连续时间傅里叶变换的性质
傅里叶变换及反变换
1 2{F [j(0) ]F [j(0) ] }
F ( j )
1
m 0 m
P( j)
( )
( )
0
0
0
R( j)
1 2
0
0
0
F ( j )
1
m 0 m
f (t)
r(t)
y1(t)
低通
滤波
y(t)
cos(0t) cos(0t)
R( j)
1 2
0 ( )
0
P( j)
0 ( )
§4.5 连续时间傅里叶变换的性质
复习
F(j)= f(t)ejtdt
f(t)21 F(j)ejtd
1 唯一性: 2 线性特性: 3 奇偶特性: 4 共轭特性: 5 对称特性: 6 时域展缩特性: 7 时移特性:
9 时域微分特性: 10 频域微分特性: 11 时域卷积定理: 12 频域卷积定理:
偶信号的频谱是偶函数,奇信 号的频谱是奇函数。
F(j) f(t)ejtdt令t
f()ejd f()关e于jtd F(j)
f(t) F (j) , 则 f* (t) F * ( j)
证F (: j)= f (t)ejtd可 t F 得 *(j)= f*(t)ejtdt
F *(j)= f *(t)ejtdt
0
1 4
20
0
0
Y1( j)
1
1
2
4
0
20
Y ( j) 1
2
0
4.7 傅里叶反 变换
要解决的问题:由F( jw)求 f(t)
f(t)21 F (j)ejtd
利用傅里叶变换的互易对称性 部分分式展开
常用的傅里叶变换+定理+各种变换的规律(推荐)
਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
㪉
[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它
rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a
连续时间傅里叶变换PPT精选文档
非
解: X(j) eatejtdt eate jt
0
a j
1 a j
周 期 信 号
t0~
则 模 : X (j) 1 , 相 位 : S X (j) tg 1
a 22
a
的
SX(j)
表
X ( j )
示
x (t)
1/a
1
2 2a
2
0
t
a 0 a
a a
2
11
例2. x (t) e a t,a 0 , 求 其 傅 里 叶 变 换 。
jt dt
x(t )
1
2
X ( j)e jtd
非 二.傅立叶变换的收敛
周
期
和傅立叶级数的收敛条件一致,也有相应
信 号
的两组条件:
的
表
1.平方可积条件
示
若
2
x(t) dt
,则
X ( j )
存在
表明:能量有限的信号其傅立叶变换一定存在。
9
4.1
2. Dirichlet 条件
a. 绝对可积条件: x(t)dt
的 信号与系统分析中具有如此重要的意义。
表
示
(t)
X ( j )
1
t
0
13
0
4.1
例4.求矩形脉冲的傅里叶变换:
x(t)
1, 0,
t T1 。 t T1
解 : X ( j) T T 1 1 e j t d t 2 S i n T 1 2 T 1 S i T n 1 T 1 2 T 1 S a (T 1 ) 2 T 1 S i n c (T 1 )
的
表
示
第二章 连续时间傅里叶变换(1)
jn0t
A T
n 0 jn0t Sa( 2 )e n =-
第二章
连续时间傅里叶变换
数字信号处理
周期信号的对称性与傅立叶系数
当周期信号具有某种对称性时,在傅立叶级数展开过程中, 傅立叶系数的计算大为简化。 (1)偶对称
f (t ) f (t )
f t
n 1
同频率合并
a0 c0 d0
f (t ) d0
dn sin(n1t n )
n 1
初相位
an cn cos n dn sin n
bn cn sin n dn cos nn
c,d
2 2 2 2 cn dn an bn a bn n arctg n n arctg bn an
A
bn 0 T 22 a0 f (t )dt T 0 T T 42 an f (t ) cos(tn0 )dt , n 1, 2, 3, T 0
0
T 2
T
t
第二章
连续时间傅里叶变换
数字信号处理
(2)奇对称
f ( t ) f ( t )
t2 * j
则称该函数集为归一化正交函数集。
第二章
连续时间傅里叶变换
数字信号处理
三角函数集
{1, cos 0t, cos 20t, , cos n0t, , sin 0t, sin 20t, , sin n0t, } 2 在区间 (t 0 , t 0 T ) 内是一完备正交函数集。 T 0 正交性:(m 和 n 都是整数)
数字信号处理
