回归分析的基本思想-及其初步应用

合集下载

回归分析的思想及初步应用

回归分析的思想及初步应用

回归分析的思想及初步应用回归分析是一种统计分析方法,用于研究变量之间的关系。

它的思想是通过建立一个数学模型来描述一组自变量与一个因变量之间的关系,并利用样本数据对该模型进行估计。

回归分析可以用于预测和解释因果关系,常见的应用包括经济学、社会学、医学、工程等各个领域。

回归分析的思想基于以下几个关键概念:1. 自变量与因变量的关系:回归分析假设自变量与因变量之间存在某种函数关系,这可以是线性关系、非线性关系等。

回归分析的目标是找到最合适的函数形式来描述这种关系。

2. 模型选择:在回归分析中,选择适当的模型尤为重要。

常用的模型包括线性回归模型、多项式回归模型、非线性回归模型等。

选择合适的模型需要根据实际问题和数据特点进行判断和比较。

3. 参数估计:回归分析利用样本数据对模型中的参数进行估计。

常用的估计方法包括最小二乘估计法、极大似然估计法等。

估计得到的参数可以用于解释变量之间的关系,并作为预测新数据的依据。

4. 拟合度与显著性检验:回归分析还需要对建立的模型进行检验和评估。

拟合度指衡量模型与实际数据的吻合程度,常用的指标包括R方值、调整R方值等。

显著性检验则用于判断自变量对因变量的影响是否显著,常用的检验方法包括t 检验、F检验等。

回归分析在实际应用中具有广泛的应用。

以下是一些典型的应用场景:1. 预测与预警:通过对历史数据进行回归分析,可以建立一个模型来预测未来可能发生的情况。

例如,经济学中可以利用回归分析来预测物价指数或GDP增长率;气象学中可以利用回归分析来预测台风路径或发生地震的概率等。

2. 评估因素的重要性:回归分析可以帮助确定影响某个因变量的重要因素。

例如,医学研究中可以利用回归分析来确定导致患者生存率下降的关键因素;市场研究中可以利用回归分析来确定影响销售额的主要因素。

3. 优化决策:回归分析可以用于优化决策的过程。

例如,生产流程中的回归分析可以帮助确定各种因素对产量的影响,进而用于调整生产过程的参数,提高生产效率;推荐系统中的回归分析可以帮助确定用户的偏好和推荐的商品之间的关系,从而提升用户满意度和销售额。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的结果解读和评估
回归分析的结果应该经过详细的解读和评估。我们可以通过检验假设、计算回归系数的显著性、解释模 型的可解释性等来个领域都有广泛的应用,包括经济学、社会科学、医学、市场 营销等。它可以帮助我们理解变量之间的关系、预测未来的趋势,并支持决 策和策略制定。
回归分析的数据准备
在进行回归分析之前,需要准备好相关的数据。这包括收集和整理数据、处 理缺失值和异常值、选择合适的变量和转换方法等。良好的数据准备可以提 高回归分析的准确性和可靠性。
回归分析的基本思想及其 初步应用
回归分析是一种用来研究变量之间关系的统计方法。它的基本思想是通过建 立数学模型来描述变量之间的关系,并利用统计学方法来判断这种关系的显 著性和可靠性。
回归分析的定义与含义
回归分析是一种通过建立数学模型来描述两个或多个变量之间关系的统计学方法。它可以帮助我们理解 变量之间的因果关系,预测未来的变化趋势,并进行决策和策略制定。
回归分析的基本原理
回归分析的基本原理是通过最小化预测值与观察值之间的差异来确定最佳拟 合线。它使用最小二乘法来估计模型参数,并通过假设检验来评估模型的显 著性。
回归分析的常用模型
回归分析有多种常用模型,包括简单线性回归、多元线性回归、逻辑回归等。 每个模型都适用于不同的数据类型和研究问题,选择合适的模型可以提高分 析的准确性和可解释性。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。

数学课后训练:回归分析的基本思想及其初步应用

数学课后训练:回归分析的基本思想及其初步应用

课后训练一、选择题1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合2.下列四个命题中正确的是( )①在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个观测的量;②残差平方和越小的模型,拟合的效果越好;③用R2来刻画回归方程,R2越小,拟合的效果越好;④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.A.①③B.②④C.①④D.②③3.已知x,y取值如下表:若x,y y=0.95x+a,则a=( )A.0.325 B.2。

6C.2。

2 D.04.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,( )A .y =2x -2B .12xy ⎛⎫= ⎪⎝⎭C .y =log 2xD .y =12(x 2-1)5.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0。

