现代分子生物学ppt课件
合集下载
现代分子生物学课件
分子生物学的建立和发展阶段 主要进展: 50年代提出了DNA分子的双螺旋结构模型和半保留复制机制, 解决了遗传物质的自我复制和世代交替问题; 50年代末至60年代, 提出了“中心法则”和操纵子学说, 成功地破译了遗传密码, 阐明了遗传信息的流动与表达机制。 P. 11
2.主要研究内容
#2022
分子生物学的研究内容 DNA重组技术
(1)DNA 重组技术(基因工程/遗传工程/基因操作/基因克隆/分子克隆) 在体外将不同的 DNA 片段 (整个基因或基因的 一个部分) 按照人们的设计定向连接起来后,转入 特定的受体细胞,使重组基因在受体细胞中与载体 同时复制并得到表达,从而赋予生物体新的遗传特 性, 创造出更符合人们需要的新的生物类型和生物 产品。
DNA重组操作主要包括: DNA (基因组和质粒DNA) 提取和纯化 PCR (聚合酶链反应) 基因扩增 DNA聚合酶 DNA分子切割 限制性内切酶 DNA片段与载体连接 DNA连接酶 DNA凝胶电泳 细胞转化及重组子的筛选与鉴定等
பைடு நூலகம்
构成生物体各类有机大分子的单体在不同生物中
分子生物学的基本原理 (p 11)
生物体内一切有机大分子的建成都遵循共同的规
都是相同的。
某一特定生物体所拥有的核酸及蛋白质分子决定
则。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
了它的属性。
第一章 绪论 三. 主要研究内容
分子水平是指 携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。 分子水平上研究生命的本质主要是指 对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明, 从而为利用和改造生物奠定理论基础和提供新的手段。
现代分子生物学ppt课件
现代分子生物学ppt课件
目录
• 分子生物学概述 • 基因与基因组 • DNA复制与修复 • RNA转录与加工 • 蛋白质翻译与修饰 • 基因表达调控 • 分子生物学技术与应用
01 分子生物学概述
分子生物学的定义与发展
分子生物学的定义
在分子水平上研究生物大分子的 结构和功能,以揭示生命现象本 质的科学。
重组DNA技术的应用
阐述重组DNA技术在基因克隆、基因表达、基因治疗等领域的应 用。
重组DNA技术的优缺点
分析重组DNA技术的优点,如高效、精确等,同时也指出其存在 的缺点,如安全性问题等。
PCR技术原理,包括引物设计、DNA聚合酶的作用 等。
PCR技术的应用
基因表达的调控
研究基因表达在时间和空间上的调控机制, 包括转录因子、表观遗传学等。
分子生物学与生物学的关系
分子生物学是生物学的重要分支
01
分子生物学研究生物大分子的结构和功能,是揭示生命现象本
质的基础科学。
分子生物学推动生物学的发展
02
随着分子生物学理论和技术的不断发展,生物学的研究领域不
断拓宽,研究水平不断提高。
microRNA调控
一类非编码小RNA分子,通过与靶mRNA结合抑制其翻译或促进 其降解来调节基因表达。
基因表达调控的生物学意义
适应环境变化
细胞分化和发育
能量代谢平衡
响应生物和非生物胁迫
基因表达调控使生物能够根据 不同环境条件调整其生理和代 谢状态,以维持生存和繁殖。
在细胞分化和发育过程中,基 因表达调控确保不同类型细胞 具有独特的表型和功能。
列举PCR技术在DNA片段扩增、基因突变分析、基因表达分析等领 域的应用。
目录
• 分子生物学概述 • 基因与基因组 • DNA复制与修复 • RNA转录与加工 • 蛋白质翻译与修饰 • 基因表达调控 • 分子生物学技术与应用
01 分子生物学概述
分子生物学的定义与发展
分子生物学的定义
在分子水平上研究生物大分子的 结构和功能,以揭示生命现象本 质的科学。
重组DNA技术的应用
阐述重组DNA技术在基因克隆、基因表达、基因治疗等领域的应 用。
重组DNA技术的优缺点
分析重组DNA技术的优点,如高效、精确等,同时也指出其存在 的缺点,如安全性问题等。
PCR技术原理,包括引物设计、DNA聚合酶的作用 等。
PCR技术的应用
基因表达的调控
研究基因表达在时间和空间上的调控机制, 包括转录因子、表观遗传学等。
分子生物学与生物学的关系
分子生物学是生物学的重要分支
01
分子生物学研究生物大分子的结构和功能,是揭示生命现象本
质的基础科学。
分子生物学推动生物学的发展
02
随着分子生物学理论和技术的不断发展,生物学的研究领域不
断拓宽,研究水平不断提高。
microRNA调控
一类非编码小RNA分子,通过与靶mRNA结合抑制其翻译或促进 其降解来调节基因表达。
基因表达调控的生物学意义
适应环境变化
细胞分化和发育
能量代谢平衡
响应生物和非生物胁迫
基因表达调控使生物能够根据 不同环境条件调整其生理和代 谢状态,以维持生存和繁殖。
在细胞分化和发育过程中,基 因表达调控确保不同类型细胞 具有独特的表型和功能。