变换域分析
傅里叶变换及其性质
αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
3.5傅立叶变换的性质与应用
线性与对称性
例4. 求:
1 F t
(ω ≠ 0)
解: 由符号函数的傅立叶变换对: 由符号函数的傅立叶变换对: Sgn(t)
2 jω
2 ∴ 2π Sgn(ω) = 2π Sgn(ω) jt
1 则 jπ Sgn(ω) : t
脉冲展缩与频带的关系
尺度特性 信号在时域中的扩展或压缩, 信号在时域中的扩展或压缩,将影响频谱的波形 若 f (t ) F ( jω ) 则
h(t ) H ( jω )
Y f ( jω ) = H ( jω ) F ( jω )
卷积定理
利用卷积定理证明时移特性: 利用卷积定理证明时移特性:
f (t t0 ) = f (t ) * δ (t t0 ) F ( jω )e jω t0
利用卷积定理证明频移特性: 利用卷积定理证明频移特性:
0
Aτ 4π τ
ω
τ
4
τ
4
τ
等效脉宽与等效频宽
F ( jω ) =
∫
∞
∞
f ( t )e
jω t
dt
1 ∞ jω t f (t ) = ∫∞ F ( jω)e dω 2π
∫
∞
∞
f ( t )d t = F (0)
F (0 ) B B
f f
∫
= 1
∞
∞
F ( jω )dω = f (0)
等效脉宽
1 ω f ( at ) F( j ) a a
(a ≠ 0)
若 a > 1: 时域压缩,则频域展宽; 若 : 时域压缩,则频域展宽; 若 0 < a < 1: 时域展宽,则频域压缩. 若 : 时域展宽,则频域压缩. 若 a = -1: 若 :
信号与系统课件第4章 连续时间傅里叶变换
j 0t
e
jt
1 dt e j ( j ( 0 )
0 ) t
However, this integral does not converge. Consider the Fourier transform pair δ(t) and 1.
可知,F ( ) 量纲是单位频带的复振幅。 即把 F ( ) 理解成各频率分量沿频率轴的分布, 具有密度的量纲和概念,故称为频率密度函数 。简称频谱密度,或在不发生混淆时简称频谱 。(注意与周期信号的频谱概念上不一样)
F ( )一般为复 与周期信号的傅里叶级数类似, 函数。为 F ( ) F ( ) e j ( ) F ( ) ~ 称为幅频特性; 总称频率特性 ( ) ~ 称为相频特性。
当信号为实函数时: F F * j j F F e F e
幅频特性为频率的偶函数;相频特性为频率的奇 函数。且均为频率的连续函数。
Convergence of Fourier Transforms
1 (t ) 2
jt 1 e d
2 (t ) 1 e jt d
This equation says that the Fourier transform of unit dc is 2 ( ) .
4.1 REPRESENTATION OF APERIODIC SIGNALS: THE CONTINUOUS-TIME FOURIER TRANSFORM
4.1.1 Development of the Fourier transform representation of the continuous time Fourier transform
常用的连续傅里叶变换对及连续傅里叶变换性质
ωτ
2
)
ωc
π
Sa(ωc t )
⎧ 1, ω < ωc ⎪ ⎪0, ω ≥ ωc ⎩
√
√
三角 f (t ) = ⎨
⎧1 − t τ , t < τ ⎪ t ≥τ ⎪0, ⎩
τ Sa 2 (
ωτ
2
)
ωc
2π
Sa 2 ( 1
ωc t
2
)
⎧1 − ω ωc , ω < ωc ⎪ F (ω ) = ⎨ ω ≥ ωc ⎪0, ⎩
√ √ √ √
F (t ) ↔ 2πf (−ω )
f (t )e jω0 t (− jt ) f (t ) πf (0)δ (t ) + f (t ) p(t ) f (t ) − jt F (ω − ω 0 ) F '(ω )
f (t − t 0 )
f '(t )
F (ω )e − jωt0 jω F (ω ) πF (0)δ (ω ) + F (ω ) jω
T1
T T ⎤ ⎡ f 0 (t ) = f ( t ) ⎢ u (t + 1 ) − u ( t − 1 ) ⎥ ↔ F0 (ω ) 2 2 ⎦ ⎣
连续傅里叶变换性质及其对偶关系
f (t ) = 1 +∞ F (ω )e jωt dω 2π ∫3;∞
−∞
f (t )e − jωt dt
