浙江师范大学电磁学课件EM72
电磁学PPT课件-2024鲜版

1 2
麦克斯韦方程组的构成
四个基本方程,描述电场、磁场、电荷和电流之 间的关系。
物理意义
揭示了电磁场的基本规律,预测了电磁波的存在 ,为电磁学的发展奠定了基础。
方程组中各量的含义及相互关系
3
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
2024/3/28
且电流大小和方向均不随时间变化。
欧姆定律的内容
02
介绍欧姆定律,即在同一电路中,通过导体的电流与导体两端
的电压成正比,与导体的电阻成反比。
欧姆定律的应用
03
列举欧姆定律在电路分析中的广泛应用,如计算电阻、电压和
电流等。
14
稳恒磁场产生条件及描述方法
稳恒磁场的定义和产生条件
阐述稳恒磁场的概念,即由恒定电流产生的磁场,其磁场强度和 方向均不随时间变化。
霍尔效应的原理
介绍霍尔效应的原理,即在通电的半导体薄片上施加一个与电流方 向垂直的磁场,会在半导体两侧产生电势差的现象。
霍尔效应的应用
列举霍尔效应在测量磁场、制作霍尔元件等方面的应用。
2024/3/28
16
磁路定理及其在工程中应用
磁路定理的内容
介绍磁路定理,即在磁路 中,磁通量总是沿着磁阻 最小的路径闭合。
配电网
将电能从变电站输送到用户端,包括架空线路、电缆、配 电变压器等设施。
2024/3/28
26
工业自动化领域传感器技术应用
位移传感器
利用电磁感应原理测量 物体位移或位置变化, 广泛应用于机床、自动 化生产线等领域。
2024/3/28
压力传感器
将压力转换为电信号输 出,用于测量气体或液 体的压力,常见于工业 控制、航空航天等领域 。
大学物理《电磁学》PPT课件

欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
2024大学物理电磁学PPT课件

大学物理电磁学PPT课件•电磁学基本概念与定律•静电场与高斯定理•恒定电流与磁场目录•电磁感应与交流电路•电磁波辐射与传播•电磁学实验方法与技巧电磁学基本概念与定律电荷的基本性质电场的概念电场的描述电场强度与电势电流的形成磁场的概念磁场的描述磁场对电流的作用电磁感应现象楞次定律互感与自感法拉第电磁感应定律电磁感应定律电磁波及其传播电磁波的产生01电磁波的性质02电磁波的应用03静电场与高斯定理静电场基本概念静电场静止电荷周围空间存在的一种特殊形态的物质,对放入其中的电荷有力的作用。
电场强度描述电场强弱的物理量,与试探电荷无关,反映电场本身的性质。
电势描述电场中某点电势能的物理量,与零电势点的选取有关。
电场线与电通量电场线电通量描述电场中穿过某一曲面的电场线条数的物理量,反映该曲面与电场的相对关系。
高斯定理及其应用高斯定理应用静电场中导体与绝缘体导体绝缘体导体与绝缘体的区别恒定电流与磁场电流的定义恒定电流电阻和电阻率030201恒定电流基本概念磁场线与磁通量磁场线磁通量磁感应强度安培环路定律和毕奥-萨伐尔定律安培环路定律毕奥-萨伐尔定律应用举例磁场对电流作用力和霍尔效应磁场对电流的作用力霍尔效应应用举例电磁感应与交流电路电磁感应定律和楞次定律电磁感应定律楞次定律动生和感生电动势动生电动势感生电动势自感和互感现象自感现象互感现象交流电路基本概念及分析方法交流电路基本概念交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。
与交流电相对应的是直流电,其电流、电压和电动势的大小和方向均不随时间变化。
交流电路分析方法交流电路的分析方法主要包括相量法、复数表示法、有效值法等。
其中,相量法是一种将正弦量表示为复数形式的方法,可以简化交流电路的计算和分析;复数表示法则是将正弦量表示为实部和虚部的形式,便于进行加减运算;有效值法则是将交流电的有效值与直流电进行等效替换,从而简化计算过程。
电磁波辐射与传播电磁波是由变化的电场和磁场相互激发而形成的,具有波动性和粒子性。
EM72

