频率与概率教案

合集下载

频率与概率教案范文

频率与概率教案范文

频率与概率教案范文教案主题:频率与概率教学目标:1.了解频率与概率的概念,以及它们在数学和日常生活中的应用;2.能够使用频率和概率进行简单的问题求解;3.培养学生运用频率和概率进行分析和判断的能力。

教学准备:1.教师准备一些有关频率和概率的实例资料,包括游戏、问卷调查等;2.学生需要纸、笔或计算器。

教学过程:Step 1 引入新知识(20分钟)1.教师向学生介绍频率和概率的概念,频率是指特定事件发生的次数与总数之比,概率是指事件发生的可能性大小;2.教师给出几个示例,比如抛硬币、掷骰子等,让学生思考这些事件发生的频率和概率是多少;3.教师通过示例进一步解释频率和概率的关系,频率越高,概率越大。

Step 2 频率与概率的计算(30分钟)1.教师通过实例让学生计算频率和概率的值,如一些班级参加运动会的男生人数是20人,女生人数是30人,学生随机选取一人,求该学生是男生的频率和概率;2.教师给出解题思路,频率等于特定事件发生的次数与总数之比,概率等于特定事件发生的次数与总数之比;3.让学生自己尝试解答,并与同学们讨论答案。

Step 3 频率与概率在生活中的应用(30分钟)1.教师给出一些实际问题,并让学生通过计算频率和概率来解决问题,如款食品在市场上的销售情况,从中计算频率和概率,分析销售情况;2.教师引导学生思考频率和概率在日常生活中的应用,比如天气预测、赌博等;3.让学生在小组内讨论频率和概率在其他领域的应用,并总结出一些结论。

Step 4 练习与应用(20分钟)1.教师提供一些练习题,让学生运用频率和概率进行计算和解答;2.对学生的答案进行评价和指导,解答他们的问题;3.教师设计一些游戏或实例,让学生运用频率和概率进行分析和判断,培养他们的逻辑思维能力。

Step 5 总结与反思(10分钟)1.教师引导学生总结频率和概率的概念和计算方法,回顾教学内容;2.让学生思考频率和概率在日常生活中的重要性,并举例说明;3.引导学生思考频率和概率的局限性,及其在实际问题中的应用注意事项。

高中高三数学《频率与概率》教案、教学设计

高中高三数学《频率与概率》教案、教学设计
学生独立完成练习,我会在一旁观察他们的解题过程,及时发现问题,给予针对性的指导。
(五)总结归纳
在总结归纳环节,我将引导学生从以下几个方面进行:
1.本节课我们学习了频率与概率的关系,以及概率的性质和计算方法。
2.通过实例分析,我们了解了如何运用概率知识解决实际问题。
3.学生在小组讨论和课堂练习中,提高了自己的问题解决能力和合作能力。
最后,我会强调概率在生活中的重要作用,鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中。同时,提醒学生课后复习本节课的内容,巩固所学知识。
五、作业布置
为了巩固本节课所学内容,检验学生对频率与概率知识的掌握程度,特布置以下作业:
1.请同学们完成课后练习题第1、2、3题,重点加强对概率性质、计算方法的理解和应用。
3.小组合作:鼓励学生进行小组讨论,培养学生的团队协作能力和沟通能力。
4.知识迁移:将所学概率知识与其他学科知识相结合,提高学生的综合运用能力。
5.数学建模:运用概率知识解决实际问题,培养学生的建模能力和创新意识。
(三)情感态度与价值观
在本章节的教学中,教师应关注学生的情感态度与价值观的培养,使学生在学习过程中形成以下素养:
4.复习本节课内容,准备下次课的小测验,内容包括:
-随机事件、频率与概率的定义及其关系。
-概率的性质和计算方法。
-古典概型的计算及应用。
5.阅读拓展资料,了解概率论在统计学、经济学等领域的应用,拓宽知识视野。
请同学们认真完成作业,加强对频率与概率知识的学习和巩固。在完成作业的过程中,如遇到问题,请及时与同学、老师交流,共同解决问题。期待大家在下次课上的优秀表现!
1.深化学生对概率概念的理解,引导学生从多角度认识概率,提高学生的抽象思维能力。

新教材频率与概率教案

新教材频率与概率教案

新教材频率与概率教案这是新教材频率与概率教案,是优秀的数学教案文章,供老师家长们参考学习。

新教材频率与概率教案第1篇一、教材分析在学《频数与频率》之前学生已经学习了统计表、统计图、平均数以及中位数、众数等,对本课的学习起着铺垫作用,为下节课学习绘制频数分布直方图做准备。

二、教学目标(一)知识技能:理解频数与频率的概念,会选择合适的方式表示数据,能读懂统计图。

(二)过程方法:经历数据收集、整理、表示、分析的过程,作出合理的判断和预测,解决实际问题。

(三)情感态度价值观:让学生进一步体会数据整理和表示的重要性,结合具体情境体会统计对决策的应用价值。

三、教学重、难点(一)重点:运用频数与频率以及相应的条形统计图或折线统计图进行数据处理,作出合理判断和预测。

(二)难点:根据数据处理的结果,作出合理的判断和预测。

四、教学方法(一)教法:主要采用引导、探索、交流的方法,让学生在提出问题、解决问题的过程中获得新知。

在素材呈现上,注意呈现方式的多样化和前后知识的联系,如以表格、条形统计图、折线图等多种方式呈现,既加强了知识间的联系,又巩固了学生对各种图表的识别能力。

(二)学法:指导注重学生的活动,特别是小组合作的活动。

在合作交流中,深化对知识的理解,让所有学生都得到发展,达到共同进步的目的。

在做一做、议一议中,再次经历数据的收集、整理过程,培养学生观察、猜想、决策能力,体会样本估计整体的思想。

五、教学过程(一)提出问题,导入新课兴趣是最好的老师;问题是数学的心脏。

导入新课时,采用让学生猜年龄的活动,旨在调动学生参与课堂的积极性,并指出频数与频率,自然引入课题,接着让学生根据课题提出最想知道什么,从而创设了良好的问题情境。

(二)研究问题,讲授新课频数和频率的概念,虽然是本课的重点,但不要求死记硬背,只要求学生能结合具体情境体会其意义,学习重点应在于利用它们更好地整理和表示数据,从而解决问题。

