精选牛吃草问题(含例题、答案、讲解)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结:

牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲

牛吃草问题

基本公式:

1) 设定一头牛一天吃草量为“1”

2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`

4)吃的天数=原有草量÷(牛头数-草的生长速度);

5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?

解:假设1头牛1天吃的草的数量是1份草每天的生长量:

(200-150)÷(20-10)=5份

10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份

15×10=150份……原草量+10天的生长量 100÷(25-5)=5天

[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:

(180-150)÷(20-10)=3份

9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份

15×10=150份……原草量+10天的生长量 120÷(18-3)=8天

例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块

自动扶梯级数= 3×100-100×1.5=150(级)

1. 有一片牧场,操每天都在匀速生长(每天的增长量相等),如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛?

假设1头1天吃1个单位

24*6=144

21*8=168

168-144=24

每天长的草可供24/2=12头牛吃

最多只能放12头牛

2,有一片草地,草每天生长的速度相同。这片草地可供5头牛吃40天,或6

供头牛吃30天。如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?

假设1头1天吃1个单位

5*40=200;6*30=180

200-180=20

每天长的草:20/(40-30)=2

原有草:200-2*40=120

4*30=120 ,30*2=60 60/4=15天

3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人?

假设1亿人头1天吃1个单位

110*90=9900;90*210=18900

18900-9900=9000

9000/(210-90)=75

4,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队?

2*20*10=400

400-100=300

300/20=15

100+15*4=160

160/(4*10)=4

(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。

所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量,即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。

同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。

(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。

牛吃草问题概念及公式

牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是︰

1) 设定一头牛一天吃草量为“1”

1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`

3)吃的天数=原有草量÷(牛头数-草的生长速度);

4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:

1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

解多块草地的方法

相关文档
最新文档