Fm = ( e) v × B
Fe = eEk
Fm = Fe
Fm Ek = = v× B e
εi =
+ + +P + + ++ + + F+ + +
dΦ dB 1 ε AB = = SAB = 2 hlABK dt dt
×
×
O
×
B ↑ t
F
h = R 2 ( 1 l AB ) 2
ε BC
2
A
r h × Ek
θ
B
C
dΦ dB = = S ∩ BOF = 1 R 2θK 2 dt dt
ε AC = ε AB + ε BC
G L Pollack and D R Stump 15
= v Bd l
+ + P + + + +
εi =
=
∫
∫
L 0
L
vB d l
o
+ +
v ω+ + + +
+ + + +
0
ω lB d l
+ + +
1 ε i = B ω L2 2
ε i direction O
G L Pollack and D R Stump
P
6
Sec7-2 Motional and induced EMF Example 2 Given initial velocity v0 of a metal rod , find the velocity v (t ) at arbitrary time. Solution:
电磁学 全套课件

第五章静电场
§5-1库仑定律
1、种类:正电荷、负电荷
2、电荷的量子化
e1.61 019C
qne(n1,2 )
二、电荷守恒定律
1、常见的两种起电方式
摩擦起电 感应起电
起电本质:电子从一个物体转移到另一个物体
AB
A
B
A
B
2、电荷守恒定律:在孤立系统中,不论系统的电荷如何 迁移,系统的电荷电量的代数和保持不变。
一、等势面
1、定义:电场中电势相等的点所组成的曲面
2、说明: 沿等势面移动电荷电场力不做功 电场线和等势面处处正交 规定:相邻等势面的电势差相等。
等势面密的地方电场强,等势面稀疏的地方电场弱。 电场线的方向总是指向电势降低的方向
点电荷
等量异号点电荷
二、电势梯度
1、电势梯度
E
若带电体电荷无限分布,则在有限范围内选取零电势点。
五、电势的计算
1、点电荷电场的电势
U 1 q
4 0 r
q
a
r
说明 •球对称性 •电势有正有负,决定于场源电荷的正负
2、点电荷系的电势
U
i
1 qi
4 0 ri
U1U2
电势叠加原理:点电荷系电场中某场点的电势等于各个点电荷 电场在该场点的电势的代数和。
q0从无限远处移到O点,电场力做功多少?
q1
a
q2
a O
a
q4
a
q3
例2、求半径为R、均匀带电为q的细圆环轴线上任一点的电势。
dl
R
r
a
Ox x
讨论: 环心处:x=0 x>>R处
2024年度电磁学全套ppt课件

将复杂电路中的某一部分等效 为一个电源,从而简化电路分
析的方法。
17
04
磁场与磁力线
2024/2/3
18
磁场基本概念及性质
2024/2/3
磁场定义
磁场是由磁体周围空间存在的一种特殊物质,它对放入其 中的磁体产生力的作用。
磁场性质
磁场具有方向性,其方向由小磁针N极受力方向确定;磁 场具有叠加性,多个磁场可以相互叠加形成合磁场。
混联电路
既有串联又有并联的电路称为混联电路,分析时可根据需要将其简化 为简单的串联或并联电路进行处理。
2024/2/3
16
复杂电路简化技巧
支路电流法
以支路电流为未知量,列写KCL 和KVL方程进行求解的方法。
2024/2/3
节点电压法
以节点电压为未知量,列写KCL 方程进行求解的方法。
叠加定理
对于线性电路,多个独立电源 共同作用时产生的响应等于各 独立电源单独作用时产生的响 应的叠加。
互感现象
当两个线圈靠近时,一个线圈中的电流变化会在另一个线圈 中产生感应电动势,这种现象称为互感现象。互感电动势的 大小与两个线圈的匝数、相对位置和磁场的变化率有关。
26
变压器原理及应用
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制成。当 原线圈中加上交流电压时,铁芯中就会产生交变磁场,从而在副线圈中产生感应电动势。通过改变原、副线圈的 匝数比,就可以实现电压的升高或降低。
电阻的串联与并联
多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总 电阻的倒数等于各电阻倒数之和。
15
串联、并联和混联电路分析
电磁学电子教案课件