因教材所给素材是足球明星,学生对此比较陌生,难以激起学习的的兴趣。

频率与概率教学教案

频率与概率教学教案

频率与概率教学教案引言:频率与概率是数学中重要的概念,也是实际生活中常用的工具。

学习频率与概率的概念和计算方法,能够帮助学生更好地理解和应用数学知识。

本文将介绍一种针对中学生的,旨在帮助教师有效地教授这一内容。

一、教学目标:1. 理解频率与概率的概念及其关系;2. 掌握频率与概率的计算方法;3. 能够应用频率与概率解决实际问题。

二、教学内容:1. 频率的概念:频率是指某一事件在一定次数内发生的次数与总次数的比值。

通过引入频率的概念,可以将概率问题转化为频率问题,更易于理解和计算。

2. 概率的概念:概率是指某一事件在所有可能事件中发生的可能性大小。

概率的范围在0到1之间,0表示不可能发生,1表示必然发生。

概率可以通过频率来估计。

3. 频率与概率的关系:频率与概率是相互关联的,可以通过大量实验的频率来估计概率。

当实验次数无限大时,频率将收敛于概率。

4. 频率与概率的计算方法:频率的计算方法是将事件发生的次数除以实验总次数。

概率的计算方法包括古典概率、几何概率和统计概率等。

5. 应用频率与概率解决实际问题:频率与概率在现实生活中有广泛的应用,如投掷骰子、抽取扑克牌、统计调查等。

学生可以通过实际问题的解决,深入理解频率与概率的意义。

三、教学方法:1. 案例引入法:通过具体的案例引入频率与概率的概念,让学生在实际问题中感受到频率与概率的应用。

2. 讨论与互动:组织学生进行小组讨论,引导学生发表观点和思考问题,增强学生的主动性和参与性。

3. 实践操作:让学生参与到实际的频率与概率计算中,进行实践操作,培养学生的计算能力和解决问题的能力。

四、教学评估:1. 课堂练习:布置一些课堂练习题,检验学生对频率与概率的理解和计算能力。

2. 实际应用:组织学生进行一些实际应用题的解答,考察学生将频率与概率应用于实际问题的能力。

3. 作业评定:对学生完成的作业进行评定,综合考察学生对频率与概率的掌握程度。

结语:通过本教案的教学,学生将能够全面理解频率与概率的概念和计算方法,掌握应用频率与概率解决实际问题的能力。

频率与概率的教案

频率与概率的教案

频率与概率的教案教案标题:频率与概率的教案教案目标:1. 理解频率与概率的概念及其在日常生活中的应用。

2. 能够计算简单事件的频率和概率。

3. 能够分析和解释频率和概率对决策和预测的影响。

教学资源:1. 白板、黑板或投影仪。

2. 教学PPT或课件。

3. 学生练习册或工作纸。

4. 骰子、扑克牌或其他随机事件的实物。

教学步骤:引入(5分钟):1. 引导学生回顾事件和概率的概念,并提问他们对频率和概率的理解。

2. 通过举例子引导学生思考频率和概率在日常生活中的应用,如天气预报、运动比赛、抽奖等。

探索(15分钟):1. 向学生介绍频率的概念,即某事件在一定次数内发生的次数。

2. 利用实物(如骰子、扑克牌)进行实际操作,让学生通过多次实验计算事件发生的频率。

3. 引导学生发现频率与实验次数的关系,并进行简单的数据分析和图表绘制。

解释(10分钟):1. 引导学生理解概率的概念,即某事件发生的可能性大小。

2. 通过计算频率与实验次数的比值,引导学生计算事件的概率。

3. 引导学生分析频率和概率之间的关系,并讨论其对决策和预测的影响。

拓展(15分钟):1. 提供更多实例,让学生计算事件的频率和概率。

2. 引导学生思考如何利用频率和概率做出更准确的决策,如购买彩票、选择交通工具等。

3. 引导学生思考概率的局限性,如随机性、样本大小等因素的影响。

总结(5分钟):1. 对频率和概率的概念进行总结,并强调它们在日常生活中的应用重要性。

2. 检查学生对频率和概率的理解,解答他们可能存在的疑问。

作业:布置相关练习,要求学生计算事件的频率和概率,并思考概率在实际生活中的应用。

评估:1. 观察学生在课堂上的参与和讨论情况。

2. 收集学生完成的练习和作业,评估他们对频率和概率的掌握程度。

3. 可以进行小组或个人形式的口头或书面评估,让学生解答与频率和概率相关的问题。

教案扩展:1. 可以引导学生进行更复杂的频率和概率计算,如多个事件的组合、条件概率等。

频率与概率的关系-冀教版九年级数学下册教案

频率与概率的关系-冀教版九年级数学下册教案

频率与概率的关系-冀教版九年级数学下册教案一、教学目标1.了解频率与概率的概念。

2.学习频率和概率的计算方法以及二者之间的关系。

3.能够在实际问题中运用频率和概率的概念解决问题。

二、教学重点1.频率和概率的概念及计算方法。

2.频率和概率的关系。

三、教学难点1.频率和概率的区别和联系。

2.如何在实际问题中运用频率和概率的概念。

四、教学过程1. 导入新课教师通过提问的方式,引导学生思考频率和概率的概念及其区别。

2. 课堂讲解1.频率的定义:某一事件在一定条件下发生的次数与总次数的比值。

2.概率的定义:某一事件在所有可能事件中发生的可能性的大小。

3.频率与概率的关系:随着事件发生的总次数的增加,频率越来越接近于概率。

3. 讲解举例1.今天的天气情况为晴天、阴天、雨天,其中晴天、阴天、雨天的出现次数分别是10次、5次、5次,则相应的频率分别为10/20,5/20,5/20,即0.5,0.25,0.25。

