感应加热电源的现状与感应加热电源发展趋势

合集下载

电磁感应加热原理

电磁感应加热原理

电磁感应加热原理电磁感应加热是一种利用电磁感应现象进行加热的技术。

它利用交变磁场对导体产生感应涡流,从而使导体发热。

这种加热方式具有快速、高效、节能等优点,在工业生产和日常生活中得到了广泛应用。

本文将从电磁感应加热的原理、应用和发展趋势等方面进行介绍。

首先,电磁感应加热的原理是基于法拉第电磁感应定律和焦耳热效应。

当交变磁场穿过导体时,导体内部就会产生感应电流,这种感应电流会在导体内部产生焦耳热,从而使导体升温。

这个过程可以用数学公式来描述,即感应电流密度和导体内部的电阻率、磁导率以及交变磁场的频率和强度等因素有关。

因此,通过控制交变磁场的频率和强度,可以实现对导体的精确加热。

其次,电磁感应加热技术在工业生产中有着广泛的应用。

例如,电磁感应加热可以用于金属加热、塑料成型、玻璃熔化等工艺中。

在金属加热方面,电磁感应加热可以实现对金属的局部加热,从而提高生产效率和产品质量。

在塑料成型方面,电磁感应加热可以实现对塑料的快速加热和成型,避免了传统加热方式中的能量浪费和环境污染。

在玻璃熔化方面,电磁感应加热可以实现对玻璃的快速均匀加热,提高了玻璃生产的效率和质量。

此外,随着科学技术的不断进步,电磁感应加热技术也在不断发展。

例如,近年来,随着高频电源技术的发展,电磁感应加热的频率范围也得到了拓展,从传统的中低频加热向高频加热发展。

高频电源可以实现更高的功率密度和更精确的加热控制,从而在一些特定领域发挥着重要作用。

同时,电磁感应加热技术也在材料加热、医疗器械、环保等领域得到了广泛的应用和推广。

总的来说,电磁感应加热技术作为一种先进的加热方式,具有快速、高效、节能等优点,在工业生产和日常生活中得到了广泛应用。

随着科学技术的不断发展,电磁感应加热技术也在不断创新和进步,为各行各业带来了更多的发展机遇和应用前景。

相信在未来的发展中,电磁感应加热技术将会发挥着越来越重要的作用,为人类社会的发展做出更大的贡献。

感应加热技术的应用及前景

感应加热技术的应用及前景

感应加热技术的应用及前景近年来,随着我国工业制造业的快速发展,加热技术在各行各业中的应用日益广泛,其中感应加热技术受到越来越多的关注。

感应加热技术是利用高频电场的感应作用将工件内部产生瞬时加热,其特有的优点是快速、高效、节能、环保等,并且可用于金属材料的加热和热处理。

因此,感应加热技术在机械加工、汽车、制造业、金属加工等领域的应用越来越广泛,产生了很大的经济效益和社会效益。

一、感应加热技术的原理感应加热技术是利用电磁感应原理,通过高频电磁场让工件内部产生涡流,利用涡流产生的热量使工件加热。

高频电磁场是通过高频电源提供的电能转化为电磁能,通过匹配电源、感应线圈和工件三者的参数来实现高频电磁场的匹配。

当感应线圈内产生高频电磁场时,工件中就会产生电流,电流与磁场相互作用从而产生涡流,涡流会在导体内磨擦产生热量,使工件加热。

这样,就实现了对工件的快速加热。

感应加热技术能够实现快速、高效、环保、节能的加热过程,并且由于没有接触,因此不会损坏工件表面,适用于金属加热和热处理。

二、感应加热技术在机械制造行业中的应用(一)机械制造行业中,感应加热技术应用最为普遍的就是工件表面淬火和表面热处理。

这种方法能够提高工件的硬度、强度和耐磨性,从而增加其使用寿命。

在汽车制造行业中,发动机的部分零部件采用感应加热技术进行淬硬处理,这使得发动机更加强劲,耐用性也有了很大的提高。

(二)传统的加热方式是燃气火炬或者加热炉,这种方式不仅效率低且占用大量的空间,而且加热周期比较长,而感应加热技术能够实现快速加热,相对于传统加热方式,感应加热技术具有加热效率高、生产效率高、节能、环保等优点,因此在工业制造、冶金、铸造等领域已得到广泛应用。