⎣ 2 2 ⎦
(ω + ω0 )τ (ω − ω0 )τ ⎤ + Sa ⎥ 2 2 ⎦
+∞
f (t ) =
n =−∞
∑ F (nω )e
1
+∞
jnω1t
连续时间系统傅里叶变换的性质
第4章 连续时间信号的傅立叶变换
FT [ x (t ) cos 0t ]
FT [ x( t )] X ( )
X ( )
1 j 0t j 0 t x (t )[e e ] 2
频 移 特 性
1 2
0
1 2
X ( 0 )
X ( )
X ( 0 )
0
0
1 [ X ( 0 ) X ( 0 )] 2
1
2 X ( w ) F { xe ( )} F { xo ( )} j
第4章 连续时间信号的傅立叶变换
3、时移特性
若 则
x( t ) X ( )
x(t t0 ) X ( )e
j t 0
例4 11 : 求移位冲激函数的频谱 函数
(t ) 1
第4章 连续时间信号的傅立叶变换
例4 13 : 已知x(t)为三角形调幅信号,试 求其频谱
T 1 2
x1 ( t )
T1 2
T 1 2
x( t )
T1 2
x(t ) x1 (t ) cos0t
T1 2 T1 X 1 ( ) Sa ( ) 2 4
P147
T1 2 ( 0 )T1 2 ( 0 )T1 X ( ) [ Sa Sa ] 4 4 4
( j )
(t t0 ) e
(t t0 ) e
jt 0
jt 0
t 0
第4章 连续时间信号的傅立叶变换
思考:下列信号的傅立叶变换
x( t )
1
t
2
X ( w) 2e
jw
sinc( w)
信号处理中傅里叶变换简介
傅里叶变换一、傅里叶变换的表述在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开.泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。
信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。
通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。
以下将对上述变换进行简述,同时分析它们之间的关系。
1、CFS(连续时间傅里叶级数)在数学中,周期函数f(x)可展开为由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为其中,为了简写,有其中,为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得故有令则对于D n,有n≤0时同理.故CFS图示如下:Figure 错误!未定义书签。
理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。
在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。
2、CFT(连续时间傅里叶变换)连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。
当然,从时域上也可以反过来看成x(t)的周期延拓。
将x(t)进行CFS展开,有若令则有T0→∞使得Ω0→0,则由此,定义傅里叶变换与其逆变换如下CFT:CFT-1:x(t)是信号的时域表现形式,X(jΩ)是信号的频域表现形式,二者本质上是统一的,相互间可以转换。
CFT即将x(t)分解,并按频率顺序展开,使其成为频率的函数。
上式中,时域自变量t的单位为秒(s),频域自变量Ω的单位为弧度/秒(rad/s).CFS中的D n与CFT中的X(jΩ)之间有如下关系即从频域上分析,D n是对X(jΩ)的采样(可将Figure 1与Figure 2进行对比).CFT图示如下:Figure 错误!未定义书签。
信号与系统分析《信号与系统分析》吴京,国防科技大学出版社 第四章-3
时域展缩特性: f (at )
1 F( j ) a a
f (-t ) F (-j )
时移特性: f (t t 0 ) F ( j ) e j t0
f ( at b ) 1 a
b j F ( j ) e a ,a、b为常数, a
a
0
八 频移特性:
0
f (t )
2
t
2
c
c
F ( j )
t
c 0 c
六 时域展缩特性:
1 f ( t ) F ( j ),则 f (at ) F ( j ) , a 是不为零的实数 a a
|a|>1 |a|<1
时域压缩,频域扩展 时域扩展,频域压缩
门信号的频谱
当a=- 1时, f (-t ) F (-j ) 时域翻转对应频域翻转
例:求如图所示信号的频谱。
f (t )