2.假设一枚硬币掷100次,正面向上的次数为70次,则相应的频率为70/100=0.7,概率为0.5。

4. 练习1.某班有30个同学,其中有25个人喜欢数学,其余的不喜欢数学。

求该班同学中喜欢数学的概率。

2.一个筒里有5个红球、3个黄球和2个绿球,从中任取一个球,求取出红球的概率。

3.在一次全国性的高考中,有一道选择题,共有4个选项,答对者有70%。

在其中随机选3个人,问这3个人中最少有一个人答对的概率是多少。

5. 总结归纳学生通过讲解和练习,了解了频率和概率的概念以及二者之间的关系,理解了如何运用频率和概率的概念解决问题。

五、课堂作业1.完成课堂练习。

2.整理所学内容,写出本课的笔记。

六、教学反思通过本节课的讲解和练习,学生掌握了频率和概率的概念以及其计算方法,能够在实际问题中运用频率和概率的概念解决问题。

但是本节课的练习题较少,教师需要增加练习题量,以巩固学生的理解和应用能力。

频率与概率教案

频率与概率教案

频率与概率教案
一、教学目标
1.了解频率和概率的概念和基本性质;
2.能够计算样本空间、事件和概率;
3.掌握频率和概率之间的关系。

二、教学重点
1.频率和概率的概念和计算;
2.频率和概率的关系。

三、教学难点
1.频率和概率的概念的区分;
2.概率的计算。

四、教学过程
1.导入(5分钟)
向学生提出以下问题:“什么是概率?你们平时都是如何理解和应用概率的?”引导学生回想和讨论他们对概率的理解和应用情况。

2.概念讲解(10分钟)
介绍频率和概率的概念和定义,频率是指事件发生的次数与试
验进行的总次数之比,概率是指事件发生的可能性大小。

3.计算方法(20分钟)
(1)样本空间的计算:样本空间是指试验所有可能结果的集合,可以通过列举法或计数法进行计算。

(2)事件的计算:事件是样本空间的子集,也可以通过列举法或计数法进行计算。

(3)概率的计算:概率可以通过频率计算近似估计,也可以通过等可能原理(即事件发生的可能性相等)进行计算。

4.实例分析(15分钟)
通过一些实际生活中的例子,如投骰子、抛硬币等,引导学生运用频率和概率的计算方法,计算相应的概率。

5.练习与拓展(10分钟)
提供一些练习题,让学生通过计算频率和概率来巩固和拓展所学知识。

6.归纳总结(5分钟)
对所学知识进行总结,梳理频率和概率的概念和计算方法,并强调二者之间的关系。

五、课堂反思
通过本节课的教学,学生对频率和概率的概念和计算方法有了初步的了解和掌握,但还需进行更多的实例分析和练习,以提高运用频率和概率的能力。

频率与概率教案

频率与概率教案
m n

来计算.从表中
可以看出,生产产品是次品的频率大约稳定在 0.100 左右. 解 (1)记 A={ 生产的产品是次品 },则事件 A 发生的频率为
m n 109 1200 0 .0 9 1 ,
即星期五该厂生产的产品是次品的频率约为 0.091. (2)本周内生产的产品是次品的概率约为 0.100.
课题 教学 目的

第 三章第 3.1.3 节
频率与概率
知识与技能: (1)通过实验,理解实验次数充分大时,频率与概率定义. (2)通过实例分析,理解事件的频率与概率的意义以及二者的区别与联系. 过程与方法: 能够通过事件发生的频率估计概率, 培养学生对数据分析与处理的能力. 情感、态度与价值观:通过实验的方法多次进行数据分析,培养学生数据统计、归纳 问题习惯. 通过实例分析, 理解事件的频率与概率的意义以及二者的区别与联系, 得到求概 率的方法。 正确理解概率定义,区别频率与概率的概念。 新课
m n
归纳 总结
启发 讲授
,叫做事件 A 发生的频率.

线 装
【分析】 频率的取值范围:[0,1] *动脑思考 探索新知 试验 探索 组织 巡视

【试验】学生两人一组试验,每组 25 次。 任务一:反复抛掷一枚硬币,观察并记录抛掷的次数与硬币 出现正面向上的次数.分组实验:一人记录,一人实验 任务二:每两组合并为一大组,合并数据计算试验 50 次的 频数和频率,并记录下来。 2.概率定义: 在 n 次重复进行的试验中,A 发生的频率 时,
小结
两个概念:频率与概率 一种方法:通过实验用统计的方法由频率估计概率
订 装
作业
P 97 练习 A 全做
课后体会

高中数学频率与概率教案

高中数学频率与概率教案

高中数学频率与概率教案
教学目标:
1. 了解频率与概率的概念及其差异;
2. 掌握如何计算频率及概率;
3. 能够熟练运用频率与概率解决实际问题。

教学重点:
1. 频率的计算方法;
2. 概率的计算方法;
3. 实际问题中频率与概率的应用。

教学难点:
1. 如何理解频率与概率的区别;
2. 如何应用频率与概率解决实际问题。

教学准备:
1. 教师准备多媒体课件,展示频率与概率的概念;
2. 准备小组练习题,帮助学生巩固所学知识;
3. 准备实际问题,让学生运用频率与概率解决问题。

教学过程:
一、导入(5分钟)
教师引导学生讨论频率与概率的含义,引出学习本课内容的目的。

二、学习(30分钟)
1. 教师讲解频率的概念及计算方法,并通过例题演示如何计算频率;
2. 教师讲解概率的概念及计算方法,并通过例题演示如何计算概率;
3. 学生跟随教师一起做练习题,巩固所学内容。