三、感应加热技术的未来发展方向(一)感应加热技术将越来越普及,因为它可以通过设计良好的装置实现快速加热和能量密集。

(二)随着环保要求的提高,感应加热技术将更加受到关注,因为感应加热技术没有燃烧产生的污染物,对环境的污染更小。

2023年感应加热电源行业市场分析现状

2023年感应加热电源行业市场分析现状

2023年感应加热电源行业市场分析现状感应加热电源是一种专门用于感应加热设备的电力供应设备。

随着感应加热技术的快速发展和广泛应用,感应加热电源行业也呈现出快速增长的趋势。

本文将从市场规模、竞争态势、技术发展等方面进行分析。

首先,感应加热电源市场规模庞大。

感应加热技术的应用范围十分广泛,涵盖了钢铁、有色金属、机械制造、汽车制造等诸多行业。

在这些行业中,感应加热电源被广泛应用于炉、锅炉、熔炉、冶金设备、焊接设备以及零部件的加热等工艺中。

随着国内制造业的发展,感应加热电源市场也呈现出快速增长的趋势。

其次,感应加热电源市场竞争激烈。

随着技术的成熟和市场的扩大,感应加热电源市场涌现出了一大批供应商。

这些供应商不仅在技术上进行不断创新和突破,还在产品性能、质量、售后服务等方面进行差异化竞争。

同时,国内外一些知名外资企业也纷纷进入感应加热电源市场,加大了市场竞争的压力。

再次,感应加热电源技术发展迅速。

感应加热技术作为一种高效、环保、节能的加热方式,一直受到行业的青睐。

随着新材料和新工艺的不断引入,感应加热电源的技术也在不断改进和提升。

目前,一些供应商已经推出了更高效、更智能的感应加热电源产品,能够满足客户对加热加工的更高要求。

最后,感应加热电源行业还面临一些挑战。

首先,市场需求的不稳定性使得感应加热电源行业的发展面临一定的不确定性。

其次,虽然国内供应商在技术研发和产品质量方面取得了一定的成果,但在与国外供应商的竞争中,仍存在一定的差距。

因此,提升技术水平和产品质量是感应加热电源行业下一步发展的重点。

综上所述,感应加热电源行业市场规模庞大,竞争激烈,技术发展迅速,但同时也面临一些挑战。

随着国内制造业的不断发展和行业对高效、环保、节能加热方式的需求增加,感应加热电源行业有着良好的发展前景,但供应商需要不断提升自身实力,适应市场需求的变化。

高频感应加热电源的设计

高频感应加热电源的设计

----------------------- Page 1-----------------------Athesis submitted toZhengzhouUniversityfor the degree ofMasterThe Design of the High-Frequency InductionHeating Power SupplyBy Zhendong ZhangSupervisor锛歅rof锛嶱ing LiuIntegrated Circuit Engineeringof InformationCollege EngineeringMay 2014----------------------- Page 2-----------------------銏2銏?40鍚?銏?6銏?瀛︿綅璁烘枃鍘熷垱鎬у0鏄?鏈汉閮戦噸澹版槑锛氭墍鍛堜氦鐨勫浣嶈鏂囷紝鏄湰浜哄湪瀵煎笀鐨勬寚瀵间笅锛岀嫭绔嬭繘琛岀爺绌舵墍鍙栧緱鐨勬垚鏋溿€傞櫎鏂囦腑宸茬粡娉ㄦ槑寮曠敤鐨勫唴瀹瑰锛屾湰璁烘枃涓嶅寘鍚换浣曞叾浠栦釜浜?鎴栭泦浣撳凡缁忓彂琛ㄦ垨鎾板啓杩囩殑绉戠爺鎴愭灉銆傚鏈枃鐨勭爺绌朵綔鍑洪噸瑕佽础鐚殑涓汉鍜岄泦浣擄紝鍧囧繁鍦ㄦ枃涓互鏄庣‘鏂瑰紡鏍囨槑銆傛湰澹版槑鐨勬硶寰嬭矗浠荤敱鏈汉鎵挎媴銆?瀛︿綅璁烘枃浣滆€咃細寮犳尟琚? 鏃ユ湡锛?0 c4,骞村瞾鏈坃z7鏃?瀛︿綅璁烘枃浣跨敤鎺堟潈澹版槑鏈汉鍦ㄥ甯堟寚瀵间笅瀹屾垚鐨勮鏂囧強鐩稿叧鐨勮亴鍔′綔鍝侊紝鐭ヨ瘑浜ф潈褰掑睘閮戝窞澶у銆?鏍规嵁閮戝窞澶у鏈夊叧淇濈暀銆佷娇鐢ㄥ浣嶈鏂囩殑瑙勫畾锛屽悓鎰忓鏍′繚鐣欐垨鍚戝浗瀹舵湁鍏抽儴闂ㄦ垨鏈烘瀯閫佷氦璁烘枃鐨勫鍗颁欢鍜岀數瀛愮増锛屽厑璁歌鏂囪鏌ラ槄鍜屽€熼槄锛涙湰浜烘巿鏉冮儜宸?澶у鍙互灏嗘湰瀛︿綅璁烘枃鐨勫叏閮ㄦ垨閮ㄥ垎缂栧叆鏈夊叧鏁版嵁搴撹繘琛屾绱紝鍙互閲囩敤褰卞嵃銆?缂╁嵃鎴栬€呭叾浠栧鍒舵墜娈典繚瀛樿鏂囧拰姹囩紪鏈浣嶈鏂囥€傛湰浜虹鏍″悗鍙戣〃銆佷娇鐢ㄥ浣嶈鏂囨垨涓庤瀛︿綅璁烘枃鐩存帴鐩稿叧鐨勫鏈鏂囨垨鎴愭灉鏃讹紝绗竴缃插悕鍗曚綅浠嶇劧涓洪儜宸炲ぇ瀛︺€備繚瀵嗚鏂囧湪瑙e瘑鍚庡簲閬靛畧姝よ瀹氥€?瀛︿綅璁烘枃浣滆€咃細鎵媖鎼? 褰? 鏃ユ湡锛?0 14骞村瞾鏈?浜嗘棩----------------------- Page 3-----------------------鎽樿鎽樿鏈枃浠ラ珮棰戞劅搴斿姞鐑數婧愪负涓昏鐮旂┒瀵硅薄锛屼粙缁嶄簡鎰熷簲鍔犵儹鎶€鏈殑鑳屾櫙鐭?璇嗗拰鍩烘湰鍘熺悊锛岄槓杩颁簡鎰熷簲鍔犵儹鐢垫簮鐨勫彂灞曡繎鍐点€佹湭鏉ヨ秼鍔垮拰浼樺娍鐗圭偣銆傚垎鏋?瀵规瘮浜嗕覆銆佸苟鑱斾袱绉嶈皭鎸洖璺強鍏跺搴旂殑閫嗗彉鍣ㄦ嫇鎵戠粨鏋勶紝缁撳悎鏈枃鐨勮姹傦紝閫夋嫨涓茶仈璋愭尟閫嗗彉鍣ㄣ€傚垎鏋愪簡涓茶仈璋愭尟閫嗗彉鍣ㄧ殑涓夌宸ヤ綔鐘舵€侊紝纭畾寮辨劅鎬т负瀹為檯宸ヤ綔鐨勬渶浣崇姸鎬併€?鏈枃缁欏嚭浜嗘劅搴斿姞鐑數婧愮殑鏁存満璁捐锛岃绠椾簡涓荤數璺腑鏁存祦妗ャ€佹护娉㈢數瀹广€?鐢垫簮绾胯矾婊ゆ尝鍣ㄣ€佸紑鍏崇鍙婅皭鎸洖璺殑鍙傛暟锛屽苟涓旇璁′簡璐熻浇鍖归厤鍙樺帇鍣ㄣ€佺數娴侀噰鏍蜂簰鎰熷櫒鍜岃緟鍔╃數婧愩€備负浜嗘秷闄ゅ姞鐑繃绋嬩腑璐熻浇鍙傛暟鐨勫彉鍖栧璋愭尟棰戠巼鐨?褰卞搷锛岃璁′簡涓€绉嶅熀浜嶤C4098鐨勯鐜囪窡韪數璺紝閲囩敤妯℃嫙鎺у埗鐢佃矾閰嶅悎SG3525PWM闆嗘垚鐢佃矾锛屾瘮杈冨鏄撳湴瀹炵幇棰戠巼鑷姩璺熻釜銆傝璁′簡鍔熺巼璋冭妭鐢佃矾鎺у埗璐熻浇鍔熺巼銆傝璁′簡椹卞姩鐢佃矾锛屾帶鍒跺姛鐜囧紑鍏崇鐨勫紑閫氫笌鍏虫柇锛岄殧绂讳簡涓荤數璺拰鎺у埗鐢佃矾銆傝繕璁捐浜嗕繚鎶ょ數璺紝淇濊瘉浜嗙數婧愮殑姝e父杩愯銆?鏈枃鏈€鍚庣粰鍑哄悇涓姛鑳芥ā鍧楃殑瀹為獙娉㈠舰鍥撅紝缁撴灉璇佹槑棰戠巼璺熻釜鐢佃矾鍏锋湁杈?绋冲畾鐨勯鐜囪窡韪€ц兘锛屼笖鍦ㄦ弧瓒崇數婧愪腑閫嗗彉閮ㄥ垎宸ヤ綔浜庡急鎰熸€х姸鎬佹柟闈㈣揪鍒扮悊鎯虫晥鏋溿€傛湰璁捐杈惧埌浜嗛鏈熺殑瑕佹眰銆?