1.5 1
f(t)=f1(t)+f2(t) 那么,利用傅里叶变化的线性性质,
-1.5
-0.5 0 0.5 1.5
t
f1(t) 1 1.5
F[f(t)]=F[f1(t)]+F[f2(t)]
-1.5
0
t
f2(t)
0.5 -0.5 0 0.5 t
三 奇偶特性 ——时域波形的对称性与频谱函数的关系 1.偶信号的频谱是偶函数,奇信号的频谱是奇函数。 2. 如果f(t)为实信号, 频谱的实部为偶函数,虚部为奇函数;
能量有限信号的 Passeval等式 1 2 2 绝对可积的非周期信号, E f ( t ) dt | F ( j ) | d 2 |F(jw)|2 ~w 能量谱
为什么狄利克雷条件是连续时间傅里叶变换的是充分条件
在研究连续时间傅里叶变换的过程中,狄利克雷条件是至关重要的。
狄利克雷条件是指一个信号在进行傅里叶变换时,如果其幅度和相位以及频率都是可预测的,并且信号本身是有限长的,那么这个信号就满足狄利克雷条件。
而为什么狄利克雷条件是连续时间傅里叶变换的充分条件,这是一个需要深入思考和研究的问题。
1. 傅里叶级数和傅里叶变换的关系在理解狄利克雷条件为何是连续时间傅里叶变换的充分条件之前,首先需要理解傅里叶级数和傅里叶变换的关系。
傅里叶级数是将周期信号分解为正弦和余弦函数的和的形式,而傅里叶变换则是将非周期信号分解为不同频率的正弦和余弦函数的积分的形式。
两者都是用来描述信号在频域上的特性,但傅里叶变换可以描述更广泛范围内的信号,比如非周期信号。
2. 连续时间傅里叶变换的定义和性质连续时间傅里叶变换是将一个信号在频域上的特性表示为一个复数函数的形式。
它的定义如下:\[X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt\]其中,\(x(t)\)是输入信号,\(X(f)\)是在频率\(f\)处的频谱。
3. 狄利克雷条件的定义和意义狄利克雷条件是指一个信号在进行傅里叶变换时,其本身是有限长的,并且其幅度、相位和频率都是可预测的。
在数学上,它的定义如下:\[\int_{-\infty}^{\infty} |x(t)| dt < \infty\]\[x(t) = \sum_{n=-\infty}^{\infty} X(nT)e^{j2\pi nfT}\]其中,\(T\)是信号的周期,\(X(nT)\)是信号在时域上的采样。
4. 狄利克雷条件对于傅里叶变换的作用狄利克雷条件是傅里叶变换的充分条件,这意味着满足狄利克雷条件的信号可以进行傅里叶变换,并且其傅里叶变换是唯一的。
满足狄利克雷条件的信号在频域上的频谱是连续、平滑且不会发散的,这使得对信号的频谱分析变得更加准确和有效。
连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
为整数
时移
频移
频域微分
差分
时域卷积
频域卷积
时域对偶
频域对偶
帕什瓦尔公式
,:能量谱密度
三、拉氏变换与
双边拉氏变换对
双边 变换对
连续时间函数
像函数
离散时间序列
像函数
1
1
,
,
,
,
,
,
,
,
四、拉氏变换性质
连续拉普拉斯变换对
相对偶的连续拉普拉斯变换对
名称
连续时间函数
拉氏变换
名称
连续时间函数
拉氏变换
线性
尺度变换
时移
复频域
时域微分
S域微分
时域积分
S域积分
时域卷积
S域卷积
初值定理
终值定理
五、常用序列的离散傅里叶变换
时间序列
离散时间傅里叶变换
1
1
六、常用连续函数傅里叶变换对
连续傅里叶变换对
相对偶的连续傅里叶变换对
连续时间函数
傅里叶变换
连续时间函数
傅里叶变换
1
1
七、
变换对
相对偶的 变换对
名称
离散时间函数变换名称离 Nhomakorabea时间函数
变换
线性
收敛域
收敛域
尺度变换
收敛域:
收敛域:
时移
频移
收敛域:
收敛域:
收敛域:
收敛域:
Z域微分
时域卷积
Z域卷积
初值定理
傅里叶变换 - 维基百科,自由的百科全书
代表狄拉克δ函数分布.这 个变换展示了狄拉克δ函数的重 要性:该函数是常函数的傅立叶 变换
变换23的频域对应
由变换3和24得到.
由变换1和25得到,应用了欧拉 公式:
由变换1和25得到
这里, 是一个自然数. 是狄拉克δ函数分布的
阶微分。这个变换是根据变换7 和24得到的。将此变换与1结合 使用,我们可以变换所有多项 式。
7/8
三元函数
时域信号
角频率表示 的
傅里叶变换
参见
正交变换 傅里叶级数 连续傅里叶变换 离散时间傅里叶变换 离散傅里叶变换 傅里叶分析 拉普拉斯变换 小波变换
参考资料
弧频率表示的 傅里叶变换
注释
此球有单位半径;fr是频率矢量的量值 {fx,fy,fz}.