5.如果今年该地区财政收入10亿元,年支出预计不会超过( )A .10亿B .9亿C .10.5亿D .9.5亿6.某产品的广告费用x 与销售额y 的统计数据如下表:y bx a =+b 费用为6万元时销售额为( )A .63.6万元B .65。

5万元C .67.7万元D .72.0万元 二、填空题7.在研究身高和体重的关系时,求得R 2≈______,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.8.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这5的方法,预测小李该月6号打6小时篮球的投篮命中率为__________.三、解答题9.恩格尔系数=食物支出金支出金额总额×100%.在我国,据恩格尔系数判定生活发展阶段的标准为:贫困:>60%,温饱:50%~60%,小康:40%~50%,富裕:<40%.据国家统计局统计显示,随着中国经济的不断发展,城镇居民家庭恩格尔系数不断下降,居民消费已从温饱型向享受型、发展型转变.如下表:(2)预报2013年的恩格尔系数;(3)求R2;(4)作出残差图.10.关于x与y有以下数据:已知x与y 6.5b ,(1)求y与x的线性回归方程;(2)现有第二个线性模型:y=7x+17,且R2=0。

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

回归分析的基本思想及其初步应用三

回归分析的基本思想及其初步应用三
实际业务中的回归分析应用非常广泛,包括商品销量预测、客户群体分析、金融预测、流量分析和医学 研究等。
常用的回归分析软件介绍
常用的回归分析软件包括R、Python、SPSS和Excel等。这些软件提供了丰富的函数和工具,可以帮助 我们进行数据分析和回归分析。
怎样设计合适的回归分析实验
设计合适的回归分析实验需要明确问题、确定自变量和因变量、选择合适的模型和方法、并进行数据预 处理和模型评价。关键是理清思路,严谨可靠,才能得出具有实际意义的结论。
多元线性回归分析
多元线性回归分析可以同时涉及多个自变量和一个因变量。这种方法十分灵活,可用于分析更加复杂的 问题和模型。
模型的拟合程度
模型的拟合程度是指回归方程对数据的拟合优度。一个好的模型应该拟合得 越好,R-squared 值越高。
残差分析及其意义
残差是因变量与回归方程预测值之间的差异。残差分析是评估模型拟合优度 的一种方式。
神经网络回归分析
神经网络回归分析是一种拟合嵌套非线性模型的回归分析方法。它可以允许多层非线性关系,并适用于 多维度问题。
回归分析与时间序列分析的联 系
回归分析和时间序列分析都是用来分析数据和预测未来的方法。回归分析可 以用于研究变量之间的关系,时间序列分析可以用于预测时间趋势。
实际业务中的回归分析应用
回归方程的含义
回归方程是描述自变量和因变量之间关系的数学公式。通过回归方程,我们可以预测因变量的值,也可 以研究自变量的影响。
回归分析的基本假设
回归分析有三个基本假设:线性性、独立性、和正态性。只有这些假设得到了满足,回归分析才能有效 地进行。
简单线性回归分析
简单线性回归分析是指只涉及一个自变量和一个因变量的回归分析。这种方法简单易懂,但是其时间序 列结果并不完全准确,需要更加复杂的分析方法。

1.11 回归分析的基本思想及其初步应用(文、理)

1.11 回归分析的基本思想及其初步应用(文、理)

1.1 回归分析的基本思想及其初步应用【学习目标】1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。

2. 能作出散点图,能求其回归直线方程。

3. 会用所学的知识对简单的实际问题进行回归分析。

【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。

例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据. 4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。

要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a、b 的意义是:以 a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
t检验
t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。