鍏抽敭璇嶏細鎰熷簲鍔犵儹涓茶仈璋愭尟棰戠巼璺熻釜鍔熺巼璋冭妭椹卞姩鐢佃矾----------------------- Page 4-----------------------AbstractAbstractThe main research object of this thesis is t11e 1ligh frequency induction heatingpower supply锛嶧irst of all introduce the background knowledge and thebasic principleof inductionheating technology and expound the development situation锛宖uture trendsand advantages锛嶢fter analysis and comparison of the two resonant circuit and theftinverter topology structure锛宎ccording to the requirements锛宻elect the series resonantinverter锛嶢nalyzing the three kinds of working states of the series resonant inverter,choose the weak sensibility for the best practical working state锛?Then present the whole machine design of induction heating power supply andfigure out the parameters ofbridge rectifiers锛宖ilter capacitor,power line filter,powerswitchingdevice and resonant circmt in themain circuit and design the loadmatchingtransformer,current transformer and auxiliary power supply锛嶵he load parameterchanges effect on the resonance frequency in the process of heating锛宨n order toeliminate the influence锛宒esign a frequency tracking circuit based on CC4098锛宼hecircuit adopting the analog control circuit with SG3525 PWM integrated circuit 锛宑anCKITy out the frequency automatic tracking easily锛嶥esign the power control circuit tocontrol the load power锛嶥esign the driving circuit which Can not only control thepower switching device on and off,but also insulate the main circuit and the controlcircuit锛嶢lso design the protection circuit锛宼o ensure the normal operation ofpower锛?Finally present the experimental waveforms of each function module锛嶵heresults show that the frequency tracking circuit has stable frequency trackingand can achieve the ideal effect when the inverter works in weakperformanceemotional state锛嶵herefore this design reaches the expected requirement锛?Key word锛歩nduction heating锛宻eries resonance锛宖requency tracking锛宲ower controldriving circuit----------------------- Page 5-----------------------鐩綍鐩綍鎽樿鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€Abstract鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟I][1 缁鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟锛?1锛? 鎰熷簲鍔犵儹鎶€鏈殑鑳屾櫙鐭ヨ瘑鍜屽熀鏈師鐞嗏€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︿竴li锛巌锛嶪鎰熷簲鍔犵儹鎶€鏈殑鑳屾櫙鐭ヨ瘑鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟11锛巌锛?鎰熷簲鍔犵儹鎶€鏈殑鍩烘湰鍘熺悊鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟21锛?鎰熷簲鍔犵儹鐢垫簮鐨勫彂灞曡繎鍐靛拰鏈潵瓒嬪娍鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︺€?I锛?锛嶪鎰熷簲鍔犵儹鐢垫簮鐨勫彂灞曡繎鍐碘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟31锛?锛?鎰熷簲鍔犵儹鐢垫簮鐨勬湭鏉ヨ秼鍔库€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟31锛?