1. ^ 林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974
时频分析变换
小波变换,chirplet转换和分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确 定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连 续则意味着在对应域的信号的非周期性.
来自“/w/index.php?title=傅里叶变换&oldid=24462958”
其中an和bn是实频率分量的振幅。
傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广 过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。
4.5非周期信号的连续时间傅里叶变换
R( ) R( ) X ( ) X ( )
是ω的偶函数 是ω的奇函数
F ( j) F ( j) e j ( )
| F ( j) |= R2 () + X 2 ()
R( ) = F ( j ) cos ( ) X ( ) = F ( j ) sin ( )
f (t) 为偶函数, 相位频谱为:
F ( j ) 为
且为
的实函数,
( ) 0
的偶函数。
4.4 连续时间信号傅里叶变换 例:利用双边指数信号求直流信号的傅立叶变换
f (t ) e
1 lim e
0
t
(a>0)
t
FT [1] lim F ( j )
0
2 lim 2 0 2
0
0 0
lim
2[
2 ( )
2 d( )
2
2 lim d 0 2 2
0
1 ( )2
( 2 )]
lim 2 arctan( ) 0
dt
e e
t
0
j t
dt e
0
t
e
j t
dt
1 j
1 j
2 2 2
4.4 连续时间信号傅里叶变换 双边指数信号一
f (t ) e
t
(a>0)
2 F ( j ) 2 2
其振幅频谱为:
2 F ( j ) 2 2
t0 t0
t0 t0
f (t ) sgn(t )
信号与系统常用公式集
2)(10}Re{),(jw a a t u te at+↔>-natn jw a a t u e n t )(10}Re{),()!1(1+↔>---0,21)],()([sin 11000==-=+--↔-k a ja a w w w w t w δδπkk k t jkw k k akw w a e a ),(200-↔∑∑∞-∞=∞-∞=δπ其余k a a kw w e k tjkw ,0,1),(2100==-↔πδ0,21)],()([cos 11000===++-↔-k a a a w w w w t w δδπ0,1),(21)(0==↔=k a a w t x πδπππk T kw kw c T w k T kw T t T T t t x k 1010101011sin )T (sin sin 22||,0||,1)(=↔⎪⎩⎪⎨⎧≤<<=∑∞-∞=级:k ,1),2(2)(对全部T a T k w T nT t k k n =-↔-∑∑∞-∞=∞-∞=πδπδw wT T t T t t x 111sin 2||,0||,1)(↔⎩⎨⎧><⎩⎨⎧><=↔W w Ww jw X tWt ||,0||,1)(sin π1)(↔t δ)(1)(w jw t u πδ+↔0)(0jwte t t -↔-δjw a a a t u e at+↔>-1}Re{),(连续时间傅里叶变换 ∑∑∞-∞==-↔k k n N jk N k k a Nkw e a ),2(2)/2()(πδππ⎩⎨⎧±±==--↔∑∞-∞=kNm N m m k a l w w e k l n jw 其余级数,02,,,1:)2(200πδπ⎩⎨⎧±±±±±==-++--↔∑∞-∞=其余级数,02,,,1:)}2()2({cos 000Nm N m m k a l w w l w w n w k l πδπδπ⎪⎪⎪⎩⎪⎪⎪⎨⎧±--=-±±==-----↔∑∞-∞=k ,0,,212,,,21:)}2()2({s 000其余级数Nr r k j N r N r r k j a l w w l ww jn inw k l πδπδπ⎩⎨⎧±±==-↔=∑∞-∞=k,02,,0,1)2(21][其余NN k a l w n x k l πδπNN k NN a Nk k N k N N N k a N k w a N n N N n n x k kk k 2,,0,12,0,]2/2sin[)]2/1)(/2sin[()2(22/||,0||,1][1111±±=+=±=≠+-↔⎩⎨⎧≤<≤=∑∞-∞=πππδπk 1:)2(2][对于全部级数Na N kw N kN n k