三、实践(15分钟)
1. 学生分组解决实际问题,运用频率与概率来分析和解决问题;
2. 学生展示解决问题的思路和方法。

四、总结(5分钟)
教师总结本节课的重点内容,提醒学生注意频率与概率在实际问题中的应用。

五、作业(5分钟)
布置作业:练习册上相关题目的完成。

教学反思:
通过本节课的教学,学生应该能够理解频率与概率的概念及其在实际问题中的应用,掌握计算频率与概率的方法,并能够熟练应用于解决问题。

在教学中要注重引导学生思考、合作解决问题,激发他们对数学的兴趣和学习热情。

小学生必备的频率与概率教案

小学生必备的频率与概率教案

在小学数学教学中,频率与概率是非常重要的概念。

频率与概率教学不仅可以让小学生掌握一些数字,还可以培养他们的逻辑思维能力,因此,频率与概率教案也成为了小学数学教学中必不可少的一部分。

一、教学目标1、认识频率与概率的定义。

2、理解频率与概率之间的关系。

3、学习使用频率与概率进行简单的计算。

二、教学内容1、频率和概率的定义。

频率和概率都是描述事件发生概率的概念。

具体来说:频率表示既有事件发生的次数,又有事件未发生的次数。

那么频率的计算方法就是:既有事件发生的次数÷总次数。

概率则表示随机事件发生的可能性大小。

概率的计算方法就是:随机事件发生的次数÷总可能性的次数。

2、频率和概率的关系。

频率和概率之间的关系是非常紧密的。

对于一个大样本,随着事件发生的次数越来越多,频率会趋近于概率。

因此,频率和概率可以相互转化。

3、使用频率和概率进行计算。

当我们知道了事件的频率或概率后,可以通过它们进行一些简单的计算。

比如:如果一个事件发生的概率是1/4,那么与之对应的频率是多少?如果一项运动员在400米比赛中有90%的赢的可能性,那么符合要求的比赛有多少次?三、教学过程1、导入教师可以通过一些事例引入频率和概率这个概念。

比如,假如你期末考试有60分,有一个同学考了78分,你对他拿高分的可能性是多少?又或者,在你的班级里,有多少人喜欢吃蛋糕呢?2、讲解教师可以讲解频率和概率的定义,并介绍它们之间的关系。

如果有条件的话,教师可以通过一些实际的案例,帮助学生更好地理解频率和概率。

3、例子分析教师可以举例,让学生通过计算频率和概率来理解它们之间的差异和联系。

4、练习通过一些练习题的形式,巩固学生对于频率和概率的掌握情况。

比如:一批裁判员对两个击球手的投球速度进行测试,测试结果如下表所示:击球手投球速度甲 19秒 20秒 21秒 22秒 23秒乙 19秒 20秒 21秒 22秒 23秒 24秒请问,甲乙两位选手的投球速度在22秒到23秒之间的可能性大吗?五、总结与反思在教学结束时,教师可以让学生总结和归纳今天学习的内容,并且让学生对自己的学习过程进行一些反思。

教案 频率与概率

教案 频率与概率

频率与概率(一)一、教学目标:1.经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。

2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。

3.能运用树状图和列表法计算简单事件发生的概率。

二、教学重点:运用树状图和列表法计算事件发生的概率。

教学难点:树状图和列表法的运用方法。

三、教学方法:探究讨论法 四、教学过程:(一)、问题引入:对于前面的摸牌游戏, 在一次试验中,如果摸得第一张牌面数字为1,那么摸第二张牌的数字为几的可能性大?如果摸得第一张牌的牌面数字为2呢?(由此引入课题,然后要求学生做实验来验证他们的猜想)(二)、做一做:实验1:对于上面的试验进行30次,分别统计第一张牌的牌面字为1时,第二张牌的牌面数字为1和2的次数。

实验的具体做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录, 如:1 2 2 1---------(上面一行为第一次抽的) 2 1 2 1---------(下面一行为第二次抽的) 议一议:小明的对自己的试验记录进行了统计,结果如下:因此小明认为,如果摸得第一张牌面数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性比较大。

你同意小明的看法吗?让学生去讨论小明的看法是否正确,然后让学生去说说自已的看法。

想一想:对于前面的游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?小颖的看法:小亮的看法:实际上,摸第一张牌时,可能出现的的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此,因此,我们可以用下面的“树状图”或表格来表示所有可能出现的结果:开始第一张牌的面的数字:1 2第二张牌的牌面数字: 1 2 1 2 可能出现的结果(1,1)(1,2)(2,1)(2,2)从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2) (2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4。

北师大版数学九年级上册6.1.1《频率与概率》教案

北师大版数学九年级上册6.1.1《频率与概率》教案

北师大版数学九年级上册6.1.1《频率与概率》教案一. 教材分析《频率与概率》是北师大版数学九年级上册第六章的第一节,本节课的主要内容是让学生了解频率与概率的概念,并掌握频率估计概率的方法。

教材通过生动的实例,引导学生认识频率与概率的关系,进而学会如何利用频率来估计概率。

本节课的内容对于学生来说比较抽象,需要通过大量的实践活动来理解和掌握。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于统计学的基本概念有一定的了解。

但是,对于频率与概率的概念,学生可能比较陌生,需要通过实例来引导学生理解和掌握。

此外,学生对于数学的抽象思维能力还在培养中,因此,需要通过具体的活动来帮助学生理解和掌握。

三. 教学目标1.让学生了解频率与概率的概念,理解频率与概率的关系。

2.让学生学会利用频率来估计概率的方法。

3.通过实践活动,培养学生的动手能力和抽象思维能力。

四. 教学重难点1.频率与概率的概念。

2.频率估计概率的方法。

3.利用频率与概率解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过实例引导学生理解和掌握频率与概率的概念。

2.采用小组合作的学习方式,让学生在活动中体验和理解频率与概率的关系。

3.采用总结反思的教学方法,让学生在总结中深化对频率与概率的理解。

六. 教学准备1.准备相关的实例,用于引导学生理解和掌握频率与概率的概念。

2.准备小组合作的活动,让学生在活动中体验和理解频率与概率的关系。

3.准备总结反思的问题,帮助学生在总结中深化对频率与概率的理解。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生了解频率与概率的概念。

