人教版化学选3第二章 第二节 分子的立体结构

合集下载

人教版高中化学选修三课件:第二章 第二节 第一课时 价层电子对互斥理论(26张PPT)

人教版高中化学选修三课件:第二章 第二节 第一课时 价层电子对互斥理论(26张PPT)

•1、所有高尚教育的课程表里都不能没有各种形式的跳舞:用脚跳舞,用思想跳舞,用言语跳舞,不用说,还需用笔跳舞。 •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、教育始于母亲膝下,孩童耳听一言一语,均影响其性格的形成。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
实例
2
0
2
3
0
3
2
1
直线形
直线形
HgCl2、 BeCl2、
CO2
三角形
平面三角形 V形
BF3、 BCl3 SnBr2、 PbCl2
σ键电 孤电子 价层电 电子对的 VSEP 分子或离子 实例
子对数 对数 子对数 排列方式 R模型 的立体构型
4
0
3
1
4
四面 体形
正四面体形 三角锥形
CH4、 CCl4 NH3、 NF3
VSEPR模型 的立体构型 体构型名称
NH3
_三__角__锥__形
HCN
_直__线__形
H3O+
_三__角__锥__形
SO2
_V_形
[特别提醒] VSEPR模型与分子的立体构型不一定一致,分子的 立体构型指的是成键电子对的立体构型,不包括孤电子 对(未用于形成共价键的电子对)。两者是否一致取决于 中心原子上有无孤电子对,当中心原子上无孤电子对 时,两者的构型一致;当中心原子上有孤电子对时,两 者的构型不一致。
2
2
V形
H2O
1.用价层电子对互斥理论判断SO3的分子构型为 ( )
A.正四面体形 B.V形
C.三角锥形
D.平面三角形
解析:SO3中S原子的价层电子对数为3,其全部用于形

人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)

人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)
三角 V形
锥形
sp 杂化和 sp2 杂化这两种形式中,原子还有未参与杂化的 p 轨道,可用于形成 π 键,而杂化轨道只能用于形成 σ 键或 者用来容纳未参与成键的孤电子对。
指出下列分子中,中心原子可能采取的杂化轨道类 型,并预测分子的立体构型。 (1)BeCl2:__________ (2)PCl3:__________ (3)BCl3:____________ (4)CS2:__________ (5)SCl2:____________
4.如图是甲醛分子的模型。根据该图和所学化学键知识回 答下列问题:
甲醛分子的比例模型 甲醛分子的球棍模型 (1)甲醛分子中碳原子的杂化方式是________________, 作出该判断的主要理由是_____________________。 (2) 下 列 是 对 甲 醛 分 子 中 碳 氧 键 的 判 断 , 其 中 正 确 的 是 ________(填序号)。 ①单键 ②双键 ③σ 键 ④π 键 ⑤σ 键和 π 键
(3)sp3 杂化 sp3 杂化轨道是由一个__s____轨道和三个_____p____轨道杂 化 而 得 , 杂 化 轨 道 间 的 夹 角 为 __1_0_9_°__2_8_′_ , 立 体 构 型 为 _正__四__面__体___形,如 CH4 分子。
(1)在形成多原子分子时,中心原子价电子层上的某些能量 相近的原子轨道发生混杂,重新组合成一组新的轨道的过 程,叫做轨道的杂化。双原子分子中,不存在杂化过程。 (2)只有能量相近的轨道才能杂化(ns,np)。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.

人教版化学选修三2.2《分子的立体构型(第2课时)分子的空间结构和价层电子对互斥理论》教学设计

人教版化学选修三2.2《分子的立体构型(第2课时)分子的空间结构和价层电子对互斥理论》教学设计

第二章第二节分子的立体构造第 2 课时分子的空间构造与价层电子对互斥理论【学习目标】 1、能应用价层电子对互斥理论判断分子的空间构型。

【学习要点】σ键电子对、孤电子对和价层电子对的计算,VSEPR 模型【学习难点】分子立体构型的推测课前预习案一、价层电子对互斥理论(阅读课本 P37-38 达成填空)1、价层电子对互斥理论以为,分子的“立体构型”是的结果。

2、价层电子对是指;价层电子对 =+;( 1)σ键电子对数:可由确立。

比如,H2O的中心原子是______,构造式是 __________,有个σ键,故σ键电子对数是______;(2)中心原子上的孤对电子对数:依据公式 _______________________确立,此中 a 为,关于主族元向来说,价电子数等于;x 为;b 为;氢为 _____,其余原子等于。

阳离子: a 为中心原子的价电子数减去 _______________;阴离子:a为中心原子的价电子数加上(绝对值)。

2-的孤对电子数 =1/2(6+2-2*3 )=13比如: SO【预习检测】1、运用你对分子的已有的认识,达成以下表格,写出C、 H、N、O 的电子式,依据共价键的饱和性议论C、H、N、 O、F 的成键状况。

原子H C N O F 电子式可形成的共用电子对数讲堂研究案研究一:价层电子对空间构型(即VSEPR 模型)价层电子对互斥理论的基本内容:对AB n型的分子或离子,中心原子A 价层电子对(包含成键σ键电子对和未成键的孤对电子对)之间因为存在排挤力,将使分子的几何构型老是采纳电子对互相排挤最小的那种构型,以使相互之间斥力最小,分子系统能量最低、最稳固。