列举PCR技术在DNA片段扩增、基因突变分析、基因表达分析等领 域的应用。
现代分子生物学课件()生物信息的传递(上)
转录的终止
转录终止于特定的终止子 区域,RNA聚合酶在此处 停止合成RNA链。
DNA的翻译
翻译的起始
mRNA与核糖体结合,形 成翻译起始复合物。
翻译的延伸
核糖体沿着mRNA移动, 并连续合成多肽链,直到 遇到终止密码子。
翻译的终止
核糖体遇到终止密码子时 停止合成多肽链,释放出 合成的多肽链。
03
了解信号转导、基因表达调控和细胞 信号转导等不同类型的信息传递方式。
02
DNA的复制、转录与翻译
DNA的复制
复制的起始
DNA复制起始于特定的起始点, 称为复制子或复制起始位点。
半保留复制
DNA复制过程中,每条新链都是 以原有的母链作为模板,形成互补 链,因此每个DNA分子都保留了 原有的遗传信息。
信号转导与基因表达调控的异常 可以导致多种疾病的发生和发展,
如癌症、心血管疾病、代谢性疾 病等。
这些异常可以包括信号转导通路 的异常激活、基因表达调控的异 常调节、信号分子和酶的突变等。
深入了解信号转导与基因表达调 控的机制,有助于发现新的药物 靶点和治疗策略,为疾病的预防
和治疗提供新的思路和方法。
当核糖体遇到终止密码子时,肽链合成停 止,释放出合成的多肽链。
蛋白质表达的调控
转录水平调控
基因的转录是蛋白质合成的第一 步,转录水平的调控主要通过调 节基因的转录效率和起始时间来
实现。
翻译水平调控
翻译水平的调控主要通过影响 mRNA的稳定性、翻译起始和肽
链延伸等过程来实现。
蛋白质修饰
蛋白质的磷酸化、乙酰化、甲基 化等修饰可以影响蛋白质的活性
调控细胞功能 生物信息传递参与调控细胞的各种功能,包括代 谢、增殖、分化和凋亡,对维持机体稳态具有重 要意义。
现代分子生物学ppt课件
• 翻译后的转运机制:细胞膜受体 • 核定位蛋白的转运机制:核定位序列 • 蛋白质的降解:蛋白酶水解、N端氨基酸影
响半衰期
第五章 分子生物学研究方法
知识要点
• 分子克隆技术的过程 • 分子杂交的概念 • PCR反应步骤
分子克隆RE、ligase • 重组DNA分子导入寄主细胞:细菌转化 • 重组体克隆的筛选:蓝白斑筛选、抗生素
第四章 生物信息的传递(下)
知识要点
• 三联体遗传密码 • tRNA的结构与功能 • 核糖体的结构与功能
• 蛋白质合成机制 • 蛋白质转运机制
遗传密码
• 遗传密码的破译 • 遗传密码的特性:无逗号、不重叠、通用
性、简并性、起始密码和终止密码
tRNA的结构与功能
• tRNA的二级结构:三叶草型——四环四臂 • tRNA的三级结构:倒L型 • tRNA的功能:密码子与反密码子的配对 • tRNA种类:起始tRNA与延伸tRNA、同工
C值矛盾
DNA结构
• DNA的一级结构 • DNA的二级结构——双螺旋模型
影响DNA二级结构稳定的因素 • DNA的高级结构——正超螺旋和负超螺旋
DNA复制
• 半保留复制 • 半不连续复制 • 复制的起点、方向和速度 • DNA聚合酶:原核 真核 • 原核生物和真核生物DNA复制的差别
第三章 生物信息的传递(上)
知识要点
• RNA转录过程和转录后加工 • 启动子与增强子、终止与抗终止 • 原核生物与真核生物mRNA的特征比较
RNA转录过程
• 不对称转录 • 原核生物RNA聚合酶:核心酶+因子 • 真核生物RNA聚合酶:分类、特征、转录
产物 • 起始(启动子)、延伸、终止(终止信号)
原核与真核启动子的特征 增强子的概念和作用特点 终止和抗终止
响半衰期
第五章 分子生物学研究方法
知识要点
• 分子克隆技术的过程 • 分子杂交的概念 • PCR反应步骤
分子克隆RE、ligase • 重组DNA分子导入寄主细胞:细菌转化 • 重组体克隆的筛选:蓝白斑筛选、抗生素
第四章 生物信息的传递(下)
知识要点
• 三联体遗传密码 • tRNA的结构与功能 • 核糖体的结构与功能
• 蛋白质合成机制 • 蛋白质转运机制
遗传密码
• 遗传密码的破译 • 遗传密码的特性:无逗号、不重叠、通用
性、简并性、起始密码和终止密码
tRNA的结构与功能
• tRNA的二级结构:三叶草型——四环四臂 • tRNA的三级结构:倒L型 • tRNA的功能:密码子与反密码子的配对 • tRNA种类:起始tRNA与延伸tRNA、同工
C值矛盾
DNA结构
• DNA的一级结构 • DNA的二级结构——双螺旋模型
影响DNA二级结构稳定的因素 • DNA的高级结构——正超螺旋和负超螺旋
DNA复制
• 半保留复制 • 半不连续复制 • 复制的起点、方向和速度 • DNA聚合酶:原核 真核 • 原核生物和真核生物DNA复制的差别
第三章 生物信息的传递(上)
知识要点
• RNA转录过程和转录后加工 • 启动子与增强子、终止与抗终止 • 原核生物与真核生物mRNA的特征比较
RNA转录过程
• 不对称转录 • 原核生物RNA聚合酶:核心酶+因子 • 真核生物RNA聚合酶:分类、特征、转录