如铝镍钴、铁氧体等,用于制造永磁体,利用其较强的剩磁 和矫顽力特性保持磁场。
05
电磁感应与麦克斯韦方程组
Chapter
电磁感应的基本概念
总结词
描述电磁感应现象及其产生条件。
详细描述
电磁感应是当磁场发生变化时,会在 导体中产生电动势的现象。其产生条 件包括磁场、导体和磁通量的变化。
法拉第电磁感应定律
麦克斯韦方程组的应用
总结词
列举麦克斯韦方程组在各个领域的应用实例。
详细描述
麦克斯韦方程组在通信工程、电子工程、光学等领域有广泛应用。例如,在通信领域, 该方程组可用于分析电磁波的传播特性,提高信号传输的稳定性和可靠性;在电子工程 领域,该方程组可用于研究电磁场对电子设备的干扰和影响,提高设备的性能和稳定性
电磁力
带电粒子或带电物体之间 通过电磁场相互作用产生 的力。
电磁学的发展历程
静电学
研究静止电荷产生的电场 及其与物质相互作用。
静磁学
研究静止磁场及其与物质 的相互作用。
电磁感应
研究变化的磁场如何产生 电场,以及变化的电场如 何产生磁场。
电磁学在生活中的应用
无线通信
医疗设备
利用电磁波传递信息,实现无线通信 。
电磁学电子教案课件
目录
• 电磁学概述 • 电磁场与电磁波 • 电场与电介质 • 磁场与磁介质 • 电磁感应与麦克斯韦方程组
01
电磁学概述
Chapter
电磁学的基本概念
01
02
03
电磁场
由电场和磁场组成,是物 质的一种形态,具有能量 和动量。
电磁波
在空间传播的电磁场,具 有振荡、振动和传播等特 性。
总结词
电磁学第5章.ppt

2024/11/22
8
电磁学 (Electromagnetism)
3. 安培实验:通电导线之间有相互作用力,即电 流和电流之间也有相互作用力。 4. 磁铁对运动电荷有作用力。电子流从电子射线 管的阴极发射,形成一条电子射线,在旁边放置一 块磁铁,就可以看到电子射线的路径发生偏转。 大量实验证明,电现象和磁现象存在相互联系。 我们知道,电的作用是“近距”的,磁极或电流 之间的相互作用也是这样的,不过它通过另外一 种场—磁场来传递的。
2024/11/22
6
电磁学 (Electromagnetism)
实验表明:同名磁极互相排斥;异名磁极互相 吸引。
在历史上很长一段时期里,磁学和电学的 研究一直彼此独立地发展着,人们曾认为磁与 电是两类截然分开的现象。直至十九世纪初, 一系列重要的发现才打破了这个界限,使人们 开始认识到电与磁之间有着不可分割的联系。 下面介绍几个这方面的实验:
2024/11/22
25
电磁学 (Electromagnetism)
1820年,法国科学家毕奥、萨伐尔和拉普拉斯 在实验基础上,分析总结出电流元产生磁场的 规律,即毕奥—萨伐尔定律,其内容如下:
I
Idl
r
•P
dB
dB
0
Idl
rˆ
4 r 2
2024/11/22
26
电磁学 (Electromagnetism)
23
电磁学 (Electromagnetism)
实验证明在所有情况下,运动电荷在磁场中
将受到洛仑兹力:
F qv B
(1)磁场只对运动电荷有洛仑兹力作用; (2)洛仑兹力对运动电荷永远不作功(F·V=0)。 当空间某点,除磁场B外还存在电场E时,则运动 电荷受到的合力为:F=q(E+V×B)。
电磁学电子教案课件

电磁波接收
在无线通信中,接收端需要能够有效地接收 和还原发送端的信号。接收端通过天线接收 空间中的电磁波信号,经过信号处理和放大 后进行解调,最终还原出原始信号。为了提 高信号接收质量,需要采用高性能的接收器 和信号处理技术。
THANKS
感谢观看
电场强度
描述电场对电荷作用力强弱的物理量
电流与磁场
电流的单位:安培( A)
洛伦兹力:磁场对运 动电荷的作用力
磁感应强度:描述磁 场强弱的物理量
麦克斯韦方程组
微分形式的麦克斯韦方程组
描述电场和磁场在空间某一点的变化趋势
积分形式的麦克斯韦方程组
描述电场和磁场在某个闭合曲面内的总量变化
电磁场的能量与动量
电磁波传播
电磁波在空间传播过程中,伴随着 能量的传输,其传播速度与介质有 关。
变压器原理
变压器通过磁场耦合实现电压和电 流的变换,从而实现电场能和磁场 能之间的转换。
05
CATALOGUE
电磁器件与技术应用
电感器与变压器
电感器
电感器是一种储存磁场能量的电子元件,主要通过线圈来实现。它具有阻止电流变化的特性,即当电 流变化时,会产生反向电动势阻止电流的变化。在电子线路中,电感器常用于滤波、振荡、延迟等电 路中。
楞次定律
感应电流产生的磁场总是阻碍原磁场 的变化。
磁场能量守恒定律
磁场能量公式
磁场能量与磁感应强度、磁场储能密度和体积有关,其公式 为$W_{m} = frac{1}{2} int B^2 dV$。
磁场能量守恒
在无外力作用下,磁场能量在磁路中保持不变,即磁路中的 磁场能量守恒。
电场能量守恒定律
电场能量公式
电磁波的散射
大学物理《电磁学》课件