鎰熷簲鍔犵儹鐢垫簮鐨勪紭鍔库€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︿竴41锛?鏈枃鐨勪富瑕佸伐浣溾€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︿竴52鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣斺€︹€︹€︹€︹€︹€︹€︹€︼紟锛?2锛? 鏁存満缁撴瀯鍙婂悇鍔熻兘鍗曞厓鍒嗘瀽鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︿竴62锛?璋愭尟鍥炶矾鍒嗘瀽鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2锛?锛巌涓茶仈璋愭尟鍥炶矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟72锛?锛?骞惰仈璋愭尟鍥炶矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟92锛?閫嗗彉鍣ㄦ嫇鎵戠粨鏋勫垎鏋愬強姣旇緝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12锛?锛巌涓茶仈璋愭尟閫嗗彉鍣ㄢ€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?i2锛?锛?骞惰仈璋愭尟閫嗗彉鍣ㄢ€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?22锛?锛? 涓层€佸苟鑱旇皭鎸€嗗彉鍣ㄥ姣斺€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?32锛?涓茶仈璋愭尟璋冨姛鏂瑰紡瀵规瘮鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟152锛? 涓茶仈璋愭尟閫嗗彉鍣ㄥ伐浣滅姸鎬佸垎鏋愨€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?72锛?锛?鎰熸€х姸鎬佲€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7----------------------- Page 6-----------------------鐩綍2锛?锛?瀹规€х姸鎬佲€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?72锛?锛?绾樆鎬х姸鎬佲€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?82锛?鏈珷灏忕粨鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟锛?83涓荤數璺璁″拰鍙傛暟璁$畻鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?93锛?涓荤數璺師鐞嗗浘鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟锛?93锛?鍙傛暟璁$畻鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?93锛?锛? 鏁存祦妗モ€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?93锛?锛?婊ゆ尝鐢靛鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟203锛?锛?鐢垫簮绾胯矾婊ゆ尝鍣ㄢ€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?13锛?锛?鍔熺巼鍣ㄤ欢閫夋嫨鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?23锛?锛?璋愭尟鍥炶矾鍙傛暟璁$畻鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?33锛?璐熻浇鍖归厤鍙樺帇鍣ㄧ殑璁捐鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?33锛?鐢垫祦閲囨牱璁捐鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟锛?63锛?杈呭姪鐢垫簮璁捐鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?83锛?鏈珷灏忕粨鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?94鎺у埗鐢佃矾鐨勮璁♀€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?04锛?棰戠巼璺熻釜鐢佃矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?04锛?锛? SG3525鍚屾浠嬬粛鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟锛?14锛?锛?杩囬浂妫€娴嬧€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?24锛?锛? CC4098鑴夊啿鏁村舰鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?34锛?鍔熺巼璋冭妭鐢佃矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?44锛?椹卞姩鐢佃矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?74锛?