产物 • 起始(启动子)、延伸、终止(终止信号)
原核与真核启动子的特征 增强子的概念和作用特点 终止和抗终止
分子生物学课件ppt
转基因技术
转基因技术是将外源基因导入生物体,实现基因的过 表达或补充。转基因技术的关键在于选择合适的载体 和导入方法。
THANKS
感谢观看
基因编辑技术的应用
基因编辑技术在许多领域都有广泛的应用,如罕见病治疗、癌症免疫治疗、农业育种等。 通过基因编辑技术,可以实现对特定基因的敲除、敲入或修饰,以达到治疗或改良的目的 。
基因编辑技术的伦理问题
虽然基因编辑技术具有巨大的潜力,但也引发了伦理和法律等方面的争议。在应用基因编 辑技术时,需要充分考虑伦理和法律问题,确保技术的合理应用和规范发展。
发展趋势
基因组学、蛋白质组学、代谢组学等 多组学研究,跨学科交叉融合,生物 信息学和计算生物学的发展等。
02
分生物学基本概念
基因与DNA
基因
基因是生物体内携带遗传信息的最小 单位,负责编码蛋白质或RNA分子 。
DNA
DNA是生物体的主要遗传物质,由四 种不同的脱氧核苷酸组成,通过特定 的序列排列储存遗传信息。
高通量测序
高通量测序是指一次可以对大量DNA或RNA分子进行序列测定的技术。高通量测序技术极大地提高了 基因组学和转录组学研究的效率,为生物医学研究提供了强大的工具。
04
分子生物学应用
生物医药研究
01
02
03
药物设计与开发
利用分子生物学技术,研 究药物与靶点的相互作用 ,提高药物的疗效和降低 副作用。
分子生物学前沿研究
表观遗传学研究
01
表观遗传学研究
表观遗传学是研究基因表达的调控机制,通过研究DNA甲基化、组蛋
白修饰等机制,揭示基因表达的调控规律,以及环境因素对基因表达的
影响。
02
分子生物学(共19张PPT)
04
蛋白质的结构与功能
蛋白质的分子组成与结构
氨基酸通过肽键连 接形成多肽链,即 蛋白质的一级结构 。
多条多肽链组合在 一起,形成蛋白质 的三级结构。
蛋白质的基本组成 单位是氨基酸,共 有20种常见氨基酸 。
多肽链经过盘绕、 折叠形成二级结构 ,主要形式包括α螺旋和β-折叠等。
在特定条件下,蛋 白质可形成四级结 构,由多个亚基组 成。
发展历程
从20世纪50年代DNA双螺旋结构 的发现开始,分子生物学经历了 飞速的发展,成为现代生命科学 中最为活跃和前沿的领域之一。
分子生物学的研究对象与任务
研究对象
主要包括DNA、RNA、蛋白质Байду номын сангаас生 物大分子,以及它们之间的相互作用 和调控机制。
研究任务
揭示生物大分子的结构、功能及其相 互作用机制;阐明基因表达调控的分 子机制;探索生物大分子在生命过程 中的作用和意义。
转录因子
01
真核生物中存在大量转录因子,它们与DNA特定序列结合,激
活或抑制基因转录。
表观遗传学调控
02
通过DNA甲基化、组蛋白修饰等方式,改变染色质结构,影响
基因表达。
microRNA调控
03
microRNA是一类小分子RNA,通过与mRNA结合,抑制其翻
译或促进其降解,从而调节基因表达。
基因表达调控的分子机制
发育生物学研究生物体的发育过程,而分子 生物学则揭示了发育过程中基因表达和调控 的分子机制。
02
DNA的结构与功能
DNA的分子组成与结构
DNA的基本组成单位
脱氧核糖核苷酸,由磷酸、脱氧核糖 和碱基组成。
DNA的碱基
DNA的双螺旋结构
现代分子生物学(课堂PPT)
基因表达与疾病的关系
基因表达的异常与多种疾病的发生和发展密切相关,如癌症、遗传病等。因此,研究基因 表达的调控机制对于理解疾病的发生和治疗具有重要意义。
PART 03
DNA复制与修复
REPORTING
DNA复制的过程与特点
DNA复制的过程
起始、延伸、终止三个阶段,涉及多种蛋白质和酶的参与,确保 DNA的准确复制。
维持内环境稳定
基因表达调控有助于维持生物 体内环境的稳定,如血糖、血 压和免疫系统等。
响应生物信号
基因表达调控可以响应来自生 物体内部的信号,如激素和神 经递质等,从而调节生物体的
生理活动。
PART 06
分子生物学技术与应用
REPORTING
DNA重组技术
重组DNA技术的基本步骤
获取目的基因、构建基因表达载体、将目的基因导入受体细胞、 目的基因的检测与鉴定。
基因芯片技术及其应用
基因芯片技术的原理
将大量已知序列的基因片段固定在固相支持物上,与待测 样品进行杂交,通过检测杂交信号实现对基因表达的定量 分析。
常用的基因芯片技术
cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列等。
基因芯片技术的应用
基因表达谱分析、基因突变检测、疾病诊断、药物筛选等 。
THANKS
表观遗传学调控
真核生物中还存在表观遗传学调控,如 DNA甲基化、组蛋白修饰和非编码RNA的 调控等。
基因表达调控的生物学意义
适应环境变化
基因表达调控使生物体能够适 应不同的环境条件,如温度、
光照、营养状况等。
细胞分化与发育