详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应

通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识

回归分析的基本思想及其初步应用ppt

回归分析的基本思想及其初步应用ppt
预测精度可以通过计算预测值与实际值之间的均方误 差(MSE)或均方根误差(RMSE)来衡量。
线性回归模型的评估是检验模型预测效果的重 要步骤。评估的指标包括模型的拟合优度、显 著性检验和预测精度等。
显著性检验可以通过F检验和t检验来实现,用于 检验模型的参数是否显著不为零。
03
非线性回归分析
多项式回归
04
回归分析的初步应用
经济预测
总结词
通过分析历史数据和相关经济指标,回归分 析可以预测未来的经济趋势和变化。
详细描述
回归分析在经济预测中应用广泛,例如,通 过分析历史GDP、消费、投资等数据,可以 预测未来经济增长速度、通货膨胀率等经济 指标。这种预测有助于企业和政府制定经济 政策,进行资源分配和投资决策。
结果解读
查看回归分析结果,包括系数、标 准误、显著性等。
03
02
线性回归分析
选择回归分析模块,设置自变量和 因变量。
模型评估
根据回归分析结果评估模型的性能 。
04
THANKS
感谢观看
05
回归分析的注意事项
数据质量
01
02
03
完整性
确保数据集中的所有观测 值都完整无缺,没有遗漏 或缺失的数据。
准确性
数据应准确无误,避免误 差或错误的测量和记录。
一致性
不同来源或不同时间点的 数据应具有一致的格式和 标准,以便进行比较和分 析。
过拟合与欠拟合
过拟合
模型在训练数据上表现良好,但 在测试数据上表现较差。原因是 模型过于复杂,导致对训练数据 的过度拟合。
它通过找出影响因变量的因素,并确 定这些因素对因变量的影响程度,来 预测因变量的取值。
回归分析的分类

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

我们可以用相关指数R2来刻画回归的效果,其计算公式是
显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。
在线性回归模型中,R2表示解释量对预报变量变化的贡献率。
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的线性相关性越强)。
我们可以用相关指数R2来刻画回归的效果,其计算公式是
如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。
总的来说: 相关指数R2是度量模型拟合效果的一种指标。 在线性模型中,它代表自变量刻画预报变量的能力。
我们可以用相关指数R2来刻画回归的效果,其计算公式是
例1的R2≈0.64 ,解释变量对总效应约贡献了64%,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。
回归方程:
3、回归分析的基本步骤:
画散点图
求回归方程
用回归直线方程预报、决策
这种方法称为回归分析.
回归分析是对具有相关关系的两个变量进行统计 分析的一种常用方法.
函数模型与回归模型之间的差别
函数模型:
回归模型:
线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解释部分y的变化。
错误数据 模型问题
几点说明: 第1个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用学习任务:进一步了解与线性回归模型有关的一些统计思想(引入残差变量的必要性;残差分析和相关指数的作用;对模型预报结果的正确认识等)。

主要知识点:回归模型与函数模型的区别;线性回归模型的数学表达式;建立回归模型的基本步骤;随机误差产生的原因;回归方程的预报结果(相关系数、相关指数、残差分析等角度);非线性相关关系转化为线性回归模型。

重点:回归模型与函数模型的区别;回归模型拟合效果的刻画——相关指数与残差分析。

难点:残差变量的解释;偏差平方和分解的思想。

一、函数关系与相关关系函数关系是两个变量之间的一种确定性的关系,而相关关系是一种非确定性的关系。

相关关系有线性相关关系与非线性相关关系。

用统计方法解决问题的基本步骤为:提出问题、收集数据、分析整理数据、预测或决策。

例1 为了预报一名身高为172cm的女大学生的体重,从某大学中随机选取8名女大学生作为样本,收集她们的身高和体重的数据如下表所示.。

从散点图中可以看出,图像同时经过这8个样本点的函数是不存在的,因此,这里的体重变量y与身高变量x不具有确定的函数关系;事实上,注意到当x=165时,y有48,57,61三个不同的取值,根据函数概念可知,这里的变量y与变量x根本就不可能具有函数关系;但由于这8个样本点分布在从左下方到右上方的一个带形区域内,使我们初步感觉到身高变量x与体重变量y并非没有关系,因此,应存在某一直线l,使这8个点都落在该直线附近,从而说明这里的变量y与变量x具有非确定性的线性相关关系。

那么,这条直线l的方程是什么?如何根据直线l的方程预报一名身高为172cm的女大学生的体重?预报值的含义是什么?预报的精确度又如何呢?回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其最基本的过程为:画散点图→求回归方程→用回归方程进行预报。

二、最小二乘估计公式(求回归直线方程的一种方法)例1中的8名女大学生是一个随机抽样样本,所获得的8组身高和体重的数据对称为观测数据(或样本数据).一般地,设对变量x 与y 有一组观测数据),...,3,2,1)(,(n i y x i i =,这些样本点都分布在直线l 的附近,直线l 的方程为:αβ+=x y (称变量x 为解释变量,变量y 为预报变量或观测变量).方程中αβ,是客观存在的真实值,但由于变量x 与y 并不具有线性函数关系,我们无法确切地知道αβ,具体是何值。