问题 1:请你依据价层电子对互斥理论的基本内容,总结出价层电子对的空间构型(即 VSEPR 模型)(利用牙签与橡皮泥模拟)空间构型价电子对数量234VSEPR 模型形形形问题 2:依据价层电子对互斥理论,计算出以下分子的中心原子含有的σ键电子对数、孤对电子数及价层电子数。

化学选修3第二章第二节分子的立体构型

化学选修3第二章第二节分子的立体构型
杂化轨道 间夹角
3个sp2杂化轨 4个sp3杂化轨 道 道
1200 1090 28’
1800
空 间 构 型
实 例
直 线形
平面三角形
四面体形 CH4 , H2O
BeCl2 CO2 C2H2 BF3 , C2H4
杂化轨道只用于形成σ键或者用来容纳孤对电子,剩 余的p轨道可以形成π键
1、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是 因为( C ) A.两种分子的中心原子杂化轨道类型不同,NH3为sp2杂化, 而CH4是sp3杂化 B.NH3分子中N原子形成3个杂化轨道,CH4分子中C原子形 成4个杂化轨道 C.NH3分子中有未成键的孤电子对,它对成键电子的排斥 作用较强 D.氨气分子中氮原子电负性强于甲烷分子中的碳原子 2、用价层电子对互斥理论预测H2S和BF3的立体结构,两个 结论都正确的是( D )
sp2杂化轨道的形成过程
120° z z z z
y x x
y x
y x
y
sp2杂化轨道由1个s轨道和2个p轨道杂化而得到三个sp2杂化轨道。 三个杂化轨道在空间分布是在同一平面上,互成120º 例如:C2H4
C2H4(sp2杂化)
sp杂化轨道的形成过程
z
z
180°
z
z
y x x
y x
y x
y
sp杂化轨道由1个s轨道和1个p轨道杂化而得到两个sp杂化轨道。 两个杂化轨道在空间分布呈直线型,互成180º 例如:C2H2
4、下列分子或离子中,不含有孤对电子的是( D ) A、H2O B、H3O+ C、NH3 D、NH4+
5、以下分子或离子的结构为正四面体,且键角为 109°28′ 的是( B ) ①CH4 ②NH4+ ③CH3Cl ④P4 ⑤SO42A、①②③ B、①②④ C、①②⑤ D、①④⑤

高二化学选修3第二章第二节分子的立体构型 杂化轨道理论

高二化学选修3第二章第二节分子的立体构型 杂化轨道理论

为了解决这一矛盾,鲍林提出了杂化轨道理论,
三、杂化轨道理论
1、理论要点
① 同一原子中能量相近的不同种原子轨道在成 键过程中重新组合,形成一系列能量相等的新轨 道的过程叫杂化。形成的新轨道叫杂化轨道,用 于形成σ键或容纳孤对电子 ② 杂化轨道数目等于各参与杂化的原子轨道数目 之和 ③ 杂化轨道成键能力强,有利于成键 ④ 杂化轨道成键时,满足化学键间最小排斥原 理,不同的杂化方式,键角大小不同 ⑤ 杂化轨道又分为等性杂化和不等性杂化两种
④ 其它杂化方式
dsp2杂化、sp3d杂化、sp3d2杂化、d2sp3杂化
例如:sp3d2杂化:SF6 构型:四棱双锥 正八面体
此类杂化一般是金属作为中心原子 用于形成配位化合物
小结:杂化轨道的类型与分子的空间构型 • 杂化轨道类型 sp
参加杂化的轨道 s+p 杂化轨道数 2
sp2
s+(2)p 3
+
构型 120° 正三角型
BF3的空间构型 为平面三角形
F
2p
F
激发 2s
B
B: 2s22p1
2s
2p
F
sp2杂化
sp2
③ sp3杂化
2p
2s
以C原子为例
2s 2p
激发
C
杂化
C
sp 杂 化
3
基态 激发态
1个s轨道和3个p轨道杂化形成4个sp3杂化轨道
构型 109°28′ 正四面体型 4个sp3杂化轨道可形成4个σ键 价层电子对数为4的中心原子 采用sp3杂化方式
CH4的空间构型为正四面体
C:2s22p2
2s
2p
激发 2s
2p
sp 杂化