基因表达调控在细胞分化和发 育过程中起着关键作用,使不 同细胞具有不同的形态和功能 。
分子生物学发展
基因表达的异常与多种疾病的发生和发展密切相关,如癌症、遗传病等。因此,研究基因 表达的调控机制对于理解疾病的发生和治疗具有重要意义。
PART 03
DNA复制与修复
REPORTING
DNA复制的过程与特点
DNA复制的过程
起始、延伸、终止三个阶段,涉及多种蛋白质和酶的参与,确保 DNA的准确复制。
维持内环境稳定
基因表达调控有助于维持生物 体内环境的稳定,如血糖、血 压和免疫系统等。
响应生物信号
基因表达调控可以响应来自生 物体内部的信号,如激素和神 经递质等,从而调节生物体的
生理活动。
PART 06
分子生物学技术与应用
REPORTING
DNA重组技术
重组DNA技术的基本步骤
获取目的基因、构建基因表达载体、将目的基因导入受体细胞、 目的基因的检测与鉴定。
基因芯片技术及其应用
基因芯片技术的原理
将大量已知序列的基因片段固定在固相支持物上,与待测 样品进行杂交,通过检测杂交信号实现对基因表达的定量 分析。
常用的基因芯片技术
cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列等。
基因芯片技术的应用
基因表达谱分析、基因突变检测、疾病诊断、药物筛选等 。
THANKS
表观遗传学调控
真核生物中还存在表观遗传学调控,如 DNA甲基化、组蛋白修饰和非编码RNA的 调控等。
基因表达调控的生物学意义
适应环境变化
基因表达调控使生物体能够适 应不同的环境条件,如温度、
光照、营养状况等。
细胞分化与发育
基因表达调控在细胞分化和发 育过程中起着关键作用,使不 同细胞具有不同的形态和功能 。
分子生物学发展
2024版《现代分子生物学》朱玉贤第五版北大课件
翻译后加工
新生肽链经过加工修饰,如剪切、 折叠、修饰等,成为具有生物活性 的蛋白质。
20
蛋白质翻译后加工修饰类型举例
2024/1/28
N-端fMet或Met的切除
新生肽链N-端的甲硫氨酸或甲酰甲硫氨酸通常被切 除。
二硫键的形成
半胱氨酸残基之间可以形成二硫键,对蛋白质的稳 定性和活性有重要作用。
化学修饰
生物工程
表观遗传学机制可以影响细胞的分化和发育,因此通过表观遗传学手段来改造细胞或生物体可能成为一种新 的生物工程技术。例如,利用表观遗传学手段来实现细胞重编程和再生医学应用。
26
06
现代分子生物学技术应用与 发展趋势
2024/1/28
27
DNA测序技术原理及应用领域拓展
DNA测序技术原理
通过特定的生物化学方法,将 DNA片段化并逐一测定其碱基序 列,从而获得完整的基因序列信
组修复等。
DNA损伤修复对于维持细胞基 因组稳定性和防止突变具有重要
意义。
2024/1/28
11
基因突变与遗传多样性
基因突变是指DNA序列中碱基的替换、 插入或缺失。
基因突变是生物进化的原材料,对于 生物适应环境和进化具有重要意义。
2024/1/28
基因突变可以产生新的等位基因,增 加遗传多样性。
序列比对与注释
01
利用生物信息学方法对基因序列进行比对和注释,揭示基因功
能和进化关系。
基因表达谱分析
02
通过高通量测序技术,研究基因在不同条件下的表达谱变化,
解析基因调控网络。
蛋白质结构与功能预测
03
利用生物信息学方法预测蛋白质的三维结构和功能,为药物设
计和蛋白质工程提供理论支持。
新生肽链经过加工修饰,如剪切、 折叠、修饰等,成为具有生物活性 的蛋白质。
20
蛋白质翻译后加工修饰类型举例
2024/1/28
N-端fMet或Met的切除
新生肽链N-端的甲硫氨酸或甲酰甲硫氨酸通常被切 除。
二硫键的形成
半胱氨酸残基之间可以形成二硫键,对蛋白质的稳 定性和活性有重要作用。
化学修饰
生物工程
表观遗传学机制可以影响细胞的分化和发育,因此通过表观遗传学手段来改造细胞或生物体可能成为一种新 的生物工程技术。例如,利用表观遗传学手段来实现细胞重编程和再生医学应用。
26
06
现代分子生物学技术应用与 发展趋势
2024/1/28
27
DNA测序技术原理及应用领域拓展
DNA测序技术原理
通过特定的生物化学方法,将 DNA片段化并逐一测定其碱基序 列,从而获得完整的基因序列信
组修复等。
DNA损伤修复对于维持细胞基 因组稳定性和防止突变具有重要
意义。
2024/1/28
11
基因突变与遗传多样性
基因突变是指DNA序列中碱基的替换、 插入或缺失。
基因突变是生物进化的原材料,对于 生物适应环境和进化具有重要意义。
2024/1/28
基因突变可以产生新的等位基因,增 加遗传多样性。
序列比对与注释
01
利用生物信息学方法对基因序列进行比对和注释,揭示基因功
能和进化关系。
基因表达谱分析
02
通过高通量测序技术,研究基因在不同条件下的表达谱变化,
解析基因调控网络。
蛋白质结构与功能预测
03
利用生物信息学方法预测蛋白质的三维结构和功能,为药物设
计和蛋白质工程提供理论支持。
non-coding RNA——现代分子生物学课程ppt课件
.