3.1回归分析的基本思想及其初步应用课件人教新课标

3.1回归分析的基本思想及其初步应用课件人教新课标

为:
( yi yi )2
i 1
称为残差平方和
在例1中,残差平方和约为128.361。
残差分析与残差图的定义:
我们可以通过残差 e1,e2, , en 来判断模型拟合的效果, 判断原始数据中是否存在可疑数据, 这方面的分析工作称为残差分析。
表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。

• 模型问题
我们可以用相关指数R2来刻画回归的效果,其计算公式是
n
(yi - yi)2
R2
=1-
i=1 n
(yi - y)2
i=1
显然,R2的值越大,说明残差平方和越小,也就是说
模型拟合效果越好。
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析 变量和预报变量的线性相关性越强)
如总果的某来组说数:据可能采取几种不同回归方程进行回归分
身于高是为有172如bc果m= 的不in=1女(是ixn=大i,1(-x学你xi探)-生能(究xy的)解i2P-体析4y:)重一=一下ii=n1=n定原1xxi是因yi2i-6吗-0nn?.xx32y16=k0g.吗84?9,
a = y - bx = -85.712
所以回归方程是 y 0.849x 85.712
7、一般地,建立回归模型的基本步骤为:
(1)确定研究对象,明确哪个变量是解析变量,哪个变量是 预报变量。
(2)画出确定好的解析变量和预报变量的散点图,视察它们 之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们视察到数据呈线性关 系,则选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。
22

3.1回归分析的基本思想及其初步应用

3.1回归分析的基本思想及其初步应用
的关系(如是否存在线性关系等).
(3)由经验确定回归方程的类型(如我们观察到数据呈 线性关系,则选用线性回归方程). ( 4)按 一 定 规 则 ( 如 最 小 二 乘 法 )估 计 回 归 方 程 中 的 参 数 .
(5)得出结果后分析残差图是否有异常(如个别数据对 应残差过大,残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
对于一组具有线性相关关系的数据
x1, y1 ,x2, y2 ,,xn , yn ,
我们知道其回归直线y = bx + a的斜率和截距 的最小二乘估计分别为
n
xi x yi y
bˆ i1 n
,
1
aˆ y bˆx,
2
xi x 2
i 1
这正是我们所要推导的公式.
下面我们通过案例 ,进一步学习回归分析的基本 思想及其应用.
例1 从某大学中随机选取8名女大学生,其身高和体 重数据如表 3-1所示.
表 3-1 编号 1 2 3 4 5 6 7 8
身 高 / cm 165 165 157 170 175 165 155 170 体 重 /kg 48 57 50 54 64 61 43 59
4.不能期望回归方程得到的预报值就是预报变量的 精 确 值.事 实 上, 它 是 预 报 变 量 的 可 能 取 值 的 平 均 值. 一 般 地 ,建 立 回 归 模 型 的 基 本 步 骤 为 :
( 1)确 定 研 究 对 象 ,明 确 哪 个 变 量 是 解 释 变 量 ,哪 个 变 量是预报变量. ( 2)画 出 解 释 变 量 和 预 报 变 量 的 散 点 图 ,观 察 它 们 之 间
第三章 统计案例

3.1《回归分析的基本思想及其初步应用》课件

3.1《回归分析的基本思想及其初步应用》课件
探索:水稻产量y与施肥量x之间大致有何规律?
10 20 30 40 50
500 450 400 350 300
·
·
·
·
·
·
·
发现:图中各点,大致分布在某条直线附近。
探索2:在这些点附近可画直线不止一条, 哪条直线最能代表x与y之间的关系呢?
x
y
施化肥量
水稻产量
施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455
温度xoC
21
23
25
27
29
32
35
z=lgy
0.85
1.04
1.32
1.38
1.82
2.06
2.51
产卵数y/个
7
11
21
24
66
115
325
x
z
当x=28oC 时,y ≈44 ,指数回归模型中温度解释了98%的产卵数的变化
由计算器得:z关于x的线性回归方程 为z=0.272x-3.849 , 相关指数R2=0.98
对数变换:在 中两边取自然对数得
令 ,则 就转换为z=bx+a
最好的模型是哪个?
显然,指数函数模型最好!
散点图
最小二乘法:
称为样本点的中心。
1、已知回归直线斜率的估计值为1.23,样本点的 中心为(4,5),则回归直线方程为( )
C
练习:
2、某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程y = 0.66x + 1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为…………( ) A.83% B.72% C.67% D.66%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
n i 1 n
i
x
i
y y
i
x
i 1
x