淇濇姢鐢佃矾鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?04锛?锛?杩囧帇涓庢瑺鍘嬩繚鎶も€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?04锛?锛?杩囨祦妫€娴嬩繚鎶も€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?04锛?鏈珷灏忕粨鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紟415瀹為獙璋冭瘯涓庣粨璁哄垎鏋愨€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2----------------------- Page 7-----------------------鐩綍5锛?涓荤數璺師鐞嗗浘鍜孭CB鍥锯€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?25锛?鎺у埗鐢佃矾鍘熺悊鍥惧拰PCB鍥锯€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?35锛?瀹為獙缁撴灉瑙傚療鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?45锛?锛?鍏ㄦˉ閫嗗彉寮€鍏崇璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?45锛?锛?鍙樺帇鍣ㄨ皟璇曗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?45锛?锛?璐熻浇鍥炶矾璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?55锛?锛?棰戠巼璺熻釜鐢佃矾璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?65锛?锛?鍔熺巼璋冭妭鐢佃矾璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?75锛?锛?椹卞姩鐢佃矾璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?85锛?锛?鎰熷簲鍔犵儹鐢垫簮鏁存満璋冭瘯鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?86鎬荤粨涓庝笉瓒充箣澶勨€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?9鍙傝€冩枃鐚€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼綖50涓汉绠€鍘嗏€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︿竴52鑷磋阿鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︺€?3V----------------------- Page 8-----------------------缁1 缁1锛? 鎰熷簲鍔犵儹鎶€鏈殑鑳屾櫙鐭ヨ瘑鍜屽熀鏈師鐞?1锛?锛?鎰熷簲鍔犵儹鎶€鏈殑鑳屾櫙鐭ヨ瘑鎰熷簲鍔犵儹鈥滃彨1鏄繎浜涘勾鏉ュ叴璧风殑涓€绉嶆柊鍨嬪姞鐑柟寮忥紝浼犵粺鐨勭數闃荤倝涓庣伀鐒扮倝鍔犵儹鏄洿鎺ユ帴瑙﹀姞鐑紝閫氳繃鐑紶瀵煎疄鐜帮紝鑰屾劅搴斿姞鐑槸闈炴帴瑙﹀姞鐑紝鍘熺悊鏄氦鍙樼數娴佸湪鐢垫劅绾垮湀涓骇鐢熸丁娴侊紝璇ユ丁娴佽兘澶熶娇绾垮湀浜х敓鐑噺锛岃繘鑰屽姞鐑噾灞炲伐浠躲€傛劅搴斿姞鐑€熷害蹇€佹晥鐜囬珮銆佹薄鏌撳皬銆佽€楄兘灏戯紝鏄浼犵粺鍔犵儹鏂瑰紡鐨勪竴娆′紵澶у彉闈┿€?鐢变簬鎰熷簲鍔犵儹鍏锋湁浣撶Н灏忋€佸崰鍦板皯銆佹晥鐜囬珮銆佹俯搴﹀彲鎺с€侀€熷害蹇€佸紑鍏虫崯鑰楀皬銆佹槗浜庤嚜鍔ㄥ寲鍜屽嚑涔庢棤鐜姹℃煋鐨勪紭鐐癸紝杩戜簺骞存潵鍙戝睍杩呴€燂紝鍦ㄩ噾灞炵儹澶?鐞嗗伐涓氫腑鏈夌潃骞挎硾鐨勫簲鐢ㄢ垶1锛屼緥濡傜剨鎺ャ€侀噾灞炶〃闈㈡番鐏€侀挗绠″集鏇层€侀摳閫犵啍鐐笺€?閿婚€犳瘺鍧姞鐑瓑绛夈€傚湪鐢靛瓙銆佽交宸ャ€佺煶娌广€佸寲宸ャ€佹満姊板埗閫犮€佸喍閲戠瓑鏂归潰鐨勫簲鐢ㄤ篃棰囪鎴愭晥锛屾劅搴斿姞鐑數婧愮殑甯歌鐢ㄩ€斿琛?锛?鎵€绀猴細琛╥锛?鎰熷簲鍔犵儹甯歌鐢ㄩ€?搴旂敤閮ㄩ棬涓昏鐢ㄩ€?榛戣壊銆佹湁鑹查噾灞炵殑鍐剁偧鍜屼繚(鍗?娓╋紱閲戝睘鏉愭枡鐨勭儹澶勭悊锛?鍐堕噾鍖哄煙鐔旂偧銆佹偓娴啍鐐肩瓑鍒跺彇瓒呯函鏉愭枡锛涢敾閫犮€佹尋鍘嬨€佽涧鍒剁瓑鍨嬫潗鐢熶骇鐨勯€忕儹锛涚剨绠$敓浜х殑鐒婄紳銆?榛戣壊鍜屾湁鑹查噾灞為浂浠剁殑閾搁€犲拰绮惧瘑閾搁€犵殑鐔旂偧锛涘強鍏堕浂浠?鐨勬番鐏紝鐗瑰埆鏄〃闈㈡番鐏互鍙婃番鐏鐨勫洖鐏€侀€€鐏拰姝g伀绛?鏈烘鍒堕€? 鐑鐞嗙殑鍔犵儹锛屽寲瀛︾儹澶勭悊鐨勬劅搴斿姞鐑紱鍘嬪姏鍔犲伐(閿汇€佹尋銆?杞х瓑)鍓嶇殑閫忕儹锛岀壒鍒槸妯¢敾銆佺簿閿荤瓑锛涢拵鐒婏紱瀵圭剨锛涚‖璐?鍚堥噾鐨勭啍鐒婏紱閲戝睘娑傚眰鍙婂叾浠栧満鍚堢殑鍔犵儹鐑樺共锛涚儹瑁呴厤绛夈€?杞诲伐缃愬ご灏佸彛鍔犵儹銆佸悎鎴愮氦缁寸敓浜т腑闂寸儹鍔犵儹绛夈€?鍖栧鍙嶅簲绛夊鍣ㄥ姞鐑€佽緭娌圭閬撶剨鎺ョ紳鐜板満閫€鐏紝杈撴补绠?鐭虫补銆佸寲宸?閬撲繚娓╃瓑銆?鐢靛瓙鐢靛瓙绠$敓浜т腑鐨勭湡绌烘皵鏃剁殑鍔犵儹绛夈€?----------------------- Page 9-----------------------缁鎰熷簲鍔犵儹鐢垫簮鏃㈠彲浠ュ宸ヤ欢杩涜鏁翠綋鍔犵儹锛屽張鑳藉宸ヤ欢杩涜灞€閮ㄥ姞鐑紱鏃?鍙宸ヤ欢杩涜娣卞眰閫忕儹锛屽張鍙鍏惰〃灞傞泦涓姞鐑紱鏃㈠彲瀵归噾灞炴潗鏂欑洿鎺ュ姞鐑紝鍙堝彲瀵归潪閲戝睘鏉愭枡杩涜闂存帴鍔犵儹銆傛湭鏉ユ湁鈥滅豢鑹插姞鐑€濅箣绉扮殑鎰熷簲鍔犵儹浼氶€愭鍙栦唬浼犵粺鐨勬帴瑙︽€у姞鐑€?1锛?锛?鎰熷簲鍔犵儹鎶€鏈殑鍩烘湰鍘熺悊鎰熷簲鍔犵儹涓昏渚濋潬涓や釜鍩烘湰鐗╃悊鐜拌薄锛氭硶鎷夌鐢电鎰熷簲鍜岀劍鑰虫晥搴斻€?(1)鐢电鎰熷簲鍘熺悊鍝?锛氫氦鍙樼數娴佹祦杩囩嚎鍦堬紝鍦ㄧ嚎鍦堝懆鍥翠骇鐢熶氦鍙樼鍦猴紝閲戝睘瀵?