分类
非编码RNA 从长度上来划分可以分为3类: 小于50 nt,包括microRNA,siRNA,piRNA; 50 nt到500 nt,包括rRNA,tRNA,snRNA,snoRNA, SLRNA,SRPRNA 等等; 大于500 nt,包括长的mRNA-like 的非编码RNA,长的不 带polyA 尾巴的非编码RNA等等。
回收50-110nt(fractionalⅠ)和 110-500nt (fractional) → Poly(A)聚合酶加尾 → cDNApSPORTI → PCR → 高密度陈列 → 杂交 除去高丰度已知的小RNA → 未杂交的cDNA测序。
.
蛋白质-RNA复合物分离法
分离蛋白质-RNA复合物,除去蛋白 质,纯化RNA分子,反转录cDNA , 克隆、测序、结果分析。所得RNA 的cDNA分子必须进行Northern杂交, 除去断裂的小RNA。
cDNA克隆策略可鉴别已知的高丰度非编码RNA,如 tRNAs或小核糖体RNA。
.
实时荧光定量(RT-PCR技术)
实时荧光定量PCR技术是一种高通量、灵 敏的基因表达检测技术,常用于蛋白编码 基因表达检测,也被广泛地应用于 microRNA或其他非编码RNA的表达检测。
通过该技术,可定量监测目的基因的表达 情况,筛选生物学功能相关的非编码RNA。
发现,越来越多的研究表明RNA在遗传方面的重要作 用。
.
Non-coding RNA(非编码RNA)
非编码RNA是指不编码蛋白质的RNA。其 中包括rRNA,tRNA,snRNA,snoRNA 和microRNA 等多种已知功能的 RNA,还 包括未知功能的RNA。这些RNA的共同特 点是都能从基因组上转录而来,但是不翻 译成蛋白,在RNA 水平上就能行使各自的 生物学功能了。
分类
非编码RNA 从长度上来划分可以分为3类: 小于50 nt,包括microRNA,siRNA,piRNA; 50 nt到500 nt,包括rRNA,tRNA,snRNA,snoRNA, SLRNA,SRPRNA 等等; 大于500 nt,包括长的mRNA-like 的非编码RNA,长的不 带polyA 尾巴的非编码RNA等等。
回收50-110nt(fractionalⅠ)和 110-500nt (fractional) → Poly(A)聚合酶加尾 → cDNApSPORTI → PCR → 高密度陈列 → 杂交 除去高丰度已知的小RNA → 未杂交的cDNA测序。
.
蛋白质-RNA复合物分离法
分离蛋白质-RNA复合物,除去蛋白 质,纯化RNA分子,反转录cDNA , 克隆、测序、结果分析。所得RNA 的cDNA分子必须进行Northern杂交, 除去断裂的小RNA。
cDNA克隆策略可鉴别已知的高丰度非编码RNA,如 tRNAs或小核糖体RNA。
.
实时荧光定量(RT-PCR技术)
实时荧光定量PCR技术是一种高通量、灵 敏的基因表达检测技术,常用于蛋白编码 基因表达检测,也被广泛地应用于 microRNA或其他非编码RNA的表达检测。
通过该技术,可定量监测目的基因的表达 情况,筛选生物学功能相关的非编码RNA。
发现,越来越多的研究表明RNA在遗传方面的重要作 用。
.
Non-coding RNA(非编码RNA)
非编码RNA是指不编码蛋白质的RNA。其 中包括rRNA,tRNA,snRNA,snoRNA 和microRNA 等多种已知功能的 RNA,还 包括未知功能的RNA。这些RNA的共同特 点是都能从基因组上转录而来,但是不翻 译成蛋白,在RNA 水平上就能行使各自的 生物学功能了。
《分子生物学全套》ppt课件
分子生物学定义
分子生物学是一门从子水平研究生 物大分子的结构和功能的科学,主要 关注DNA、RNA和蛋白质等生物大 分子的复制、转录、翻译和调控等过 程。
分子生物学特点
以分子为研究对象,阐明生命现象的 本质;与多学科交叉融合,推动生命 科学的发展;实验技术手段不断更新 ,提高研究效率和准确性。
分子生物学发展历程
分子生物学研究内容及方法
研究内容
包括基因和基因组的结构与功能、DNA损伤与修复、基因表达的调控、蛋白质 组学的研究以及疾病产生的分子基础等。
研究方法
包括基因克隆与表达、蛋白质分离与纯化、PCR技术、基因敲除与敲入、高通 量测序技术、生物信息学分析等。这些方法的应用使得分子生物学研究更加深 入和广泛。
阔前景。
下一代测序技术在分子生物学中应用
下一代测序技术原理
基于大规模并行测序的原理,一次可对数百万至数十亿个DNA分 子进行测序。
测序数据分析
包括序列比对、变异检测、基因表达量分析等,以揭示基因组的结 构和功能。
下一代测序技术的应用
在疾病诊断、个性化医疗、物种鉴定和进化生物学等领域发挥重要 作用。
非编码RNA与疾病关系
非编码RNA异常表达与多种疾病相关,如肿瘤、心血管疾 病等,可作为疾病诊断和治疗的新靶点。
非编码RNA研究前景
随着高通量测序技术和生物信息学发展,非编码RNA研究 将更加深入,为疾病防治提供新思路和新方法。
合成生物学在分子生物学中应用前景
合成生物学概念及研究范畴
合成生物学是一门新兴交叉学科,旨在通过设计和构造新的生物部件、系统和机器来理解 和操控自然生物系统。