例如,抛硬币实验,让学生观察并记录硬币正反面出现的频率,进而引出概率的概念。

2.呈现(10分钟)呈现一组数据,让学生计算其中某些事件的频率,并尝试估计这些事件的概率。

例如,掷骰子实验,让学生计算掷出1的频率,并估计掷出1的概率。

3.操练(10分钟)让学生进行小组合作,进行一系列的实践活动,例如,抽签游戏、骰子游戏等,让学生在活动中体验和理解频率与概率的关系。

高中数学教案10-3 频率与概率

高中数学教案10-3 频率与概率

§10.3频率与概率学习目标 1.理解概率的意义以及频率与概率的区别与联系.2.能初步利用概率知识解释现实生活中的概率问题.3.了解随机模拟的含义,会利用随机模拟估计概率.知识点一频率的稳定性在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率f n(A)会逐渐稳定于事件A 发生的概率P(A),我们称频率的这个性质为频率的稳定性.因此,我们可以用频率f n(A)估计概率P(A).思考一枚质地均匀的硬币,抛掷10次,100次,1000次,正面向上的频率与0.5相比,有什么变化?答案随着抛掷的次数增加,正面向上的次数与总次数之比会逐渐接近0.5.知识点二随机模拟用频率估计概率,需做大量的重复试验,我们可以根据不同的随机试验构建相应的随机数模拟试验,这样就可以快速地进行大量重复试验了.我们称利用随机模拟解决问题的方法为蒙特卡洛方法.1.设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品.(×).(×) 2.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是511003.某事件发生的概率随着试验次数的变化而变化.(×)4.小概率事件就是不可能发生的事件.(×)一、频率与概率的关系例1(1)下列说法一定正确的是()A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一个骰子掷一次得到2的概率是16,则掷6次一定会出现一次2C.若买彩票中奖的概率为万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关答案D解析A错误,概率小不代表一定不发生;B错误,概率不等同于频率;C错误,概率是预测,不必然出现;D正确,随机事件发生的概率是频率的稳定值,与试验次数无关.(2)对某电视机厂生产的电视机进行抽样检测的数据如下:抽取台数501002003005001000优等品数4092192285478954①根据表中数据分别计算6次试验中抽到优等品的频率;②该厂生产的电视机为优等品的概率约是多少?解①抽到优等品的频率分别为0.8,0.92,0.96,0.95,0.956,0.954.②由表中数据可估计优等品的概率约为0.95.反思感悟(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.(2)频率本身是随机的,在试验前不能确定.(3)概率是一个确定的常数,是客观存在的,在试验前已经确定,与试验次数无关.跟踪训练1某射手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率m n(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?解(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.9附近,所以这个射手射击一次,击中靶心的概率约是0.9.二、游戏公平性的判断例2某校高二年级(1)(2)班准备联合举行晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?解该方案是公平的,理由如下:各种情况如下表所示:由上表可知该游戏可能出现的情况共有12种,其中两数字之和为偶数的有6种,为奇数的也有6种,所以(1)班代表获胜的概率P1=612=12,(2)班代表获胜的概率P2=612=12,即P1=P2,机会是均等的,所以该方案对双方是公平的.反思感悟游戏规则公平的判断标准:(1)在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说是否公平只要看获胜的概率是否相等.(2)例如:体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才是公平的;每个人购买彩票中奖的概率应该是相等的,这样才是公平的;抽签决定某项事务时,任何一支签被抽到的概率也是相等的,这样才是公平的等等.跟踪训练2有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A.猜“是奇数”或“是偶数”;B.猜“是4的整数倍数”或“不是4的整数倍数”;C.猜“是大于4的数”或“不是大于4的数”.请回答下列问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.解(1)A方案中,“是奇数”和“是偶数”的概率都为0.5;B方案中,“是4的整数倍数”的概率为0.2,“不是4的整数倍数”的概率为0.8;C方案中,“是大于4的数”的概率为0.6,“不是大于4的数”的概率为0.4.故选择B方案,猜“不是4的整数倍数”获胜的概率最大.(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性.三、用随机模拟估计概率例3一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个球,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.解用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组,如下,产生30组随机数:666743671464571561156567732375 716116614445117573552274114662 237456732353156632171243547721就相当于做了30次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的是白球,第三次摸到的是红球,它们分别是567,117,237和547,共4组,因此恰好第三次摸到红球的概率约为430=215.反思感悟用随机数模拟法求事件概率的方法在使用整数随机数进行模拟试验时,首先要确定随机数的范围和用哪个代表试验结果.(1)试验的基本结果是等可能的时,样本空间即为产生随机数的范围,每个随机数代表一个样本点.(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数.跟踪训练3某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率,用随机模拟的方法估计上述概率.解利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为1组,例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为n 100.1.“某彩票的中奖概率为11000”意味着()A.买1000张彩票就一定能中奖B.买1000张彩票中一次奖C.买1000张彩票一次奖也不中D.购买彩票中奖的可能性是11000答案D2.用随机模拟方法估计概率时,其准确程度取决于()A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法答案B解析随机数容量越大,所估计的概率越接近实际数.3.(多选)下列说法中正确的有()A.做9次抛掷一枚质地均匀的硬币的试验,结果有5次出现正面,所以出现正面的概率是59 B.盒子中装有大小和形状相同的3个红球,3个黑球,2个白球,每种颜色的球被摸到的可能性相同C.从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性不相同D.设有一大批产品,已知其次品率为0.1,则从中任取100件,次品的件数可能不是10件答案CD解析在A中,应为出现正面的频率是59,A错误;在B中,摸到白球的概率要小于摸到红球或黑球的概率,B错误;在C中,取得的数小于0的概率大于不小于0的概率,C正确;在D中,任取100件产品,次品的件数是随机的,D正确.故选C,D.4.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.答案500解析设进行了n次试验,则有10n=0.02,得n=500,故进行了500次试验.5.