高中化学选修3(第二章第二节).ppt

高中化学选修3(第二章第二节).ppt

大π 键
C6 H6
C6H6的大π键
价层电子对数为3的中心 原子采用sp2杂化方式
sp3杂化轨道的形成过程
z z y y x x x x y y z 109°28′ z
sp3杂化:1个s 轨道与3个p 轨道进行的杂化, 形成4个sp3 杂化轨道。 每个sp3杂化轨道的形状也为一头大,一头小, 含有 1/4 s 轨道和 3/4 p 轨道的成分 每两个轨道间的夹角为109.5°, 空间构型为正四面体型
(2)杂化前后原子轨道数目不变:参加杂化的轨道数 目等于形成的杂化轨道数目;但杂化轨道改变了原子 轨道的形状方向,在成键时更有利于轨道间的重叠;
sp杂化轨道的形成过程
z z 180° z z
y x
y
y x x
y
x
sp 杂化:1个s 轨道与1个p 轨道进行的杂化,
形成2个sp杂化轨道。可形成2σ键。 剩下的两个未参与杂化的道用于形成π键 。
乙炔的成键
价层电子对数为2的中心 原子采用sp杂化方式
sp2杂化轨道的形成过程
120° z z z z
y x x
y x
y x
y
sp2杂化:1个s 轨道与2个p 轨道进行的杂化,
形成3个sp2 杂化轨道。 每个sp2杂化轨道的形状也为一头大,一头小, 含有 1/3 s 轨道和 2/3 p 轨道的成分
杂化轨道 sp sp2 每个轨道的成分 1/2 s,1/2 p 1/3 s,2/3 p 轨道间夹角( 键角) 180° 120°
sp3
1/4 s,3/4p
109°28′
H2O原子 轨道杂化
22p4 O 原子: 2 s 有2个 不等性杂化:参与杂化的各原子轨道进行成分上的 单电子,可形成2个共价键, 键角应当是90°, Why? 不均匀混合。某个杂化轨道有孤电子对

高中化学教学课例《化学人教版选修32.2分子的立体构型》课程思政核心素养教学设计及总结反思

高中化学教学课例《化学人教版选修32.2分子的立体构型》课程思政核心素养教学设计及总结反思

态。
尊重、理解、关注、赏识”的新型师生关系,课堂教学
才能在和谐愉悦课堂氛围实现有效,甚至是高效。
引入:PPT 展示常见分子和离子的球棍模型。
提问:什么是分子的立体模型?原子数相同的分子 教学过程
为什么构型不同?(抛出问题,让学生产生认知冲突,
产生求知的欲望和探究的兴趣。)
提示:上节课所讲分子的构型和键参数有关。但并 非决定性因素。尝试根据球棍模型或比例模型,写出上 述分子和离子的电子式、结构式。
引出:价层电子对互斥理论(VSEPR):分子的立 体构型是“价层电子对”相互排斥的结果。
(抛出重点。) 公式:价层电子对=孤电子对+σ 键电子对;孤电 子对=(a-xb)÷2。 (注意:阴阳离子的算法。对于阳离子:a 为中心 原子的最外层电子数减去离子的电荷数;对于阴离子: a 为中心原子的最外层电子数加上离子的电荷数) (解决重点。) (PPT+板书)列表格,举例子,详解析,做练习。 (在这个环节,将突破本节课的重点,解决难点,
趣,感受化学世界的奇妙。
本节知识属于化学理论教学和已有知识关联度较
少,通过设计引导希望尽可能取得较好的教学效果。虽
然学生已初步了解分子和离子的电子式、结构式,以及 学生学习能
性质和结构的关系,但学生对分子和离子的空间立体构 力分析
型还没有形成正确的深入理解,另一方面学生的空间想
象思维略弱,相关知识的准确度把握不够,在教学过程
进一步为后面学习晶体及其在生活中的应用埋下铺垫。 教材分析
所以本节内容至关重要。
重点:分子的立体构型;价层电子对互斥理论;孤
电子对数的计算;VSEPR 模型和分子模型的差别。
难点:价层电子对互斥理论;VSEPR 模型和分子模

人教版高中化学选修3 物质结构与性质 第二章 第二节 分子的立体构型(第1课时)

人教版高中化学选修3 物质结构与性质 第二章 第二节 分子的立体构型(第1课时)

2014年7月20日星期日
21
价层电子对互斥理论
ABn 型分子的VSEPR模型和立体结构
电子对数 目 电子对的空 间构型 成键电子 对数 孤电子 对数 电子对的 排列方式 分子的 空间构型 实 例
2
直线
2
0
直 线形
BeCl2 CO2
3 3 三角型 2
0
三角形
BF3 SO3
1
V形
SnBr2 PbCl2
2014年7月20日星期日 17
价层电子对互斥理论
化学式 HCN SO2 NH2- BF3 H 3O + SiCl4 CHCl3 NH4+ SO42-
2014年7月20日星期日
价层电子对数 结合的原子数 孤对电子对数
2 3 4 3 4 4 4 4 4
2 2
0 1
2 3 3 4 4 4 4
2
0 1 0 0 0 0
1 0 0 0
2 2 2 3 3
4 4 4
直线形 V形 V形 平面三角形 三角锥形 正四面体 四面体 正四面体
26
2014年7月20日星期日
价层电子对互斥理论
1、下列物质中分子立体结构与水分子相似的是 A.CO2 B.H2S B C.PCl3 D.SiCl4 2、下列分子立体结构其中属于直线型分子的是 A.H2O B.CO2 BC C.C2H2 D.P4 3、下列分子立体结构其中属正八面体型分子的 A.H3O + B.CO32— D C.PCl5 D.SF6
新课标人教版高中化学课件系列
选修3 物质结构与性质 第二章 分子结构与性质
第二节 分子的立体构型 第1课时
2014年7月20日星期日
1