RNA产物。
影响因素
包括DNA模板的序列和 结构、RNA聚合酶的活 性和选择性、转录因子
分子生物学是一门从子水平研究生 物大分子的结构和功能的科学,主要 关注DNA、RNA和蛋白质等生物大 分子的复制、转录、翻译和调控等过 程。
分子生物学特点
以分子为研究对象,阐明生命现象的 本质;与多学科交叉融合,推动生命 科学的发展;实验技术手段不断更新 ,提高研究效率和准确性。
分子生物学发展历程
分子生物学研究内容及方法
研究内容
包括基因和基因组的结构与功能、DNA损伤与修复、基因表达的调控、蛋白质 组学的研究以及疾病产生的分子基础等。
研究方法
包括基因克隆与表达、蛋白质分离与纯化、PCR技术、基因敲除与敲入、高通 量测序技术、生物信息学分析等。这些方法的应用使得分子生物学研究更加深 入和广泛。
阔前景。
下一代测序技术在分子生物学中应用
下一代测序技术原理
基于大规模并行测序的原理,一次可对数百万至数十亿个DNA分 子进行测序。
测序数据分析
包括序列比对、变异检测、基因表达量分析等,以揭示基因组的结 构和功能。
下一代测序技术的应用
在疾病诊断、个性化医疗、物种鉴定和进化生物学等领域发挥重要 作用。
非编码RNA与疾病关系
非编码RNA异常表达与多种疾病相关,如肿瘤、心血管疾 病等,可作为疾病诊断和治疗的新靶点。
非编码RNA研究前景
随着高通量测序技术和生物信息学发展,非编码RNA研究 将更加深入,为疾病防治提供新思路和新方法。
合成生物学在分子生物学中应用前景
合成生物学概念及研究范畴
合成生物学是一门新兴交叉学科,旨在通过设计和构造新的生物部件、系统和机器来理解 和操控自然生物系统。
RNA产物。
影响因素
包括DNA模板的序列和 结构、RNA聚合酶的活 性和选择性、转录因子
现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论
特别是基因的一般结构与生物功能,基因活 性的修饰与调节; 4. 掌握分子克隆与DNA重组的基本技术与原 理,了解现代分子生物学基本研究方法; 5.了解基因组与比较基因组学的新成果, 新进展。
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner
美
Furchgott
美
1998
Ignarro Murad
1999 Blobel
美
Carlsson
德
2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner
美
Furchgott
美
1998
Ignarro Murad
1999 Blobel
美
Carlsson
德
2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。
现代分子生物学-蛋白质ppt课件
动态
与其它分子结合: 信号转导
蛋白质相互作用: 结构, 最具挑战性
分子水平:
基因组DNA:基因重排,Ig多样性 基因序列多样性(Science. 2004,305:251-254 ),抵抗 不同病原(低等动物)等作用 DNA修饰,甲基化(epigenomics),S修饰等
mRNA:启动子,ChIP,EMSA 非编码小RNA(siRNA,miRNA,piRNA)(epigenomics)
Erica Golemis et al, Protein-protein Interaction—A Molecular Cloning Manual
papers
1.蛋白质互作研究的意义(Importance)
生命活动
基因表达调控
转录
翻译
细胞活动: 基因是关键
蛋白质:修饰
单个蛋白: 较少
蛋白作用
蛋白复合体
细胞吞噬 Ran
NP
VP466
Ranmyosin actin
小分子siRNA
细胞吞噬
RNAi
overexpression
小G蛋白(Rab,Ran)与骨架 蛋白直接作用调控吞噬
病毒双功能蛋白
蛋白质复合体标记
病毒感染
Rhodamine-Phalloidin
3.细胞内蛋白质标记 (protein labeling in vivo)
解决荧光染料的缺点:构建双光子显微镜(two-photon microscope) 采用脉冲近红外线激光,发出比激发光能量高 的光
该文:采用第二次谐波产生技术 发现barium titanate (BaTiO3)晶体(纳米颗粒),30 nm 比核糖体的直径大2倍 有望代替荧光染料的材料:量子点和纳米颗粒
分子生物学课件(共51张PPT)(2024)
四级结构
由两条或两条以上的多肽链组 成的一类结构,每一条多肽链
都有完整的三级结构。
21
蛋白质的功能与分类
结构蛋白:作为细胞的结构,如膜蛋白,染色体蛋白等 。 酶:催化生物体内的化学反应。
抗体:参与免疫应答。
2024/1/29
功能蛋白
激素:调节生物体的生理活动。
蛋白质的分类还可以根据其溶解度、形状等进行划分。 例如,根据溶解度可分为清蛋白、球蛋白等;根据形状 可分为纤维状蛋白和球状蛋白等。
RNA的基本组成单位是核糖核苷酸, 由磷酸、核糖和碱基组成。
磷酸二酯键
核糖核苷酸之间通过磷酸二酯键连接 形成RNA链。
碱基
RNA中的碱基主要有腺嘌呤(A)、 鸟嘌呤(G)、胞嘧啶(C)和尿嘧啶 (U)。