k k k =-↔-∑∑∞-∞=∞-∞=πδπδ0][0jwn en n -↔-δ2)1(11||],[)1(jw n ae a n u a n --↔<+离散时间傅里叶变换jwn ae a n u a --↔<111||],[)2/sin()]2/1(sin[||,0||,1][11w N w N n N n n x +↔⎩⎨⎧>≤ππππππ2,||,0||0,1)(0),(sin sin =⎩⎨⎧≤<≤≤=↔<<=T w W Ww w X W Wc W n W n n 1][↔n δ∑∞-∞=--+-↔k jw k w e n u )2(11][ππδrjw n ae n u a r n r n )1(11][)!1(!)!1(--↔<--+)()()()(jw bY jw aX t by t ax +↔+线性:)()(00jw X e t t x jw t -↔-时移:)(()(00w w j X t x e t jw -↔频移:)()(**jw X t x -↔共轭:)()(jw X t x -↔-时间反转:)(||1)(a jw X a at x ↔尺度变换:)()()(*)(jw Y jw X t y t x ↔卷积:)(*)(21)()(jw Y jw X t y t x π↔相乘:)()(jw jwX t x dtd ↔时域微分:⎰+↔∞)()0()(1)(t -w X jw X jwdt t x δπ积分:)()(jw X dwdjt tx ↔频域微分:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-=--∠=∠↔)()(|)(||)(|)}(Im{)}(Im{)}(Re{)}({Re )()()(*jw X jw X jw X jw X jw X jw X jw X jw X jw X jw X t x 实共轭对称:ωπd jw X dt t x 22-|)(|21|)(|⎰⎰∞∞-∞∞=帕斯瓦尔:连续时间傅里叶变换性质)()(][][jw jw e bY e aX n by n ax +↔+线性:)(][00jw jwn e X e n n x -↔-时移:)(][)(00w w j n jw e X n x e -↔频移:)(][**jw e X n x -↔共轭:)(][jw e X n x -↔-时间反转:)(X k n 0k n ],/[][)(jkw k e k n x n x ↔⎩⎨⎧=的倍数不为,的倍数为若时域扩展:)()(][*][jw jw e Y e X n y n x ↔卷积:θπθθπd e Y e X n y n x w j j )()(21][][)(2-⎰↔相乘:)时域差分:jw jw e X e n x n x ()1(]1[][--↔--∑∑∞-∞=--∞=-+-↔k j jw jw k k w e X e X e k x )2()((11][0n πδπ)累加:dwe dX jn nx jw)(][↔频域微分:dwe X n x jw n 222|)(|21|][|⎰∑=∞-∞=ππ帕斯瓦尔定理:离散时间傅里叶变换性质S,1)(全部↔t δ0}Re{,1)(>↔s st u 0}Re{,1)(<↔--s st u 0}Re{,1)()!1(1>↔--s st u n t n n 0}Re{,1)-()!1(1<↔--s st u n t n n as sa t u e at ->+↔-}Re{,1)(as sa t u e at -<+↔--}Re{,1)(-as a s t u e n t n at n ->+↔---}Re{,)(1)()!1(1as a s t u e n t nat n -<+↔---}Re{,)(1)-()!1(-1S,T )-t (全部s T e -↔δ0}Re{,)(][cos 220>+↔s w s st u t w 0}Re{,)(][sin 20200>+↔s w s wt u t w 212121),()()()(R R s bX s aX t bx t ax 至少线性:+↔+Rs X e t t x s t ),()(00-↔-时移:]ROC R )([),(][:s 000中中,则就于在若的平移域平移s s R s s X t x e t s --↔]ROC s R s/a [/),(||1)(中就位于中,则在若时间尺度变换:aR a sX a at x ↔Rs X t x ),()(***↔共轭:212121),()()(*)(R R s X s X t x t x 至少卷积:↔R),(至少时域微分:s sX xt dtd↔Rs X dsdt tx s ),()(↔-域微分:}0}{Re{s R [)(1)()(t->↔⎰∞至少时域积分:s X sd x ττa s w a s as t u t w e