高中化学选修三第二章第二节《分子的立体结构》

高中化学选修三第二章第二节《分子的立体结构》

VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形 平面三角形
CH4 4 4 1
0
4 4 正四面体 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 正四面体 三角锥形 2 4 正四面体 V形
NH3 5 3 1 1
3 4 正四面体 三角锥形
价电子对的空间构型即VSEPR模型
ABn分子或离子的立体构型
分子或 a
离子
x
b 孤对电 σ键 VP 子对
VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形
CH4 4 4 1
0
4 4 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 四面体 2 4 四面体
NH3 5 3 1 1
3 4 四面体
价电子对的空间构型即VSEPR模型
价层电子
对数 目
VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形 平面三角形
CH4 4 4 1
0
4 4 正四面体 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 正四面体 三角锥形 2 4 正四面体
NH3 5 3 1 1
3 4 正四面体
正 四 面 体
V形
分子或 a
离子
x
b 孤对电 σ键 VP 子对
价层电子 对数 目 (VP)
价层电 子对空 间构

2
3
4
5
6
直线形
平面 正四面体
正八面体
三角形
三角双锥
正 八 面 体

化学选修三第二章第二节分子的立体构型

化学选修三第二章第二节分子的立体构型

化学选修三第二章第二节分子的立体构型选修三第二章第2节分子的立体构型第2节分子的立体构型一、常见分子的空间构型1.双原子分子都是直线形,如:HCl、NO、O 2、N2等。

2.三原子分子有直线形,如CO2、CS2等;还有“V”形,如H2O、H2S、SO2等。

3.四原子分子有平面三角形,如BF3、BCl3、CH2O等;有三角锥形,如NH3、PH3等;也有正四面体,如P4。

4.五原子分子有正四面体,如CH4、CCl4等,也有不规则四面体,如CH3Cl、CH2Cl2、CHCl3。

另外乙烯分子和苯分子都是平面形分子。

二、价层电子对互斥理论(Valance Shell Electron Pair Repulsion Theory)简称VSEPR适用AD m 型分子1、理论模型分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。

2、用价层电子对互斥理论推断分子或离子的空间构型的一般步骤:(1)确定中心原子A价层电子对数目法1.经验总结中心原子的价层电子对数=1(中心离子价电子数+配2对原子提供电子总数)对于AB m型分子(A为中心原子,B为配位原子),计算方法如下: n =中心原子的价电子数+每个配位原子提供的价电子数×m2注意:①氧族元素的氧做中心时:价电子数为 6, 如 H 2O ,H 2S ;做配体时:提供电子数为 0,如在 CO 2中。

②如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。

如PO -34中P 原子价层电子数5+(0×4)+3 = 8;NH +4中N 原子的价层电子数5+(1×4)-1 = 8。

③结果为单电子时视作有一个电子对。

例:IF 5 价层电子对数为21[7+(5×1)] = 6对 正八面体(初步判断)N H +4价层电子对数为21[5+(4×1)-1] = 4对 正四面体PO -34价层电子对数为21[5+(0×4)+3] = 4对 正四面体NO 2 价层电子对数为21[5+0] = 2.5−→−3对 平面三角形法2. 确定中心原子A 价层电子对数目-----普遍规则中心原子A 价层电子对数目=成键电子对数+孤对电子数 (VP = BP + LP )VP 是价层电子对,BP 是成键电子对(BOND ),LP 是孤对电子对(LONE PAIR )VP = BP + LP =与中心原子成键的原子数+中心原子的孤对电子对数LP=配位原子数+LP Lp =21(中心原子价电子数—配位原子未成对电子数之和)IF 5 Lp =21[7-(5×1)] = 1 构型由八面体−→−四方锥 NH +4Lp =21[(5-1)-(4×1)] = 0 正四面体PO -34Lp =21[(5+3)-(4×2)] = 0 正四面体SO -24Lp =21[(6+2)-(4×2)] = 0 正四面体NO 2 Lp =21[5-(2×2)] = 21−→− 1 构型由三角形−→−V 形 SO -23Lp =21[(6+2)-(3×2)] = 1 构型由四面体−→−三角锥法3:由Lewis 结构式或结构式直接写出,双键、三键都是1对电子P ClClCl ClCl P Cl Cl ClP ClClCl Cl+Cl P Cl ClClCl Cl -Cl Cl ClCl +Cl P Cl Cl Cl Cl Cl -VP: 5 4 4 6 4(2)确定价层电子对的空间构型价层电子对数目2 3 4 5 6价层电子对构型直线形三角形四面体三角双锥八面体(3)分子空间构型确定价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。