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A出现的频率为________.答案0.52解析100-48100=0.52.1.知识清单:(1)概率与频率的关系.(2)用频率估计概率.(3)用随机模拟估计概率.2.常见误区:频率与概率的关系易混淆.1.气象台预测“本市明天降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨答案D解析降雨概率为90%是指明天降雨这个随机事件发生的可能性为90%,明天也可能不下雨,故选D.2.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有()A.64个B.6个C.16个D.8个答案C解析80×(1-80%)=16.3.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:满意状况不满意比较满意满意非常满意人数200n21001000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7 15B.25C.1115D.1315答案C解析由题意得,n=4500-200-2100-1000=1200,所以随机调查的消费者中对网上购物“比较满意”或“满意”的总人数为1200+2100=3300,所以随机调查的消费者中对网上购物“比较满意”或“满意”的频率为3300 4500=1115.由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为11 15 .4.某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率;先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果,经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907由此估计“3例心脏手术全部成功”的概率为()A.0.2B.0.3C.0.4D.0.5答案A解析由10组随机数知,3个随机数都在4~9中的有569,989两组,故所求的概率为P=2 10=0.2.5.(多选)给出下列四个命题,其中正确的命题有()A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51100 B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率答案CD解析A,B混淆了频率与概率的区别,A,B错误;C正确;在D中,频率是概率的估计值,D正确.故选C,D.6.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031则这堆苹果中,质量不小于120克的苹果数约占苹果总数的________%.答案70解析计算出样本中质量不小于120克的苹果的频率,来估计这堆苹果中质量不小于120克的苹果所占的比例,由题意知10+3+120=0.7=70%.7.在用随机数(整数)模拟“有4个男生和5个女生,从中抽选4个,并选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并且1~4代表男生,用5~9代表女生.因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是________________.答案选出的4人中,只有1个男生解析用1~4代表男生,用5~9代表女生,4678表示1个男生3个女生.8.一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x 个;[40,50)5个;[50,60)4个;[60,70)2个;并且样本在[30,40)之间的频率为0.2.则x=________;根据样本的频率分布估计,数据落在[10,50)内的概率约为________.答案40.7解析由x20=0.2,得x=4,样本中数据落在[10,50)内的频率=2+3+4+520=710=0.7,所以估计总体中数据落在[10,50)内的概率约为0.7.9.在一个不透明的袋中有大小相同的4个小球,其中有2个白球,1个红球,1个蓝球,每次从袋中摸出一球,然后放回搅匀再摸,在摸球试验中得到下列表格中部分数据:摸球次数105080100150200250300出现红球的频数220273650出现红球的频率30%26%24%(1)请将表中数据补充完整;(2)如果按照此方法再摸球300次,所得频率与表格中摸球300次对应的频率一定一样吗?为什么?(3)试估计红球出现的概率.解(1)频数分别是15,65,72;频率分别是20%,25%,27%,24%,25%.(2)可能不一样,因为频率会随每次试验的变化而变化.(3)频率集中在25%附近,所以可估计概率为0.25.10.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下表:所用时间/分10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),所以用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为所用时间/分10~2020~3030~4040~5050~60选择L 1所用时间的频率0.10.20.30.20.2选择L 2所用时间的频率00.10.40.40.111.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义,这种鱼卵的孵化概率()A .约为0.8513B .必为0.8513C .再孵一次仍为0.8513D .不确定答案A解析这种鱼卵的孵化频率为851310000=0.8513,它近似的为孵化的概率.12.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3000辆帕萨特出租车,乙公司有3000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理()A .甲公司B .乙公司C .甲或乙公司均可D .以上都对答案B解析由于甲公司桑塔纳的比例为100100+3000=131,乙公司桑塔纳的比例为30003000+100=3031,可知肇事车在乙公司的可能性大些.13.(多选)甲、乙两人做游戏,下列游戏中公平的是()A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D.甲、乙两人从1~10中各写一个整数,若是同奇或同偶则甲胜,否则乙胜答案ACD解析对于A,C,D,甲胜、乙胜的概率都是12,游戏是公平的;对于B,点数之和大于7和点数之和小于7的概率相等,但点数等于7时乙胜,所以甲胜的概率小,游戏不公平.14.通过模拟试验产生了20组随机数:6830301370557430774044227884 2604334609526807970657745725657659299768607191386754如果恰好有三个数在1,2,3,4,5,6中,表示恰好有三次击中目标,则四次射击中恰好有三次击中目标的概率约为________.答案0.25解析表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=0.25.15.样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.答案640.4解析由于[6,10)范围内,频率/组距=0.08,所以频率=0.08×4=0.32,而频数=频率×样本容量,所以频数=0.32×200=64.由频率估计概率可知,在[2,10)范围内的概率约为(0.02+0.08)×4=0.4.16.如图所示,有两个可以自由转动的均匀转盘A,B.转盘A被平均分成3等份,分别标上1,2,3三个数字;转盘B被平均分成4等份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则乙获胜.你认为这样的游戏规则公平吗?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?解列表如下:B A 3456145672567836789由表可知,样本点共12个,和为6的样本点只有3个.因为P (和为6)=312=14,所以甲、乙获胜的概率不相等.所以这样的游戏规则不公平.如果将规则改为“和是6或7,则甲胜,否则乙胜”,那么此时游戏规则是公平的.。