at->+++↔-}Re{,)()(]cos [2020a s w a s w t u t w e at ->++↔-}Re{,)()(]sin [22000}Re{,1)]([)(>↔=-s st u t u n n 拉普拉斯变换njw N k ktjkw k k e a n x ea t x 00)()(->=<∞-∞=∑∑==∑∑>=<∞-∞===N k njkw kjw ktjkw k keeH a n y ejkw H a t y 000)()()()(0LTI 输入周期信号为x(t)或x(n),其输出y(t)或y(n)如下:∑⎰∞-∞=--∞∞-==n nstzn h z H dt et h s H )()()()(tjkw k kea t x 0)(∑∞-∞==dte t x Ta t jkw Tk 0)(1-⎰=连续时间级数 dwe e X n x jwn jw )(21][2⎰=ππ∑∞-∞=-=n jwnjwen x e X ][)( 离散时间级数∑>=<=N k njkw kea n x 0][∑>=<-=N k njkw k en x Na 0][1 离散时间级数连续时间傅里叶dwejw X t x jwt)(21)(⎰∞∞-=πdte t x jw X jwt-∞∞-⎰=)()(。
傅里叶变换的基本性质
傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。
在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。
因此有必要讨论傅里叶变换的基本性质,并说明其应用。
一、线性傅里叶变换是一种线性运算。
若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。
例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。
解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。
式中的表示频谱函数坐标轴必须正负对调。
例如:例3-7若信号的傅里叶变换为试求。
解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。
三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展)a倍,而则表示沿频率轴扩展(或频率尺度压缩)a倍。
该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。
例3-8已知,求频谱函数。
解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。
五、时移性若则此性质可根据傅里叶变换定义不难得到证明。
它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。
例3-9求的频谱函数。
解:根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。
连续时间傅里叶变换
连续时间傅⾥叶变换連續時間傅裡葉變換(Continuous Time Fourier Transform)引⾔傅裡葉變換試圖將⾮週期信號也納⼊到傅裡葉的體系中。
對於⾮週期信號,可以看成是週期無限⾧的週期信號。
當週期無限⼤時,傅裡葉級數的頻率分量就變成了⼀個連續域。
⾮週期信號的表⽰:連續時間傅裡葉變換⾸先以週期⽅波為例,即在⼀個週期內x(t)=1,|t|<T10,T1<|t|<T/2若將其表⽰為傅裡葉級數,其傅裡葉級數的係數為a k=2sin(kω0T1)kω0T將其在頻域圖上畫出來,並逐漸增⼤週期T就可以得到下圖可想⽽知,隨著T的增⼤,頻率越來越⼩,包絡線裡⾯的頻率越來越密集,最終形成⼀條連續的曲線。
傅裡葉變換的⼯作就是要求出這條曲線,從⽽完成信號從時域到頻域的轉換。
這就是對⾮週期信號建⽴傅裡葉級數表⽰的基本思想。
將˜x(t)看作是x(t)的⼀個週期,由於傅裡葉的級數表⽰是在⼀個週期內推出來的,所以對於⾮週期信號的⼀個週期,也有˜x(t)=+∞∑k=−∞a k e jkω0t a k=1T∫T2−T2˜x(t)e−jkω0t dt由於⾮週期信號可以看成只有⼀個週期的信號,所以在週期之外,即|t|>T/2時,x(t)=0,⽽在週期之內,˜x(t)=x(t),則有a k=1T∫+∞k=−∞x(t)e−jkω0t dt則可以得到X(jω)=Ta k=∫+∞−∞x(t)e−jωt dt 稱X(jω)為Ta k的包絡。
再將a k=X(jω)T代⼊式1得˜x(t)=+∞∑k=−∞1T X(jkω0)ejkω0t=12π+∞∑k=−∞X(jkω0)e jkω0tω0當T→∞時,˜x(t)→x(t),ω0→0,因此ω0可以看作⼀個微分,⽽右端式⼦可以看作⼀個積分式。