人教版选修3 化学:2.2 分子的立体构型 教案2

人教版选修3 化学:2.2 分子的立体构型  教案2
[板书]二、价层电子对互斥模型
1、价层电子互斥模型
[导入]由于中心原子的孤对电子占有一定的空间,对其他成键电子对存在排斥力,影响其分子的空间结构——价层电子对互斥模型。
[问]1.价层电子对互斥理论怎样解释分子的空间构型?
2.什么是价层电子对?对于ABn型分子如何计算价层电子对数?
3.什么是VSEPR模型?如何确定分子的VSEPR模型与空间构型?
小结
导学达标
[阅读科
[板书]4、测分子体结构:红外光谱仪→吸收峰→分析。
[过渡]C02和H20都是三原子分子,为什么CO2呈直线形而H20呈V形?CH20和NH3都是四原子分子,为什么CH20呈平面三角形而NH3呈三角锥形?为了探究其原因,发现了许多结构理论。
[讲]大多数四原子分子采取平面三角形和三角锥形两种立体结构。例如,甲醛(CH20)分子呈平面三角形,键角约120°;氨分子呈三角锥形,键角107°。
[投影]
[板书]2、四原子分子立体结构:平面三角形:如甲醛(CH20)分子等,三角锥形:如氨分子等。
[讲]五原子分子的可能立体结构更多,最常见的是正四面体形,如甲烷分子的立体结构是正四面体形,键角为109°28’。
[讲]分子的立体构型是“价层电子对 ”相互排斥的结果。
分子中的孤电子对—孤电子对的斥力>成键电子对—孤电子对的斥力>成键电子对—成键电子对的斥力。由于相互排斥作用,尽可能趋向彼此远离,排斥力最小。
价层电子对指分子中的中心原子上的电子对。以ABn型分子为例:
价层电子对=σ键电子对+中心原子上的孤电子对。
对于阴离子来说,a为中心原子的价电子数加上离子的电荷
数(绝对值),x和b的计算方法不变。
[练习]计算下列离子的中心原子上的孤电子对数及价层电子对数。碳酸根?硫酸根?亚硫酸根?

选修三第二节分子立体构型

选修三第二节分子立体构型

均为正四面体
因孤电子对数不同故...
思考:为什么实际分子构型中键角不同?
V排SEP斥R模力型立:体结孤构 电子对-孤电子对>孤电子对-成
键电子对>成键电子优对化-成指键导电P子25对
本节内容小结:优化指导P27 作业:教材P39思考与交流
价层电子 VSEPR模型 实际的
分子或离子 对数
的立体结构 立体结
平面三角型
同为四原子分子,HCHO或BF3与
NH3 分子的空间结构也不同,什么原因?
价层电子对互斥理论可以用来解释 或预测分子的立体结构。
二、价层电子对互斥理论(教材P37) 1、分子的立体结构是“价层电子对”相互的排结斥果。
2、价层电子对指 分子中的中心原子上的电子对 , 包括 (σ键电子对+中心原子上的孤。电子对)
孤电子对数为 0,价层电子对数为 4 。
2)VSEPR模型
3)实际的立体构型
教材P44~1 价层电子对数=σ键电子对数
(与中心原子结合的原子数)
分子或离 子
中心原子 上孤电子 对数
σ键电 价层电 VSEP 实际的 子对数 子对数 R模型 立体结
的立体 构 结构
SO2
1
CO2
0
CO32-
0
SO32NH3
21
NH4+
N 5-1=4 4
10
CO32-
C 4+2=6 3
2
0
CO2
C
42
20
SO42-
S 6+2=8 4
20
价层电子对=σ键电子对+中心原子上的孤电子对
分子或离 子
BF3 NH3 SO32H3O+

人教版化学选修三第二章第二节《分子的立体构型》全课时课件

人教版化学选修三第二章第二节《分子的立体构型》全课时课件
能形成配合物的 离子不能大量共 存。
回顾 Fe3+是如何检验的?
Fe3++3SCN- = Fe(SCN)3 血红色
(4) 配合物的性质 配合物具有一定的稳定性, 过渡金属配合物远比主族金属配合物稳定
(5) 配合物的应用
a 叶绿素 在生命体中的应用 血红蛋白 酶 含锌的配合物 含锌酶有80多种 维生素B12 钴配合物 在医药中的应用 抗癌药物 配合物与生物固氮 固氮酶 王水溶金 H[AuCl4] 照相技术的定影 在生产生活中的应用 电解氧化铝的助熔剂 Na3[AlF6] 镀银工业
Cu2+与H2O是如何结合的呢?
1、配位键
(1)定义提供孤电子对的原子与接受孤电 子对的原子之间形成的共价键。 注意: 配位键与共价键性质完全相同 (2)配位键的形成条件 一方提供孤电子对(配位体)
一方提供空轨道
常见的配位体 H2O NH3 X- CO CN SCN-
(3)配位键的表示方法
A B
电子对给予体→电子对接受体 H O H
2+ H2O H2O Cu OH2 H2O [Cu(NH3)4]2+的配位键
H 请你写出NH4+ 的表示法?

讨论 在NH3·BF3中,何种元素的原子提供孤电子 对,何种元素的原子接受孤电子对?写出 NH3·BF3的结构式 NH3中N原子提供孤电子对 BF3中的B原子提供空轨道接受孤电子对 H F H N B F
价层电子对互斥理论(VSEPR theory)
理论要点(根本依据):对ABn型的分子或离子,中 心原子A上价层电子对之间相互排斥,尽可能趋向彼 此远离。价层电子对包括参与形成σ 键的电子对和中 心原子上未参与成键的孤电子对。

人教版高中化学选修3_《物质结构与性质》第二章教学案

人教版高中化学选修3_《物质结构与性质》第二章教学案

人教版高中化学选修3_《物质结构与性质》第二章教学案第二章分子结构与性质教材分析本章比较系统的介绍了分子的结构和性质,内容比较丰富。

首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。

最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。

化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。

本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。

在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。

为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。

在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。

还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。

在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。

除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用第二章分子结构与性质第一节共价键第一课时教学目标:1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。