3.1.频率与概率-人教B版必修三教案

3.1.频率与概率-人教B版必修三教案

3.1 频率与概率-人教B版必修三教案一、教学目标1.了解频率与概率的概念;2.掌握频率和概率的计算方法;3.建立频率和概率之间的联系;4.培养学生的数据分析能力和抽象思维能力。

二、教学重点和难点教学重点:掌握频率与概率的相关概念及其计算方法。

教学难点:建立频率和概率之间的联系,通过实例进行思考。

三、教学内容和方法1. 教学内容1.频数、频率、概率的概念;2.频率与概率的计算方法;3.频率与概率的联系;4.实例分析与课堂讨论。

2. 教学方法1.案例教学法,引入实例,提供具体场景;2.讨论式教学法,通过课堂讨论来加深学生们的理解;3.实验教学法,通过实际操作来体验频率和概率之间的联系。

四、教学过程1. 复习导入(5分钟)老师通过贴出一张某小学班级语文考试的成绩单,以频数和频率的形式让学生回忆起对频数和频率的理解,并导入本节课的主题——频率与概率。

2. 理论讲解(20分钟)2.1 频数与频率老师首先讲解频数的概念,即某个数值在样本中出现的次数。

然后讲解频率的概念,即某个数值在样本中出现的频率。

频率计算公式为:频率 = 频数 / 样本总数。

通过实际例子给出计算并计算出其结果,加深学生们的理解。

2.2 概率接着,老师讲解概率的概念,即某个事件发生的可能性大小。

并简要介绍了概率的三种表示方式:数值表示法、分数表示法和百分数表示法。

并通过实例让学生们理解概率的本质和意义。

2.3 频率与概率的联系老师阐述频率与概率之间的联系,帮助学生们理解两者的差异。

并在教材中找到相关例题进行讲解,同时结合实际情境来解释频率与概率的联系。

3. 实验操作(30分钟)老师通过实验操作的方式来帮助学生们加深对频率和概率的印象。

以一组掷骰子的数据为例,让学生们在小组内自行计算频率和概率,并通过不同的方法来计算结果,通过比较的方式来找到最佳的解决方案。

4. 课堂讨论(20分钟)老师引导学生们进行课堂讨论,进行频率和概率的比较,通过实例来让学生们思考频率和概率的本质及其应用场景,并探究频率和概率在真实生活中的应用。

九年级数学下册《频率与概率的关系》教案、教学设计

九年级数学下册《频率与概率的关系》教案、教学设计
作业布置要求:
1.学生认真完成作业,注重作业质量,养成良好的学习习惯。
2.教师及时批改作业,给予学生反馈,关注学生在作业中的表现,调整教学策略。
3.鼓励学生在作业中提出疑问,教师针对疑问进行个性化辅导,提高学生的学习效果。
2.教学方法:引导学生运用频率与概率的知识,进行小组讨论,分享各自的观点。
3.教学目的:培养学生的团队协作能力和应用意识,提高学生解决实际问题的能力。
(四)课堂练习
1.教学内容:设计具有层次性的练习题,涵盖频率与概率的计算、实际应用等方面。
-基础题:计算给定事件的频率和概率。
-提高题:利用频率与概率解决实际问题。
4.小组合作:
-以小组为单位,讨论并解决以下问题:如何利用频率与概率的知识,为一场篮球比赛制定胜负概率?
-各小组将讨论成果整理成报告,并在课堂上进行分享。
5.家庭作业:
-完成课后作业第4、5、6题,涵盖频率与概率的计算、实际应用等方面。
-家长协助学生完成作业,关注学生在解决问题时的思考过程,鼓励学生主动探索。
-设计一个简单的概率实验,如掷骰子、抽卡片等,记录实验数据,计算相应事件的频率和概率。
-结合实际生活,举例说明频率与概率在生活中的应用,并简要分析其合理性。
3.拓展提升:
-阅读教材附录中的相关阅读材料,了解概率论的发展历程及其在科学、社会等方面的应用。
-探究问题:在抛硬币实验中,为什么频率可以估计概率?请从数学理论上进行解释。
4.能够运用概率知识解决一些实际问题,如彩票中奖、比赛胜负等,培养学以致用的能力。
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身的数学素养:
1.通过小组合作、实验探究等教学活动,培养学生主动参与、积极思考的学习习惯。

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计一. 教材分析《频率与概率》这一节内容,主要让学生了解频率与概率的概念,掌握频率与概率之间的关系,并通过实例让学生学会如何运用频率来估计概率。

教材通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,培养学生的抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算方法有一定的了解。

但是,对于频率与概率这一节内容,由于涉及到一些生活中的实际问题,学生可能对其概念和关系理解不够深入。

因此,在教学过程中,需要教师通过生动的实例和讲解,帮助学生理解和掌握。

三. 教学目标1.让学生理解频率与概率的概念,掌握频率与概率之间的关系。

2.培养学生从实际问题中抽象出频率与概率的能力。

3.培养学生运用频率来估计概率的方法。

四. 教学重难点1.频率与概率的概念。

2.频率与概率之间的关系。

3.如何运用频率来估计概率。

五. 教学方法采用问题驱动的教学方法,通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,然后通过讲解和练习,使学生掌握频率与概率之间的关系,并学会如何运用频率来估计概率。

六. 教学准备1.准备一些生活中的实际问题,用于引导学生理解和掌握频率与概率的概念。

2.准备一些练习题,用于巩固学生对频率与概率的理解。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生关注事件发生的频率和概率。

提出问题:在抛硬币实验中,正面朝上的频率和概率分别是多少?让学生思考和讨论。

2.呈现(10分钟)讲解频率与概率的概念,以及它们之间的关系。

通过PPT或者黑板,呈现频率与概率的定义和公式。

让学生理解和掌握。

3.操练(15分钟)让学生通过一些练习题,运用频率与概率的知识。

教师可适时给予解答和指导。

4.巩固(10分钟)通过一些实际问题,让学生运用频率与概率的知识。

教师可适时给予解答和指导。

5.拓展(5分钟)引导学生从实际问题中抽象出频率与概率的概念,并学会如何运用频率来估计概率。

北师大版数学九年级上册6.1《频率与概率》教案1

北师大版数学九年级上册6.1《频率与概率》教案1

北师大版数学九年级上册6.1《频率与概率》教案1一. 教材分析《频率与概率》是北师大版数学九年级上册第六章第一节的内容。

本节内容主要介绍了频率与概率的概念,以及如何通过实验来估计概率。

教材通过具体的例子让学生理解频率与概率之间的关系,培养学生运用概率知识解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了初步的统计知识,对实验有一定的认识。

但在理解和应用概率知识方面,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生通过实验观察频率与概率的关系,提高学生解决问题的能力。

三. 教学目标1.让学生理解频率与概率的概念,掌握频率与概率之间的关系。

2.培养学生通过实验估计概率的能力。

3.培养学生运用概率知识解决实际问题的能力。

四. 教学重难点1.重点:频率与概率的概念,频率与概率之间的关系。

2.难点:如何通过实验估计概率,以及运用概率知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实验观察频率与概率的关系。