2
1).增减项;2).对2的值进行计算;3).配方;4).找出与αβ无关的项
4.用相关系数 r 来衡量斜率估计值与变化增量值之 间相关关系的强弱 5.进行回归分析
例1.从某大学中随机选取8名女大学生,其身高和体 重数据如表: 2 3 4 5 6 7 8 编号 1 身高 165 165 157 170 175 165 155 170
纵向距离是Y的实际值与拟合值之差,差异大拟合不好,差
注意概念的区别 误差:即随机项 残差:观测值减去拟合值, 是误差的估计值
石器时代 / 石器时代
wrg41xua
有跟你透露考题是什么?”“并没有。都什么时候了,还想着耍小聪明,自己要脚踏实地……”“明~白~啦~”慕容凌娢拖着长腔说道, 没想到茉莉也会给人灌鸡汤啊,太可怕了。(古风一言)而今只身山野,看灯笼挂梢惹了风策,怜青翠褪痕默白裹冬泽。第069章 保护树木, 从你开始“百蝶怎么……”慕容凌娢问道一半就不问了,用膝盖想想都知道肯定是从韩皓泽那里套来的消息。“那百蝶有没有跟你透露考 题是什么?”“并没有。都什么时候了,还想着刷小聪明,自己脚踏实地的……”“明~白~啦~”慕容凌娢拖着长腔说道,没想到茉莉 也会给人灌鸡汤啊,太可怕了。……当晚,慕容凌娢向往常一样登台演奏。一曲奏罢,工作算是完成了,慕容凌娢抱起古琴向台子后的屏 风走去,身后一个温婉的声音叫住了她。“白姑娘。”“嗨~”慕容凌娢习惯性的这样打招呼,在停顿了零点二秒之后幡然醒悟,“我是 说……恩……好久不见。”这人是谁来着?因为醉影楼一向热闹,人来人往,慕容凌娢见过的人不计其数,实在不敢轻易叫别人名字,认 错了多尴尬。“确实有些天没见了。”那人先是一愣,然后轻笑道,“白姑娘莫不是忘了在下?”“怎么会……”既然以前确实单独见过, 那应该没有错了,还是赌一把吧,“白绫怎会忘了张公子……”就算忘了名字,姓应该不会叫错。“张公子可是好久没来了吧……”慕容 凌娢仗着胆子又说了一句,谁知道他这几天来没来,反正人那么多我是没发现……但是她自己也很吃惊会说出这种话,竟然带着一种期待。 自己又不是推销员,卖的东西多了有提成……“白姑娘今晚可有空,是否愿意赏脸一叙旧情?”“这……”百蝶肯定还呆在自己的听风阁, 这边的情况应该不知道,茉莉也不见了踪影……到底要不要答应呢……这种FLAG到底要不要立呢……“白姑娘若是有难言之隐,在下必不 强求,告辞。”“等等!”慕容凌娢做了一个某康的手势,叫住了正准备离开的张祁渊。这种强烈的被套路感是怎么回事?“叙旧”“难 言之隐”怎么听都怪怪的,话中有话啊!慕容凌娢的好奇心再次膨 胀,头脑一热便答应了下来。“张公子这边请。”职业路痴慕容凌娢随 意找了一个最近的空房间,把古琴放在一边,规规矩矩做好,准备接受审问一般的谈话。“白姑娘算是这里的新人吧?”这问句似曾相识 “算是。”“怪不得前些年从未见过你。”纳尼?平淡无奇的话语让慕容凌娢懵逼了好一阵。“前些年~前些年~前些年……”这三个字 不断在慕容凌娢脑海中回放,前些年?几年前吗?几年前?十几岁就来这种地方,也太过分了吧……这是未成年人该来的地方吗?百蝶也 不管管,虽然跟青楼有区别,但也不能为了赚钱,毒害历史的花朵,晴朝的未来,科
体重 48 57 50 54 64 61 43 59
cm
㎏ 求根据一名女大学生的身高预报她体重的回归方程, 并预报身高为172cm的女大学生的体重.
得出回归方程:
y 0.849x 85.712
预报身高172女生体重:
y 0.849 172 85.712 60.316
问题:身高为172cm的女大学生的体重一定是 60.316㎏?如果不是,其原因是什么?
回归分析的基本思想 及其初步应用(2)
配人民教育出版社选修2-3 连平中学数学组 WWF
一、 复习
1.对两个具有线性相关关系的变量进行回归分析的步骤: 1).画散点图; 2).求回归直线方程 3).用回归直线方程进行预报. a y bx 2.求回归方程的方法:
b
3.了解这两个公式的
相关文档
最新文档