第二节 分子的立体构型(第二课时)

第二节 分子的立体构型(第二课时)

石墨、苯中碳原子也是以sp2杂化的:
C的sp2杂化 2p
2s
2p 2s
p
sp
杂化
2
激发
乙烯中的C在轨道杂化时,有一个P轨道 未参与杂化,只是C的2s与两个2p轨道 发生杂化,形成三个相同的sp2杂化轨道, 三个sp2杂化轨道分别指向平面三角形的三 个顶点。未杂化p轨道垂直于sp2杂化轨道 所在平面。杂化轨道间夹角为120°。
例3:写出下列分子的路易斯结构式并指 出中心原子可能采用的杂化轨道类型, 并预测分子的几何构型。 (1) PCl3 (2)BCl3 (3)CS2 (4) C12O
新课标人教版选修三物质结构与性质
(第二课时)
2014年6月1日星期日
3. VSEPR模型与其分子的立体结 构有何关系?
VSEPR模型与其分子的立体结构的关系
中心原子上无孤对电子的分子:VSEPR模 型就是其分子的立体结构。 中心原子上存在孤对电子的分子:先由价 层电子对数得出含有孤对电子的价层电子 对互斥模型,然后略去孤对电子在价层电 子对互斥模型占有的空间,剩下的就是分 子的立体结构。
2. sp杂化: 同一原子中1个s轨道与1个p轨道杂化形 成2个sp杂化轨道。每个杂化轨道的s成分 为1/2,p成分为1/2,杂化轨道之间的夹角 为180度。 如:CO2、HC≡CH
乙炔中的碳原子为sp杂化,分子呈直 线构型。
1)sp杂化
激发
2P
2S
杂化
2P
SP
2)空间结构是直线型: 三个σ键在一条直线上。
+
BF3分子的形成:
F
3F + B F
B
F
120°
(平面三角形)
理论分析:B原子的三个SP2杂化轨道分别与 3个F原子含有单电子的2p轨道重叠,形成3 个sp2-p的σ键。故BF3 分子的空间构型是平 面三角形。 实验测定:BF3分子中有3个完全等同的B-F键, 键角为1200 ,分子的空间构型为平面三角形。

化学选修三第二章第二节分子的立体构型

化学选修三第二章第二节分子的立体构型

化学选修三第二章第二节分子的立体构型2选修三第二章第2节 分子的立体构型 第2节 分子的立体构型一、常见分子的空间构型1.双原子分子都是直线形,如:HCl 、NO 、O 2、N 2 等。

2.三原子分子有直线形,如CO 2、CS 2等;还有“V ”形,如H 2O 、H 2S 、SO 2等。

3.四原子分子有平面三角形,如BF 3、BCl 3、CH 2O 等; 有三角锥形,如NH 3、PH 3等; 也有正四面体,如P 4。

4.五原子分子有正四面体,如CH 4、CCl 4等,也有不规则四面体,如CH 3Cl 、CH 2Cl 2、CHCl 3。

另外乙烯分子和苯分子都是平面形分子。

二、价层电子对互斥理论(Valance Shell Electron Pair Repulsion Theory )简称VSEPR 适用AD m 型分子1、理论模型分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。

2、用价层电子对互斥理论推断分子或离子的空间构型的一般步骤: (1)确定中心原子A 价层电子对数目 法1.经验总结中心原子的价层电子对数=21(中心离子价电子数+配对原子提供电子总数)对于AB m 型分子(A 为中心原子,B 为配位原子),计算方法如下: n =中心原子的价电子数+每个配位原子提供的价电子数×m 2注意:①氧族元素的氧做中心时:价电子数为 6, 如 H 2O ,H 2S ;做配体时:提供电子数为 0,如在 CO 2中。

②如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。

如PO -34中P 原子价层电子数5+(0×4)+3 = 8;NH +4 中N 原子的价层电子数5+(1×4)-1 = 8。

③结果为单电子时视作有一个电子对。

例:IF 5 价层电子对数为21[7+(5×1)] = 6对 正八面体(初步判断)N H +4 价层电子对数为21[5+(4×1)-1] = 4对 正四面体 PO -34 价层电子对数为21[5+(0×4)+3] = 4对 正四面体 NO 2 价层电子对数为21[5+0] = 2.5−→−3对 平面三角形 法2. 确定中心原子A 价层电子对数目-----普遍规则中心原子A 价层电子对数目=成键电子对数+孤对电子数 (VP = BP + LP )VP是价层电子对,BP是成键电子对(BOND ),LP是孤对电子对(LONE PAIR)VP = BP + LP =与中心原子成键的原子数+中心原子的孤对电子对数LP=配位原子数+LPLp =21(中心原子价电子数—配位原子未成对电子数之和)IF5Lp =21[7-(5×1)] = 1 构型由八面体−→−四方锥NH+4Lp =21[(5-1)-(4×1)] = 0 正四面体PO-34Lp =21[(5+3)-(4×2)] = 0 正四面体SO-24Lp =21[(6+2)-(4×2)] = 0 正四面体NO2Lp =21[5-(2×2)] =21−→− 1 构型由三角形−→−V形SO-23Lp =21[(6+2)-(3×2)] = 1 构型由四面体−→−三角锥法3:由Lewis结构式或结构式直接写出,双键、三键都是1对电子PClClClClCl PCl Cl ClPClClClCl+ClPClClClClCl-ClClClCl+ClPClClClClCl-VP: 5 4 4 6 4(2)价层电子对数目23456价层电子对构型直线形三角形四面体三角双锥八面体(3)价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。