則有x(t)=12π∫+∞−∞X(jω)e jωt dω{⽽X(jω)=∫+∞−∞x(t)e−jωt dt這兩式即稱為⼀對傅裡葉變換對。
《傅里叶变换详解》课件
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
周期信号的连续时间傅里叶级数
傅里叶级数的收敛性取决于信号的形状和频率范围。对于具有快速衰减特性的信号,其傅里叶级数可 能具有良好的收敛性;而对于具有缓慢衰减特性的信号,其傅里叶级数可能具有较差的收敛性。在实 际应用中,通常需要对信号进行截断或加窗处理,以提高傅里叶级数的收敛性。
傅里叶级数的重要性和应用价值
信号分析
傅里叶级数提供了将周期信号 分解为正弦和余弦波的方法,
是信号分析中的重要工具。
通信系统
在通信系统中,傅里叶级数用 于信号调制和解调,实现信号 的传输和接收。
控制系统
在控制系统中,傅里叶级数用 于频域分析和系统稳定性分析 。
物理和工程领域
在物理、化学、生物和工程领 域,傅里叶级数用于分析各种
DTFS的主要应用包括信号分析和数字信号处理中的频谱分析。
快速傅里叶变换(FFT)
1
快速傅里叶变换(FFT)是一种高效的计算离散 傅里叶变换(DFT)和其逆变换的算法。
2
FFT的主要思想是将长度为$N$的DFT分解为多 个较短的DFT,然后利用旋转因子的周期性和对 称性来减少计算的复杂度。
3
FFT的出现极大地促进了数字信号处理领域的发 展,使得实时信号处理成为可能。
滤波器设计
滤波器是信号处理中的重要元件,用于提取或抑制特定频率范围的信号。通过傅 里叶级数,可以设计出各种类型的滤波器,如低通、高通、带通和带阻滤波器等 。
滤波器设计在音频处理、图像处理、雷达和通信等领域有广泛应用,例如在音频 处理中可以通过滤波器来消除噪音或增强特定音色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2π
|
πp2 ()
|2
d
1 1 π 2d π
2π 1
(sin 2t )2dt ?
2t
(sin 4t )2dt ?
4t
连续时间傅里叶变换的性质
谢谢
本课程所引用的一些素材为主讲老师多年的教学积累,来 源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!
x2(t) F X2( j)
则
x1
(t
)
x2
(t
)
F
1 2π
[
X
1
(
j)
X
2
(
j)]
连续时间傅里叶变换的性质
非周期信号x(t) 的能量谱
W | x(t) |2 dt
| X ( j) |2---- 能量谱
x(t)[ 1 X *( j)ejtd]dt
主讲人:陈后金 电子信息工程学院
连续非周期信号的频域分析
连续非周期信号的频域表示 典型连续非周期信号的频谱 连续时间傅里叶变换的性质
连续时间傅里叶变换的性质
※ 线性特性 ※ 共轭对称特性 ※ 互易对称特性 ※ 展缩特性 ※ 时移特性 ※ 频移特性
※ 时域积分特性 ※ 时域微分特性 ※ 频域微分特性 ※ 时域卷积特性 ※ 频域卷积特性 ※ 能量守恒定理
连续时间傅里叶变换的性质
9. 频域微分特性
若 x(t) F X ( j)
则 t x(t) F j dX ( j)
d
tn
x(t)
F
jn
dX n ( j) d n
连续时间傅里叶变换的性质
[例] 试求单位斜坡信号 tu(t) 的频谱。
解: 已知单位阶跃信号傅里叶变换为
2π
1 X *( j)[ x(t)ejtdt] d
2π
1 X *( j) X ( j)d 1 | X ( j) |2 d
2π
2π
连续时间傅里叶变换的性质
12. 能量守恒定理 (帕什瓦尔能量守恒定理)
x(t) 2 dt 1 | X ( j) |2 d
连续时间傅里叶变换的性质
[例] 求如图所示信号的频谱。
解:
x(t) p2 (t)* p2 (t)
p2(t) F 2Sa()
根据时域卷积特性
X ( j) 4Sa 2 ()
x(t) 2
2
0
t 2
P2 (t)
1
t
O
1
1
连续时间傅里叶变换的性质
11. 频域卷积特性
若 x1(t) F X1( j)
F [u(t)] π () 1 j
故利用频域微分特性可得:
F
[tu(t)]
j d [π () d
1
2
连续时间傅里叶变换的性质
10. 时域卷积特性
若 x1(t) F X1( j)
x2(t) F X2( j)
则 x1(t) x2(t) F X1( j) X2( j)
2π
非周期能量信号在时域中的归一化能量等于 其在频域中的归一化能量,能量保持守恒。
连续时间傅里叶变换的性质
[例] 计算 (sint )2 dt
t
解:
F
{sin t
t
}
πp2
(
)
根据Parseval能量守恒定理,可得
P2 ()
1
O
1
1
(sint )2 dt