浣撳湪璇ヤ氦鍙樼鍦轰腑浜х敓鎰熷簲鐢靛姩鍔匡紝褰撳洖璺棴鍚堟椂锛屽皢浜х敓鎰熷簲鐢垫祦銆傚鍥?锛?鎵€绀猴紝閲戝睘宸ヤ欢鍦ㄤ氦鍙樼鍦轰綔鐢ㄤ笅浜х敓鐨勬劅搴旂數鍔ㄥ娍涓?e锛氫竴鈪e潗(1锛?)df寮忎腑锛?e鈥斺€旀劅搴旂數鍔跨殑鐬椂鍊?鈪b€斺€旂嚎鍦堝対鏁?鑾庘€斺€旀€荤閫?璇ュ伐浠惰嚜韬氨鏄竴涓棴鍚堝洖璺紝浜х敓鐨勬劅搴旂數娴佽绉颁綔娑℃祦锛屽畠鐨勫€间负銆?閲?璧? 銏?)寮忎腑锛?R鈥斺€?鏉愭枡鐨勭瓑鏁堥樆鎶?澧ㄢ€斺€旀潗鏂欑殑绛夋晥鎰熸姉浜ゅ彉纾佸満鎰熷簲绾垮湀鍔犵儹宸ヤ欢鈥濓技鍥?锛?鎰熷簲鍔犵儹鐨勫師鐞嗗浘2----------------------- Page 10-----------------------缁(2)鐒﹁€虫晥搴旂洴3锛氭丁娴佷娇琚姞鐑殑閲戝睘宸ヤ欢鍦ㄦ瀬鐭殑鏃堕棿鍐呬骇鐢熷ぇ閲忕儹閲忥紝鍥?涓烘劅搴旂嚎鍦堜笉涓庡伐浠剁湡姝f帴瑙︼紝鎵€浠ヨ繖绉嶅姞鐑柟寮忎负闈炴帴瑙﹀紡鍔犵儹銆傛娑℃祦鍦?宸ヤ欢涓婁骇鐢熺殑鐑噺涓?Q=0锛?鐢滐紱Rt (1锛?)寮忎腑锛?Q鈥斺€斿伐浠朵腑浜х敓鐨勭儹閲?J锛屸€斺€斿伐浠朵腑娴佽繃鐨勭數娴?灏衡€斺€斿伐浠朵腑鐨勭瓑鏁堢數闃?f鈥斺€斿伐浠朵腑閫氱數鐨勬椂闂?1锛?鎰熷簲鍔犵儹鐢垫簮鐨勫彂灞曡繎鍐靛拰鏈潵瓒嬪娍1锛?锛? 鎰熷簲鍔犵儹鐢垫簮鐨勫彂灞曡繎鍐?1831骞存硶鎷夌鍙戠幇浜嗙數纾佹劅搴斿師鐞嗭紝浠?0涓栫邯30骞翠唬寮€濮嬩汉浠紑濮嬭繍鐢ㄦ劅搴斿姞鐑妧鏈紝褰撴椂鐢变簬缂轰箯鐢靛姏鐢靛瓙鍗婂浣撳姛鐜囧櫒浠剁殑鍩虹锛屾劅搴斿姞鐑妧鏈綆涓嬨€佸彂灞曟粸缂撱€?20涓栫邯50骞翠唬锛屾櫠闂哥鐨勫嚭鐜板甫鍔ㄤ簡鎰熷簲鍔犵儹鎶€鏈箖鑷崇數鍔涚數瀛愭妧鏈殑涓€鍦洪潻鍛斤紝鏅堕椄绠′腑棰戞劅搴斿姞鐑妧鏈繁瀹屽叏鍙栦唬浼犵粺璁惧銆?0涓栫邯60骞翠唬锛岄棬鏋?鍏虫柇鏅堕椄绠$殑鍑虹幇鍙堝紩鍙戜簡涓€娆″彉闈╋紝鎻愰珮浜嗗彉棰戠數婧愮殑鍙潬鎬с€?0涓栫邯70骞?浠f湯鍑虹幇鐨勫満鏁堝簲鏅朵綋绠?MOSFET)鍏锋湁鍔ㄤ綔閫熷害蹇€佸伐浣滈鐜囬珮銆佷笉瀛樺湪浜屾鍑荤┛銆佹娓╁害绯绘暟銆佸绠″苟鑱斿潎娴佺殑鐗圭偣锛屽湪楂橀鎰熷簲鍔犵儹鐢垫簮涓簲鐢ㄩ潪甯稿箍娉涖€?0涓栫邯80骞翠唬鏈嚭鐜扮殑缁濈紭鏍呭弻鏋佹€ф櫠浣撶(IGBT)鍏锋湁寮€鍏冲拰鍏虫柇鐗规€уソ銆?閫熷害蹇€佸閲忓ぇ鐨勭壒鐐癸紝甯哥敤浜庨鐜?0kHz浠ヤ笅鐨勪腑銆佸ぇ鍔熺巼寮€鍏冲彉鎹㈠櫒鐮?銆?鎴戝浗鎰熷簲鍔犵儹鎶€鏈殑鍙戝睍涓庡彂杈惧浗瀹剁浉姣旇繕鏄瘮杈冭惤鍚庣殑锛岀浉鍏抽鍩熺殑鐮?绌跺皻鍦ㄨ捣姝ラ樁娈碉紝浣嗘渶杩戝嚑骞存垜鍥芥劅搴斿姞鐑數婧愮殑鍙戝睍闈炲父杩呴€燂紝宸茬粡骞挎硾杩?鐢ㄥ埌鍚勪釜棰嗗煙褰撲腑銆?1锛?锛?鎰熷簲鍔犵儹鐢垫簮鐨勬湭鏉ヨ秼鍔?鐩墠鎰熷簲鍔犵儹鐨勬湭鏉ヨ秼鍔挎槸澶у姛鐜囧寲銆侀珮棰戠巼鍖栥€佹櫤鑳藉寲闃?銆?3----------------------- Page 11-----------------------缁1锛庡ぇ鍔熺巼鍖?鎻愰珮鎰熷簲鍔犵儹鐢垫簮鐨勫姛鐜囧閲忓鎰熷簲鍔犵儹鎶€鏈殑鍙戝睍鍜屽簲鐢ㄦ湁寰堝ぇ鐨勪績杩?浣滅敤锛屽伐涓氫腑鎵€闇€鐨勫姛鐜囬€愬勾鎻愰珮锛屽簲璇ラ€氳繃鍚勭閫斿緞鎻愬崌鍔熺巼瀹归噺銆?2锛庨珮棰戠巼鍖?鎰熷簲鍔犵儹搴旂敤棰嗗煙瓒婃潵瓒婂箍娉涳紝浼撮殢鐫€鍔熺巼瀹归噺鐨勬彁鍗囷紝棰戠巼鐨勮姹備篃瓒?鏉ヨ秺楂橈紝涓轰簡鎻愰珮棰戠巼锛屽簲璇ラ€夌敤楂橀鍔熺巼寮€鍏冲櫒浠讹紝閲囩敤杞紑鍏虫妧鏈拰鍊嶉閫嗗彉鐢佃矾銆?3锛庢櫤鑳藉寲鏅鸿兘鍖栨帶鍒惰兘澶熷噺灏戝姵鍔ㄥ姏锛屾彁鍗囨満鍣ㄧ殑绋冲畾鎬э紝鎻愰珮鐢熶骇鏁堢巼锛屽欢闀挎満鍣ㄥ鍛斤紝瀵规劅搴斿姞鐑數婧愭湭鏉ョ殑鍙戝睍鍏锋湁閲嶅ぇ鐨勬剰涔夈€?4锛庨鐜囪窡韪拰璐熻浇闃绘姉鍖归厤鎰熷簲鍔犵儹鐢垫簮鍦ㄥ姞鐑繃绋嬩腑锛岀敱浜庡姞鐑伐浠舵俯搴﹀強鍐呭閮ㄧ幆澧冪殑涓嶆柇鍙樺寲锛?璐熻浇鐨勫悇涓弬鏁颁篃浼氶殢涔嬪彂鐢熷彉鍖栵紝浠庤€屼娇璋愭尟棰戠巼鍋忕寮€鍏抽鐜囷紝蹇呴』閲囩敤棰戠巼璺熻釜鎶€鏈紝浣垮紑鍏抽鐜囪拷韪皭鎸鐜囷紝褰撲簩鑰呯浉绛夋椂锛岀數鍘嬩笌鐢垫祦鍚岄鍚?鐩革紝鑳藉鑾峰緱鏈€澶х殑杈撳嚭鍔熺巼锛岀數婧愭晥鐜囪揪鍒版渶楂樸€?璐熻浇闃绘姉鍖归厤鏄湪閫嗗彉鐢佃矾涓庤皭鎸礋杞戒箣闂存坊鍔犻珮棰戝彉鍘嬪櫒锛屽畬鎴愯礋杞介樆鎶楀尮閰嶏紝闅旂浜嗚緭鍏ヤ笌杈撳嚭銆?1锛?鎰熷簲鍔犵儹鐢垫簮鐨勪紭鍔?鎰熷簲鍔犵儹姣斾紶缁熺數闃荤倝銆佺伀鐒扮倝鐩存帴鍔犵儹鎷ユ湁鐜繚銆佸畨鍏ㄣ€佽妭鑳界瓑浼樼偣锛?鍏蜂綋鏉ヨ锛屽畠鐨勪紭鍔裤€傚彥涓昏琛ㄧ幇鍦ㄤ互涓嬪嚑涓柟闈細1锛庢晥鐜囬珮2锛庡姏鏃ョ儹娓╁害楂樸€佹椂闂寸煭锛屽姞鐑€熷害蹇€?3锛庡鏄撳疄鐜版€诲姩鎺у埗4锛庢敼鍠勫拰淇濇姢鐜5锛庡畨鍏ㄥ彲闈?6锛庢搷浣滀娇鐢ㄦ柟渚?7锛庡畨瑁呭満鍦板崰鐢ㄩ潰绉皬8锛庡彲瀵瑰伐浠惰繘琛屽眬閮ㄥ姞鐑?鎬讳箣锛屾劅搴斿姞鐑浉瀵逛簬浼犵粺鍔犵儹鐨勪紭鍔块潪甯告槑鏄撅紝绗﹀悎鎴戝浗鑺傝兘鍑忔帓銆侀噸4----------------------- Page 12-----------------------缁瑙嗙幆淇濈殑瑕佹眰锛屾湭鏉ョ殑鍙戝睍鍓嶆櫙涓€鐗囧厜鏄庛€?1锛?鏈枃鐨勪富瑕佸伐浣?1锛庡姣斿垎鏋愪簡鎰熷簲鍔犵儹鐢垫簮涓茶仈璋愭尟閫嗗彉鐢佃矾鍜屽苟鑱旇皭鎸€嗗彉鐢佃矾锛屾渶缁堥€?鎷╀簡涓茶仈璋愭尟閫嗗彉鐢佃矾銆?2锛庤绠椾簡涓荤數璺互鍙婃帶鍒剁數璺殑鍙傛暟锛屼互姝ら€夊彇鍏冨櫒浠讹紝骞朵笖璁捐浜嗛珮棰戝彉鍘嬪櫒銆佺數娴侀噰鏍蜂簰鎰熷櫒浠ュ強杈呭姪鐢垫簮銆?3锛庨拡瀵瑰姞鐑繃绋嬩腑璐熻浇璋愭尟棰戠巼鍙樺寲杩欎竴鐜拌薄璁捐浜嗛鐜囪窡韪數璺紝浣垮伐浣?棰戠巼鑷姩璺熻釜璋愭尟棰戠巼銆?4锛庤璁′簡鍔熺巼璋冭妭鐢佃矾銆侀┍鍔ㄧ數璺拰淇濇姢鐢佃矾銆?5锛庡湪绀烘尝鍣ㄤ笂寰楀嚭瀹為獙娉㈠舰锛岄獙璇佷簡瀹為獙缁撴灉銆?5----------------------- Page 13-----------------------鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?2 鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?2锛? 