高中化学选修三(人教)第二章 第二节--配合物

高中化学选修三(人教)第二章 第二节--配合物
配位体:可以是阴离子,也可以是中性分子,配位体中直接同中心原子配合的原子叫配位原子,配位原子必须是含有孤对电子的原子。
配位数:直接同中心原子配位的原子的数目叫中心原子的配位数。
配离子的电荷数:配离子的电荷数等于中心离子和配位体的总电荷数的代数和。
[板书]
[练习]如:[Co(NH3)5Cl]Cl2这种配合物,其配位体有两种:NH3、Cl-,配位数为5+1=6。
[实验现象]看到试管里溶液的颜色跟血液极为相似。
[讲]这种颜色是三价铁离子跟硫氰酸根(SCN—)离子形成的配离子。利用该离子的颜色,可鉴定溶液中存在Fe3+;又由于该离子的颜色极似血液,常被用于电影特技和魔术表演。
[讲]配位键的强度有大有小,因而有的配合物很稳定,有的很不稳定。许多过渡金属离子对多种配体具有很强的结合力,是因为过渡金属原子或离子都有接受孤对电子的空轨道,对多种配体具有较强的结合力,因而,过渡金属配合物远比主族金属配合物多。
[板书](2)配位键越强,配合物越稳定。
[投影]科学视野:已知的配合物种类繁多,新的配合物由于纷繁复杂的有机
物配体而层出不穷,使得无机化合物的品种迅速增长。叶绿素、血红素和维
生素B12都是配合物,它们的配体大同小异,是一种称为卟啉的大环有机物,
而中心离子分别是镁离子、亚铁离子和钴离子。图2—25是叶绿素的结构示意图:
知识
目标
第二章分子结构与性质第二节分子的立体结构:(配合物)
能力
目标
1、配位键、配位化合物的概念
2、配位键、配位化合物的表示方法
重点
配位键、配位化合物的概念
难点
配合物理论
教学过程
备注
引入]我们在了解了价层电子互斥理论和杂化轨道理论后,我们再来学习一类特殊的化合物,配合物

高中化学选修三(人教)第二章第二节--杂化轨道

高中化学选修三(人教)第二章第二节--杂化轨道

知识目标第一章分子结构与性质第二节分子的立体结构:(第二课时)能力目标1.认识杂化轨道理论的要点2.进一步了解有机化合物中碳的成键特征3.能根据杂化轨道理论判断简单分子或离子的构型过程重点杂化轨道理论的要点难点杂化轨道理论教学过程备注[复习]共价键类型:σ、π键,价层电子对互斥模型。

[质疑] 我们已经知道,甲烷分子呈正四面体形结构,它的4个C--H键的键长相同,H—C--H的键角为109~28°。

按照我们已经学过的价键理论,甲烷的4个C--H单键都应该是π键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p轨道和1个球形的2s轨道,用它们跟4个氢原子的ls原子轨道重叠,不可能得到四面体构型的甲烷分子。

为什么?[讲]碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。

[引入]碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢?为了解释这个构型Pauling提出了杂化轨道理论。

[板书]三、杂化轨道理论简介1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。

[讲]杂化轨道理论是一种价键理论,是鲍林为了解释分子的立体结构提出的。

为了解决甲烷分子四面体构型,鲍林提出了杂化轨道理论,它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,却得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的。

当碳原子跟4个氢原子结合时,碳原子以4个sp3杂化轨道分别与4个氢原子的ls轨道重叠,形成4个C--Hσ键,因此呈正四面体的分子构型。

[投影][讲]杂化轨道理论认为:在形成分子时,通常存在激发、杂化、轨道重叠等过程。

但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对ABn型分子,B围绕A成键,则A为中心原子,n 值为中心原子结合的原子数。
-
平面 正 三角形 四面体
3)填写孤对电子与分子的空间构型关系,中心原子 结合的原子数(n值)与分子的空间构型关系。
中心无孤对电子
代表物
中心原子含孤对电 子对数
0 0 0 2 1
:O::C::O:
H .. .. H C O .. H H : C :H H .. . . ..
V
分子
表 的立 格 一 四原子分子
平面三角 形,如HCHO、BF3
体结
三角锥
形,如NH3

