准则对数学教学尤其重要。函数的单调性是函数的重要性质之一,也有广泛的应用。但因这节课为新授课,不宜过于深入,点到为止,因而单调性的相关概念是重点。
阅读书上例2、例3,然后与学生一起总结出解题步骤(电脑给出):
(1)取值
(2)作差变形(因式分解、配方、有理化等方法)
(3)定号
(4)判断
分析各个步骤的含义,利用这个结论学生练习(用电脑给出):
从上述过程中概括出单调性、单调区间的概念:
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间。
教学流程设计
开始
师生问好
学生作图观察教师提出问题
师生对话:单调性定义
不正确
反馈
正确
例1,2,3(阅读、讲评)
师生对话
不正确
反馈
正确
学生练习
教师评讲
引入例4(讲解)
不理解
反馈
理解
分组练习、教师讲评
教师:课堂小结(布置作业)
结束
教学用具多媒体、实物投影仪、CAI课件、几何画板软件
Hale Waihona Puke 教学过程一.新课引入:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降;上下楼梯也是一样
定义域
关于Y轴的覆盖范围
值域
上升或下降
单调性
教法设想为了解决难点,提高教学效果。教学过程中力争做到以下几点:
(1)着重注意从实际出发,从感性认识提高到理性认识
(2)注重运用对比的方法和及时利用反馈信息纠错与强化
(3)坚持结合直观图形或函数图象来说明和帮助学生理解概念
(4)充分利用电脑与几何画板等辅助作用,增强教学效果。
因为x1<x2所以x1x2<0
又因为x12+x1x2+x22=(x1+ x2)2+ x22>0
所以f(x1)f(x2)<0
即f(x1)<f(x2)
高中数学教案
课题:函数的单调性
课型新授课课时1课时
教学目标
知识目标理解增函数、减函数的概念;
能力目标1.掌握判断和证明某些函数增、减性的方法;
2.培养学生观察、比较、分析的能力;
3.增强数形结合的意识与能力;
德育目标熟悉从感性认识到理性认识,从具体到抽象的研究问题的方法。
教材内容要求分解表
知识点
学习水平
从上述过程中概括出函数的单调性单调区间的概念:
如果函数在某个区间是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性。这一区间叫做的单调区间。
学生阅读书上例1,回答该函数的单调区间。
思考:该函数在其定义域上有单调性吗?
要了解函数在某些区间上是否具有单调性,从图象上进行观察是一种常用而又较为粗略的方法,严格的说,它需要根据单调函数的定义进行证明。
很多函数也具有类似性质。如(学生在电脑上用几何画板画出图象):
y=3x+2 y=1/x (x>0)
图一图二
从左往右看,函数的图象逐步上升(图一)或逐步下降(图二),这就是我们要研究的函数的重要性质之一:函数的单调性(电脑给出课题、教学目标)
二.新授课
1.先由学生结合图象猜想函数的单调性的定义,然后纠错补充再让学生阅读书上从P58到P59的例1以上的部分。
为了让学生更直观地看出增、减函数定义的内涵,用电脑演示动画。
用《几何画板》演示:在函数y=x2、y= x3的图象上,当x增大时,y的增、减情况。其中函数其中函数y= x3的图象学生比较陌生,所以当堂用《几何画板》画出,并让学生熟悉用描点法作函数图象的过程。
的图象学生比较陌生,所以当堂用《几何画板》画出,并让学生熟悉用描点法作函数图象的过程。
如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f ( x )在这个区间上是减函数。
让学生分析定义的特点:
(1)自变量属于定义域
(2)自变量x1、x2的任意性
(3)都有f(x1)>f(x2)或f(x1)<f(x2)成立
(4)函数的单调性是函数在其某个区间上的局部性质
教学难点利用概念证明或判断函数的单调性
学法指导1.理解和掌握函数的单调性的相关概念
2.由于图象法是认识函数性质的重要方法,也是记忆和掌握函数性质的有效工具。掌握下表内容,有助于提高研究函数的能力,特别是有助于数形结合思想与方法融会贯通。
函数图象直观显示函数的性质(部分)
图象的特征
函数要素或性质
关于X轴的覆盖范围
(1)取值
(2)作差变形(主要是配方或分解因式等)
(3)定号
(4)判断结论
分析各个步骤的含义,利用这个结论,学生练习(电脑给出):
P60练习1、2题
3.深化提高例选
例4:证明函数f(x)= x3在R上是增函数.
证明:设x1、x2是R上的任意两个实数,且x1<x2,则f(x1)f(x2)=x13x23=(x1x2)(x12+x1x2+x22)
2.学生阅读书上P59.例1,回答该函数的单调区间。
思考:该函数在其定义域上有单调性吗?
注意:我们生活中的很多实际问题的函数图象不象函数y=x2、y= x3的图象一样有规律地上升或下降,如我国的人口出生率变化曲线(如下图五,教材P.53),但是我们可以很方便地从图象观察函数在哪个区间是递增或递减,从而确定其单调区间。
图五
要了解函数在某些区间上是否具有单调性,从图象上进行观察是一种常用而又较为粗略的方法,严格的说,它要根据单调函数的定义进行证明。
阅读书上P59.例2、例3,然后与学生一起总结出(大屏幕显示):
(ⅰ)判断函数单调性的方法:
(1)用图象;(2)用定义;(3)其它(后面会学到)。
(ⅱ)证明函数单调性的方法:目前只能用定义,解题步骤如下
相关文档
最新文档