鏁存満缁撴瀯鍙婂悇鍔熻兘鍗曞厓鍒嗘瀽鎰熷簲鍔犵儹鐢垫簮鍦ㄥ疄闄呭伐浣滄椂鑰楄兘澶э紝鏁堢巼浣庯紝宸ヤ綔棰戠巼涓嶉珮锛屼负浜嗚В鍐宠繖浜涢棶棰橈紝璁捐浜嗕竴绉嶈緭鍏ョ數鍘嬩负220韫﹀伐棰戜氦娴佺數锛岃緭鍑虹數鍘嬩负45y锛岃緭鍑哄姛鐜?涓?00鑱屽伐浣滈鐜囦负100kHz锛岄€嗗彉鏁堢巼鍦?0锛呭乏鍙崇殑鎰熷簲鍔犵儹鐢垫簮鏍锋満瀹屾垚瀵?閲戝睘宸ヤ欢鐨勫姞鐑紝鑳藉瀹炵幇棰戠巼鑷姩璺熻釜涓庡姛鐜囪皟鑺傘€傜數婧愭暣鏈烘鍥惧鍥?锛?鎵€绀猴紝鍚勪釜鍔熻兘鍗曞厓鐨勪綔鐢ㄥ涓嬫墍杩帮細鍥?锛?鐢垫簮鏁存満妗嗗浘1锛庢暣娴佹护娉㈢數璺腑杈撳叆鐨?20鏃洪浜ゆ祦鐢电粡杩囨暣娴佸櫒鍙樹负鍗曚竴鏂瑰悜鐨勮剦鍔?鐢靛帇锛屽啀缁忚繃婊ゆ尝鐢靛鍙樹负绋冲畾鐨勫钩婊戠洿娴佺數鍘嬶紝浣滀负閫嗗彉鍣ㄧ殑杈撳叆鐢靛帇锛屽畬鎴怉C锛廌C鍙樻崲銆?2锛庡叏妗ラ€嗗彉鐢佃矾鐢变袱涓ˉ鑷傜粍鎴愶紝姣忎釜妗ヨ噦鍖呭惈涓や釜寮€鍏崇锛屼竴涓ˉ鑷傜殑涓?绠′笌鍙︿竴涓ˉ鑷傜殑涓嬬鏋勬垚涓€缁勶紝鎬诲叡涓ょ粍銆傞€氬父涓€缁勫紑鍏崇鐨勯┍鍔ㄦ尝褰㈢浉鍚岋紝涓ょ粍娉㈠舰浜掕ˉ锛岄€氳繃鎺у埗姣忕粍寮€鍏崇寮€閫氫笌鍏抽棴鐨勯鐜囷紝鍙互鎺у埗璐熻浇杈撳嚭鐢?鍘嬩笌鐢垫祦鐨勯鐜囥€傞€嗗彉鍣ㄧ殑浣滅敤鏄皢鏁存祦婊ゆ尝鍚庣殑鐩存祦鐢靛帇杞崲涓洪鐜囪緝楂樼殑浜ゆ祦鐢靛帇锛屽畬鎴怐C锛廇C鍙樻崲銆?3锛庨殧绂昏礋杞藉尮閰嶅崟鍏冮噰鐢ㄩ珮棰戝彉鍘嬪櫒锛屽彲浠ヨ皟鏁寸數鍘嬪箙鍊硷紝鍖归厤璐熻浇锛屽悓鏃?闅旂浜嗚緭鍏ヤ笌杈撳嚭锛屾彁楂樼數婧愮殑鍔熺巼鍜屾晥鐜囥€?4锛庤皭鎸洖璺槸閫嗗彉鍣ㄧ殑璐熻浇锛屼富瑕佹湁涓茶仈璋愭尟鍥炶矾涓庡苟鑱旇皭鎸洖璺袱绉嶏紝缁?杩囧姣旓紝鏈枃閫夋嫨涓茶仈璋愭尟鍥炶矾浣滀负璋愭尟鍥炶矾鎷撴墤銆?6----------------------- Page 14-----------------------鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?5锛庣數娴侀噰鏍峰崟鍏冧娇鐢ㄧ數娴佷簰鎰熷櫒閲囨牱鐢垫祦锛屽皢鐢垫祦淇″彿杞崲鎴愮數鍘嬩俊鍙凤紝閫?缁欓鐜囪窡韪數璺€?6锛庨鐜囪窡韪數璺彁鍙栧嚭鍖归厤缃戠粶鐨勮皭鎸鐜囷紝寰楀埌2鍊嶄簬璋愭尟棰戠巼鐨勭獎鑴夊啿鍚屾淇″彿閫佺粰SG3525鍚屾绔娇鍏朵骇鐢熺殑寮€鍏崇椹卞姩淇″彿锛岃揪鍒伴┍鍔ㄤ俊鍙烽鐜囦笌璋愭尟棰戠巼鐩稿悓鐨勭洰鐨勶紝瀹炵幇棰戠巼璺熻釜鏁堟灉銆?7锛庡姛鐜囪皟鑺傜數璺€氳繃鐢靛帇鍙嶉鏀瑰彉SG3525杈撳嚭PWM娉㈢殑鍗犵┖姣斿ぇ灏忥紝浠庤€?鎺у埗璐熻浇鐨勮緭鍑哄姛鐜囥€?8锛庨┍鍔ㄧ數璺帶鍒跺姛鐜囧紑鍏崇鐨勫紑閫氫笌鍏虫柇锛屽苟涓旈殧绂讳簡涓荤數璺拰鎺у埗鐢佃矾锛?鐩存帴鍐冲畾浜嗗櫒浠跺鍛姐€佺數婧愬伐浣滃彲闈犳€у拰绋冲畾鎬с€?9锛庝繚鎶ょ數璺繚璇佷簡鎰熷簲鍔犵儹鐢垫簮鐨勬甯歌繍琛岋紝鑳藉鑷姩瑙e喅鍔犵儹杩囩▼涓嚭鐜?鐨勫悇绉嶆晠闅溿€?10锛庤緟鍔╃數婧愭彁渚涢鐜囪窡韪數璺拰椹卞姩鐢佃矾涓墍闇€瑕佺殑鍚勭绋冲畾鐩存祦鐢靛帇銆?2锛?璋愭尟鍥炶矾鍒嗘瀽璋愭尟鍥炶矾鏄劅搴斿姞鐑數婧愪腑闈炲父閲嶈鐨勪竴涓幆鑺傦紝鎸夋棤鍔熻ˉ鍋跨數瀹瑰拰鐢垫劅缁曠粍杩炴帴鏂瑰紡鐨勪笉鍚屼富瑕佸垎涓轰覆鑱旇皭鎸洖璺笌骞惰仈璋愭尟鍥炶矾涓ょn13銆?2锛?锛? 涓茶仈璋愭尟鍥炶矾RLC涓茶仈璋愭尟鍥炶矾濡傚浘2锛?鎵€绀猴紝鍦ㄨ鍥炶矾涓柦鍔犱氦鍙樼數鍘媏=鐡incot锛?鍒欎覆鑱旇皭鎸洖璺殑闃绘姉涓?z=灏?锛岀+鍘?R鍧濈涓€鍘伙紝(2锛?)瀹冪殑妯″€间负1zI=F闈㈣寘 (2锛?)RLC涓茶仈璋愭尟鍥炶矾鐨勭數娴佷负(2锛?) z R+锛?纭€涓€涓?锛屽匠E鐮丒7----------------------- Page 15-----------------------鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?鐢垫祦鏈€澶у€兼ā鍊间负鍝?鍗? 鐪?)鐢卞紡(2锛?)鍙煡锛屽綋鎰熸姉绛変簬瀹规姉鏃讹紝鍗崇=鍘伙紝锛?浜嗗帀 1 锛屼覆鑱斿洖璺?涓樆鎶楁渶灏忥紝鐢垫祦鏈€澶э紝鐢佃矾鍙戠敓璋愭尟锛孋Oo鍗宠皭鎸棰戠巼銆傚彲姹傚緱鍙戠敓璋愭尟鏃?鐢佃矾鍚勫弬鏁帮細LE CR鍥?锛? RLC涓茶仈璋愭尟鍥炶矾璋愭尟鐢垫祦涓?鍘?椴? (2锛?)鍥烘湁璋愭尟棰戠巼涓?浜?涓? (2锛?)鍝佽川鍥犳暟涓?Q=璀?璧? (2锛?)(2锛?)UR=IqR=E*鐢垫劅涓婄殑鐢靛帇涓?锛?鍘堵凤紡鈥颁笁=姝孤疯路鐡?-锛屾棦(2锛?)8----------------------- Page 16-----------------------鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?鐢靛涓婄殑鐢靛帇涓?锛?鍘垛€樺幓涓€姝光€樿丹鈥楨m鈥攋OE,锛? (2锛?0)RLC璋愭尟鐢佃矾鐨勫姛鐜囧洜鏁扮敤cosqp琛ㄧず锛屽畠鏄數娴佺殑鏈夊姛鍔熺巼P鍜岃鍦ㄥ姛鐜?s涔嬫瘮锛屼篃灏辨槸鐢佃矾涓瓑鏁堢數闃籖鍜岀數璺腑鐨勬€婚樆鎶椾箣姣?P 灏?(2锛?1)u l鍘禝008濡?i2闆?鐢?2锛?1)鍙煡锛屽綋鍙戠敓璋愭尟鏃讹紝纭€=涓?锛屾鏃禼os濡?1锛屾湁鍔熷姛鐜囩瓑浜?瑙嗗湪鍔熺巼锛屽嵆鐢靛帇涓庣數娴佸悓鐩搞€?2锛?锛?骞惰仈璋愭尟鍥炶矾RLC骞惰仈璋愭尟鍥炶矾濡傚浘2锛?鎵€绀猴紝骞惰仈璋愭尟鍥炶矾鐨勯樆鎶椾负涓€娉b參鈭絁鍓?z锛氳晩(R+joL)x j-鍘?R+jcoL)4锛氳€岃jr01C鈥擱+褰?琛?+鍥?rc涓€锟?浠?CR2+鈭?rC鈥擫锛? (2锛?3)缂?=锛?= 瀛? (2锛?4)瀹為檯鍔犵儹涓紝鐢甸樆鏄緢灏忕殑锛屽洜姝ゅ幓>>涓乪2锛屽垯骞惰仈鐢佃矾鍥烘湁璋愭尟棰戠巼涓?LC 锟?1锛?闈? (2锛?5)9----------------------- Page 17-----------------------鎰熷簲鍔犵儹鐢垫簮鏁存満缁撴瀯鍜屾嫇鎵戠粨鏋勫垎鏋愬姣?鍝佽川鍥犳暟涓?Q=绛?蹇? (2锛?6)E銏?CL R鍘備竴銆乊鈥斻€侊紝銆乺銆? 鍏叓鍏€斺€?鍥?锛? RLC骞惰仈璋愭尟鍥炶矾褰撯垶=coo鏃讹紝鍙戠敓璋愭尟锛屽彲鐭ュ綋瓒冲灏忓彲浠ュ拷鐣ユ椂锛?z锛氬崐锛氭湀+涓р増鑰孡锛歈2灏? (2锛?7)R RC RC璋愭尟鐢垫祦涓?。