五原子分子——— 最常见的是正四面体 形,如CH
4
★☆★通过填表,你能发现什么问题?
探究:同为三原子分子,CO2 和 H2O 分子的空间
结构却不同,同为四原子分子,CH2O与 NH3 分子 的空间结构也不同,什么原因?
: : : : : :
H 2O
NH3
中心存在孤对电子 3 107°
2
105°
V形
三角锥形
二、价层电子对互斥模型
(VSEPR模型)
1、内容:中心原子价电子层电子对(包括__ 成键( σ键) _ 电子对和 未成键 的孤对电子对) 的互相 排斥 作用,使分子的几何构型总是采 取电子对相互 排斥最小 的那种构型,即分子 尽可能采取对称的空间构型。
无孤对电子 CH2O CH4 H2O NH3
AB3 平面三角形 AB4 AB2 AB3 正四面体 V形 三角锥形
有孤对电子
应用反馈:
化学式 HCN 中心原子 孤对电子数 中心原子结 合的原子数 空间构型 直线形
三角锥形
SO32NH2- BF3 H3O+ SiCl4 CHCl3 NH4+
0 1 2 0
第二章 分子结构与性质
第二节分子的立体结构 (第一课时)
复习回顾
σ键 共价键
成键方式 “头碰头”,呈轴对称
π键
键能 键参数
成键方式 “肩并肩”,呈镜像对称
键长
衡量化学键稳定性
键角 描述分子的立体结构的重要因素
一、形形色色的分子
1、双原子分子(直线型)
O2
2、三原子分子立体结构(有直线形和V形)
HCl
三角锥形
NH
确定孤电子对的方法: 中心原子上的 孤对电子对=1/2(a-xb) a :中心原子的价电子数 x :与中心原子结合的原子数 b :8-与中心原子结合的原子的价电子数
见教材38页表2-4
小结:
中心原子
价层电子对互斥模型
中心原子 分子 代表物 结合的原子数 类型 CO2 2 3 4 2 3 AB2 空间构型 直线形
H .. .. : : H N H : : H O H :O::C::O: H C O .. H
: : : : : : .. . . .. O=C=O H-O-H H-N-H H
结构式
O
H-C-H
H H : C :H H H H-C-H H : :
- -
=
分子的空间构 型
直线形 倒V 形
三角 锥 形
更多资源
课堂练习
3.若ABn型分子的中心原子A上没有未用于形 成共价键的孤对电子,运用价层电子对互斥模 型,下列说法正确的(C ) A.若n=2,则分子的立体构型为V形 B.若n=3,则分子的立体构型为三角锥形 C.若n=4,则分子的立体构型为正四面体形 D.以上说法都不正确
1)写出H、C、N、O原子的电子式:表格二 原子
H C N O
电子式

· C· · ·
· · N: ·
· · O: · ·
可形成 共用电子对数
1
4
3
2
2)写出CO2、H2O、NH3、CH2O、CH4等分子的电 子式、结构式及分子的空间构型:表格三
分子 CO2 H2O NH3 CH2O CH4
电子式
H2O
CO2
3、四原子分子立体结构(直线形、平面三 角形、三角锥形、正四面体) (平面三角形,三角锥形)
C2H2
CH2O
COCl2
NH3
P4
4、五原子分子立体结构
最常见的是正四面体
CH4
5、其它:
CH3CH2OH
CH3COOH
C6H6
C8H8
CH3OH
直线
三原子分子
形,如CO2 形,如H20
2、价电子对数和电子对立体构型(VSEPR模型) 的关系
2 对电子 •• A •• 4 对电子 •• •• •• A • •
A
直线形
3 对电子
平面三角形
只有一种角度,120° 四面体形
••只有一种角度,109°28′
5 对电子
三角双锥
6 对电子
正八面体
3、价层电子对互斥模型的应用
(1)、一类是中心原子上的价电子都用于形 成共价键,如 CO2 、 CH2O 、 CH4 等分子中的 碳原子,它们的立体结构可用中心原子周围的 原子数n来预测,概括如下: ABn 立体结构 范例 n=2 直线形 CO2、 CS2 n=3 平面三角形 CH2O、BF3 n=4 正四面体形 CH4、 CCl4 n=5 三角双锥形 PCl5 n=6 正八面体形 SCl6
分子 电子式 结构式
中心原子 有无孤对电子 :
CO2
:O::C::O: O=C=O :
CH2O
: H : C :H O = H-C-H :O: :
CH4
H H : C :H H H H-C-H H : :

直线形

平面 三角形

空间结构
正 四面体
- -
(2)、另一类是中心原子上有孤对电子(未用于形成共 价键的电子对)的分子。
1 0 0 0
2 3 2 3 3
4 4 4
V形 平面三角形 三角锥形 正四面体 四面体 正四面体
课堂练习
1.下列物质中,分子的立体结构与水分子 相似的是 (B ) A.CO2 B.H2S C.PCl3 D.SiCl4 2.下列分子的立体结构,其中属于直线型 分子的是 ( BC ) A.H2O B.CO2 C.C2H2 D.P4
总结:由于分子中的成键电子 CO 对及中心原子上的孤对电子 2 180° 对相互排斥,结果趋向尽可 120° CH O 3 能彼此远离,以减小斥力, 109°28′ CH 4 从而影响了分子的空间构型
2 2 4
中心原子结合的 原子数(n值)键角分子的空间构 型:
H :O:H
H : N :H H
:
直线形 平面三角形 正四面体
原因: AB 立体结构 范例 n 中心原子上的孤对电子也要占据中心原子周围的 空间,并参与互相排斥。例如, H2O和NHH n=2 V形 3的中心原 2O 子分别有2对和l对孤对电子,跟中心原子周围的σ键 加起来都是4,它们相互排斥,形成四面体,因而 3 H2O分子呈V形,NH3分子呈三角锥形。
n=3
相关文档
最新文档