2024/1/29
12
RNA的种类与结构
mRNA
信使RNA,负责携带遗 传信息并指导蛋白质合
成。
翻译水平调控
通过控制翻译的起始、延伸和 终止来调控基因表达。
蛋白质水平调控
通过控制蛋白质的活性、稳定 性和相互作用来调控基因表达
。
表观遗传学调控
通过改变染色质结构和DNA 甲基化等方式来调控基因表达
。
2024/1/29
18
05
蛋白质的结构与功能
2024/1/29
19
蛋白质的分子组成
氨基酸
蛋白质的基本组成单元,共有20 种标准氨基酸。
2024/1/29
tRNA
转运RNA,负责携带氨 基酸并识别mRNA上的
遗传密码。
rRNA
其他RNA
核糖体RNA,是核糖体 的组成部分,参与蛋白
质合成。
13
如miRNA、snRNA等, 在基因表达调控等方面
由两条或两条以上的多肽链组 成的一类结构,每一条多肽链
都有完整的三级结构。
21
蛋白质的功能与分类
结构蛋白:作为细胞的结构,如膜蛋白,染色体蛋白等 。 酶:催化生物体内的化学反应。
抗体:参与免疫应答。
2024/1/29
功能蛋白
激素:调节生物体的生理活动。
蛋白质的分类还可以根据其溶解度、形状等进行划分。 例如,根据溶解度可分为清蛋白、球蛋白等;根据形状 可分为纤维状蛋白和球状蛋白等。
RNA的基本组成单位是核糖核苷酸, 由磷酸、核糖和碱基组成。
磷酸二酯键
核糖核苷酸之间通过磷酸二酯键连接 形成RNA链。
碱基
RNA中的碱基主要有腺嘌呤(A)、 鸟嘌呤(G)、胞嘧啶(C)和尿嘧啶 (U)。
2024/1/29
12
RNA的种类与结构
mRNA
信使RNA,负责携带遗 传信息并指导蛋白质合
成。
翻译水平调控
通过控制翻译的起始、延伸和 终止来调控基因表达。
蛋白质水平调控
通过控制蛋白质的活性、稳定 性和相互作用来调控基因表达
。
表观遗传学调控
通过改变染色质结构和DNA 甲基化等方式来调控基因表达
。
2024/1/29
18
05
蛋白质的结构与功能
2024/1/29
19
蛋白质的分子组成
氨基酸
蛋白质的基本组成单元,共有20 种标准氨基酸。
2024/1/29
tRNA
转运RNA,负责携带氨 基酸并识别mRNA上的
遗传密码。
rRNA
其他RNA
核糖体RNA,是核糖体 的组成部分,参与蛋白
质合成。
13
如miRNA、snRNA等, 在基因表达调控等方面
现代分子生物学(课堂PPT)
Frederick Sanger
酶法核苷酸测 序的设计者
Walter Gilbert 化学测序法的设计者
Paul Berg
DNA重组,在细菌中表 达胰岛素
DNA重组技术的元老
测定了牛胰岛素的化学结构而获 1958 年的 Nobel 化学奖
25
1984 Kohler(德) Milstein(美) Jerne(丹麦)
15
2、 重要机制的发现 * 1949 Chargaff 测定出不同来源的A、T、G、 C 四种核酸碱基 * 1950 Chargaff Markham A=T G=C * 1953 Watson &Crick DNA Double Helix Model
随着DNA双螺旋结构的提出和蛋白质空间结构的解析开始了分 子生物学时代,此后对遗传信息的载体DNA和生物功能的体现者 蛋白质的研究的研究也成为生命科学研究的主要内容
Francis Jacob Jacques Monod 提出并证实了Operon作为调节细菌细 胞代谢的分子机制 首次提出mRNA分子的存在
22
1969 Nirenberg(美) Holly & Khorana
Marshall W. Nirenberg
破译了遗传密码
Robert W. Holley 酵母Ala-tRNA的 核苷酸序列并证 明了所有tRNA三 级结构的相似性
断裂基因(splitting gene) PCR仪的发明者 基因定点突变
1994 Gilman & Rodbell 发现G蛋白在细胞信号传导中的作用
1995 Lewis(美)、Nusslein-Volhard(德)、Wieschaus(美) 20世纪40~70年代先后独立鉴定了控制果蝇( Drosophila ) 体节发育基因
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
220
3453
2
240
2954
3
200
2427
4
186
1861
5
182
2136
6
172
2257
7
146
1831
8
146
1560
9
113
1537
10
130
1653
11
132
2185
4
染色体编号 长度(Mbp) 估计的基因数
12
134
1861
13
99
1032
14
87
1283
15
80
1198
16
75
1421
129
125
135
102
分离难 易度
易
保守性 不保守
染色质 中比例
0.5
染色质 中位置
接头
较难 较保守 1
核心
较难 较保守 1
核心
最难 最保守 1
核心
最难 最保守 1
核心
27
表2-6 不同组蛋白分子中所含的碱性氨基酸比较 (占氨基酸总数的%)
碱性氨 H1
H2A
H2B
H3
H4
基酸
赖氨酸 29.5 10.9 16.0
24
组蛋白具有如下特性:
1、进化上的极端保守性。不同种生物组蛋白的氨基 酸组成十分相似。牛、猪、大鼠的H4氨基酸序列完全 相同,与豌豆序列相比也只有两个氨基酸的差异。 2、无组织特异性。只有鸟类、鱼类 及两栖类红细 胞染色体不含H1而带有H5,精细胞染色体的组蛋白是 鱼精蛋白。
25
3、肽链上氨基酸分布的不对称性。碱性氨基酸集 中分布在N端的半条链上,而大部分疏水基团都分 布在C端。碱性的半条链易与DNA的负电荷区结合, 而另外半条链与其他组蛋白、非组蛋白结合。
DNA、组蛋白和非组蛋白及部分RNA( 尚未完成转录而仍与模板DNA相连接的那 些RNA,其含量不到DNA的10%)组成了染 色体。
23
组蛋白是染色体的结构蛋白,分为 H1、H2A、H2B、H3及H4五种,与DNA共同 组成核小体。通常用2mol/L NaCl或 0.25mol/L的HCl/H2SO4处理染色质使组 蛋白与DNA分开。组蛋白含有大量的赖氨 酸和精氨酸,其中H3、H4富含精氨酸,H1 富含赖氨酸。H2A、H2B介于两者之间。
要点:
大肠杆菌染色体 DNA结构域 基因组超螺旋 DNA结合蛋白
9
10
11
原核生物基因组
原核生物的基因组很小,大多只 有一条染色体,且DNA含量少,如大 肠杆菌DNA的相对分子质量仅为 4.6×106bp,其完全伸展总长约为 1.3mm,含4 000多个基因。
12
原核生物基因主要是单拷贝基因, 只有很少数基因〔如rRNA基因〕以多拷 贝形式存在;
20
真核细胞染色体的组成
作为遗传物质,染色体具有如下特征: (1)分子结构相对稳定; (2)能够自我复制,使亲子代之间保持
连续性; (3)能够指导产生可遗传的变异。
21
22
染色体蛋白质
染色体蛋白主要分为组蛋白和非组 蛋白两类。真核细胞的染色体中DNA与组 蛋白的质量比约1:1。
15
2、存在转录单元
原核生物DNA序列中功能相关的 RNA和蛋白质基因,往往丛集在基因组 的一个或几个特定部位,形成转录单元 并转录产生含多个mRNA的分子,称为 多顺反子mRNA。
16
17
3、一些细菌和动物病毒存在重叠基因 ,同一段DNA能携带两种不同蛋白质 的信息。
Weiner和Weber在研究一种大肠杆菌 RNA病毒时发现,有两个基因从同一起点 开始翻译,一个在400bp处结束,而在3% 的情况下,翻译可一直进行下去直到800bp 处碰到双重终止信号时才停止。
4、存在较普遍的修饰作用,如甲基化、乙基化、 磷酸化及ADP核糖基化等。修饰作用只发生在细胞 周期的特定时间和组蛋白的特定位点上。
26
表2-5 真核细胞染色体上的组蛋白成分分析
种类
H1 H2A H2B H3 H4
相对分 子质量 21 000
14 500
13 800
15 300
11 300
氨基 酸 2数23 目
9.6
10.8
精氨酸 1.3 9.3
6.4
13.3 13.7
28
非组蛋白约为组蛋白总量的60%~70% ,可能有20~100种(常见的有15~20 种),主要包括酶类、与细胞分裂有关 的收缩蛋白、骨架蛋白、核孔复合物 蛋白以及肌动蛋白、肌球蛋白、微管 蛋白、原肌蛋白等。
29
1、HMG蛋白(high mobility group protein)。
2
染色体包括DNA和蛋白质两大 部分。同一物种内每条染色体所带 DNA的量是一定的,但不同染色体或 不同物种之间变化很大,人X染色体 有1.28亿个核苷酸对,而Y染色体只 有0.19亿个核苷酸对。
3
表2-1 人类基因组各条染色体中碱基对数量和推 导的功能基因数量对照
染色体编号 长度(Mbp) 估计的基因数
17
78
1545
18
79
826
19
58
1675
20
61
986
21
33
449
22
36
835
X
128
1465
Y
19
210
总长
2907
39114
5
6
7
第一节 原核与真核生物的染色体结构
原核生物染色体结构 原核生物基因组 真核生物染色体结构 真核生物基因组 遗传信息流
8
原核生物染色体结构
第二章 染色体和DNA
染色体概述 原核与真核生物的染色体结构 DNA是主要的遗传物质 DNA的结构和功能 DNA的复制 DNA的损伤、修复、重组与转座
1
染色体概述
染色体在遗传上起着主要作用, 因为亲代能够将自己的遗传物质以 染色体(chromosome)的形式传给 子代,保持了物种的稳定性和连续 性。
整个染色体DNA几乎全部由功能基因 与调控序列所组成;
几乎每个基因序列都与它所编码的 蛋白质序列呈线性对应状态。
13
14
1、结构简炼
原核DNA分子的绝大部分是用来编码 蛋白质的,只有很小一部分控制基因表达 的序列不转录。
如在Φ X174中不转录部分只占4% 左右(217/5386),T4 DNA中占5.1% (282/5577)。
18
Φ X174感染寄主后共合成9个蛋白质, 相对分子质量约2.5×105,相当于6078个 核苷酸,而病毒DNA本身只有5 375个核苷 酸。Sanger在弄清Φ X174 DNA的全部核苷 酸序列及各个基因的起迄位置和密码数目 以后发现,9个基因中有些是重叠的。
19
真核生物染色体结构
要点: 染色质、核小体、组蛋白、 非组蛋白、 端粒、 常染色质和异染色质、 DAase超敏性