电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
电磁学PPT

§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
当穿过一个闭合导体回路所包围的面积内的磁通量发 生变化时(不论这种变化是由什么原因引起的),在导体 回路中就有电流产生。这种现象称为电磁感应现象。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
b
×
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
15
例3. 若上题中 v = 0,I = I0sin t,则结果如何?
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
6
楞次(1804~1865)俄国物理学家。
L
Er
d
l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solution:
i Blv M N
Magnetic force (Ampere force):
F IBl B2l 2v R
N
R
l F
B
I
v
M
o
x
G L Pollack and D R Stump
7
Sec7-2 Motional and induced EMF
Fe eEk
Fm
Ek
Fe
Fm v
e
B
i
OP Ek dl
(v B) dl
OP
+B + +P+++ + + +
+ + Fe+ + + + +
v + + + - + + + +
+
+Fm+
-
+ -
+
+
+
+ + + O+ + + +
l
i
vBdl vBl
0
G L Pollack and D R Stump
G L Pollack and D R Stump
8
Sec7-2 Motional and induced EMF
Example 3 A long straight wire carrying a current I and a semicircle wire are coplanar. The semicircle wire moves at a velocity v parallel to the current of the straight wire. Find the induced emf in the semicircle wire.
The time dependence produces physical phenomena that are not present for static fields – electromagnetic induction and the displacement current.
G L Pollack and D R Stump
G L Pollack and D R Stump
3
Sec7-2 Motional and induced EMF
1. Motional EMF
The non-electrostatic force of the motional
EMF originates in Lorentz force.
Fm (e)v B
4
Sec7-2 Motional and induced EMF
i
b a
vB
dl
Steps solving the motional EMF:
a
(1)Choose dl
(2)Determine the direction of v B
by the right hand rule.
b
dl
G L Pollack and D R Stump
Sec7-2 Motional and induced EMF Example1 Find the emf of a rotating rod OP in B.
Solution:
di (v B) dl
vBdl
L
i
vBdl
0
L
0 lBdl
B
v
(3)Using i
b a
vB
dl
to calculate EMF.
i 0 EMF direction is the same as “ integral direction”.
i 0 EMF direction is opposite to “integral direction”.
Chapter7 Electromagnetic Induction
So far we have studied only fields that are independent of time.
Now we will be concerned with electric and magnetic fields, E(x,t) and B(x,t) , that vary with time.
2) A conductor does not move, and the magnetic
field changes with time, which leads to induced
EMF.
EMF
I
Ek
+-
Ek : non-electrostatic field
Ek dl
EMF of a closed circuit l Ek dl
1
Chapter 7 Electromagnetic Induction Contents
Sec7-1 Faraday’s law of electromagnetic induction Sec7-2 Motional and induced electromotive force Sec7-3 Self-inductance and mutual inductance Sec7-4 Energy of magnetic fields
F IBl B2l 2v R
Motion equation of the rod:
m dv B2l 2v
dt
R
v
dv
t B2l 2 dt
v v0
0 mR
v(t)
v e(B2l2 0
mR)t
N
Rl B F
v
M
o
x
R: resistance; m: mass of the rod; l: length of the rod
G L Pollack and D R Stump
2
Sec7-2 Motional and induced EMF
1) A conductor moves in magnetic field, and the area of a loop and the orientation change, which leads to motional EMF.
i
1 2
B L2
+ +
+ +
+ +
+ + + dl+
++ P
++
+ + v +B+
++
o
++
+ +
+ +
+ +
+++++++
i direction O
P
G L Pollack and D R Stump
6
Sec7-2 Motional and induced EMF
Example 2 Given initial velocity v0 of a metal