2.运用案例教学,让学生在具体的情境中理解和应用概率知识。

3.采用小组合作学习,培养学生合作解决问题的能力。

六. 教学准备1.准备相关案例材料,用于讲解和引导学生思考。

2.准备实验器材,如骰子、卡片等,用于学生实验操作。

3.设计好教学课件,辅助讲解和展示相关内容。

七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏,引出频率与概率的概念。

2.呈现(10分钟)讲解频率与概率的定义,并通过实例让学生理解频率与概率之间的关系。

3.操练(10分钟)学生分组进行实验,利用实验器材估计概率。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)学生分组讨论,分享实验结果,总结频率与概率之间的关系。

教师点评并总结。

5.拓展(10分钟)出示一些实际问题,让学生运用概率知识解决。

教师引导学生思考,提供解答思路。

6.小结(5分钟)对本节课的主要内容进行总结,强调频率与概率之间的关系,以及如何运用概率知识解决实际问题。

频率与概率教案设计

频率与概率教案设计

频率与概率教案设计这是频率与概率教案设计,是优秀的数学教案文章,供老师家长们参考学习。

频率与概率教案设计第1篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的a、b、c、d、e五个牌子雪糕的数量.频率与概率教案设计第2篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的`,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.频率与概率教案设计第3篇1、统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A 小于10,N是正整数。

必修二频率与概率教学设计

必修二频率与概率教学设计

必修二频率与概率教学设计引言:频率与概率是数学的重要概念,在现实生活中有着广泛的应用。

必修二频率与概率单元是高中数学课程的重要内容之一,通过学习这个单元,学生可以培养推理能力、观察力和数据分析能力。

本文将根据必修二频率与概率的教学大纲,结合学生的实际情况,设计一节高中数学课的教学活动。

一、教学目标:1. 理解频数、频率和概率的概念,能够准确计算频数、频率和概率。

2. 掌握频率与概率之间的关系,能够将频率转化为概率。

3. 运用频率与概率的知识解决实际问题,培养学生的数据分析与解决问题的能力。

二、教学内容:1. 频数和频率的概念。

2. 概率的概念与计算方法。

3. 频率与概率之间的关系。

三、教学过程:1. 导入(5分钟):向学生介绍频率与概率的重要性和实际应用,并举例说明。

例如,在疫情期间,统计每个地区的感染人数可以帮助政府制定科学的防控措施。

2. 知识讲解与示范(15分钟):a. 介绍频数和频率的概念,并通过示例给出计算方法,让学生理解频数和频率的含义和计算步骤。

b. 介绍概率的概念以及计算方法,通过示例演示如何计算概率。

强调概率是频率在无限次试验中的极限值。

c. 解释频率与概率之间的关系,如何从频率计算出概率。

3. 深化与拓展(30分钟):a. 给学生分发一份有关某个班级同学身高的数据表格,要求学生计算出每个身高区间的频数和频率,并画出频率分布直方图。

b. 引导学生讨论频率分布直方图的特点,如何通过直方图判断某一身高区间的人数占比。

c. 继续以身高为例,让学生计算出不同身高区间的概率,并讨论概率分布的特点。

4. 实际应用(30分钟):a. 分发一张有关抛硬币实验的工作纸,让学生模拟抛硬币实验,并记录下每次实验结果。

b. 让学生根据自己的实验数据计算正面朝上的频数和频率,进一步计算出正面朝上的概率。

c. 引导学生思考如何通过频率和概率来判断硬币是否公平。

5. 总结与讨论(10分钟):让学生总结本节课学到的知识点,并就频率与概率的应用进行讨论。

2024-2025学年初中数学九年级上册(华师版)教案第25章随机事件的概率25.2.2频率与概率

2024-2025学年初中数学九年级上册(华师版)教案第25章随机事件的概率25.2.2频率与概率

第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《频率与概率》教案
教学目标:1。

经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和
能力。

2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计
一事件发生的概率。

3.能运用树状图和列表法计算简单事件发生的概率。

教学重点:运用树状图和列表法计算事件发生的概率。

教学难点:树状图和列表法的运用方法。

教学过程:
问题引入:对于前面的摸牌游戏, 在一次试验中,如果摸得第一张牌面数字为1,那么摸
第二张牌的数字为几的可能性大?如果摸得第一张牌的牌面数字为2呢?(由此引入课题,然后要求学生做实验来验证他们的猜想)
做一做:
实验1:对于上面的试验进行30次,分别统计第一张牌的牌面字为1时,第二张牌
的牌面数字为1和2的次数。

实验的具体做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录, 如:1 2 2 1---------(上面一行为第一次抽的) 2 1 2 1---------(下面一行为第二次抽的)
议一议:
小明的对自己的试验记录进行了统计,结果如下:
因此小明认为,如果摸得第一张牌面数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性比较大。

你同意小明的看法吗?
让学生去讨论小明的看法是否正确,然后让学生去说说自已的看法。

想一想:
对于前面的游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?
小颖的看法:
小亮的看法:
实际上,摸第一张牌时,可能出现的的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此,因此,我们可以用下面的“树状图”或表格来表示所有可能出现的结果:
开始
第一张牌的面的数字: 1 2
第二张牌的牌面数字: 1 2 1 2 可能出现的结果(1,1)(1,2)(2,1)(2,2)
从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4。

利用树状图或表格,可以比较方便地求出某些事件发生的概率。

例1:随机掷一枚硬币两次,至少有一次正面朝上的概率是多少?
解:随机掷一枚均匀的硬币两次,所有可能出现的结果如下:


开始反



总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正)(正,反)(反,正),因此至少有一次正面朝上的概率为3/4。

随堂练习:
1.从一定高度随机掷一枚硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果。

小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上。

那么你认为小明第4次掷硬币,出现正面的可能性大,还是出现反面的可能性大,是不是一样大?说说你的理由,并与同伴进行交流。

解:第4次掷硬币时,正面朝上的可能性与反面朝上的可能性一样大。

附加练习:
1.将一个均匀的硬币上抛两次,结果为两个正面的概率为______________.
课堂小结:
这节课学习了通过列表法或树状图来求得事件的概率。

课后作业:
书本163页:1,2。

相关文档
最新文档