DSP+IGBT感应加热电源

DSP+IGBT感应加热电源

14
DSP+IGBT感应加热电源系统的IGBT逆变以及输出隔离 变压器均采用空冷结构,因此彻底消除水系统故障,解 决了输出变压器容易损坏的问题,可靠性明显提高,且 损耗更低。 率先采用DSP中央处理器,具有极高的处理速度,保证 了装置各项功能高效有序的运行,具有实时运算能力和 实时的仿真和模拟能力,器件可靠性极高。较常规处理 器相比,控制、测量的准确性明显提高, 限制、保护的 速度和可靠性增强,数量处理及显示操作的功能大幅度 增加。在这基础上,可方便高效的根据被加热对象的生 产过程制订精确的开环或闭环运行程序,并精确地实现 频率跟踪、恒电流运行、恒功率运行等闭环控制,实现 全自动化的过程生产。
பைடு நூலகம்23
装置具有短路、过载、过压、过温保护和限制功能,具有变压器 状态检测。其中过流和过压均具有硬件和软件双重保护。
24
更多钢坯连轧生产线现场视频可以搜索视频252627
7、正常使用工况下,主机可保证2年无故障运行。
11
感应加热电源发展
12
感应加热电源发展趋势
感应加热电源发展是伴随工业技术的发展同步进行的。趋势就是从最初的原始化、简单 化,发展到具有先进高新技术加入的高效化、快速化、成套化、数控化和联动化。
13
IGBT变频电源特点:质量稳定、操作简便、技术先进。 数字化I G B T变频感应加热电源的特点:模拟化→数 字化(DSP+IGBT)→智能化;变频自适应设计(自适应范 围50kHz);负载自动匹配技术(变载自适应);高功率因 数、低谐波、高效节能;智能化保护系统、感应加热 控制管理系统。这些特点决定了国际IGBT感应加热电 源的发展趋势将向淬火、透热、熔炼一机多用的通用 型电源发展。 IGBT变频电源特点:质量稳定、操作简便、技术先进。 数字化I G B T变频感应加热电源的特点:模拟化→数 字化(DSP+IGBT)→智能化;变频自适应设计(自适应范 围50kHz);负载自动匹配技术(变载自适应);高功率因 数、低谐波、高效节能;智能化保护系统、感应加热 控制管理系统。

2024年感应加热电源市场发展现状

2024年感应加热电源市场发展现状

2024年感应加热电源市场发展现状概述感应加热是一种通过电磁感应原理实现物体加热的方法,它具有高效、节能、安全等特点,因此受到了广泛的关注和应用。

感应加热电源作为感应加热系统的核心组成部分,其市场发展现状备受关注。

本文将对2024年感应加热电源市场发展现状进行分析。

市场规模感应加热电源市场在近年来呈现出快速增长的态势。

其主要驱动力包括工业自动化需求的增加、节能环保意识的提高以及制造业的升级换代。

据市场调研机构统计数据显示,2019年感应加热电源市场规模已达到XX亿元,同比增长XX%。

市场应用领域感应加热电源的应用领域非常广泛,涵盖了许多行业,如汽车制造、航空航天、化工、金属加工等。

在汽车制造领域,感应加热电源被广泛应用于发动机零部件热处理、焊接等工艺;在航空航天领域,感应加热电源则主要用于航空发动机零部件的高温热处理;在化工领域,感应加热电源则常用于高温反应釜、蒸发器等的加热。

市场发展趋势随着科技的不断进步和市场需求的不断增加,感应加热电源市场将继续保持快速发展的趋势。

1. 技术升级和创新感应加热电源技术在不断升级和创新,以更好地满足市场需求。

目前,市场上出现了一些新型的感应加热电源,如多级级联型电源、全数字化电源等。

这些新型电源具有更高的功率密度、更高的效率和更好的控制性能,能够满足更加复杂和高要求的加热场景。

2. 节能环保意识的提高随着全球环保意识的提高,节能环保已成为各行各业的共同追求。

感应加热作为一种高效节能的加热方式,受到了越来越多的关注和应用。

随着感应加热电源技术的不断进步,其效率不断提高,可以更好地满足节能环保的需求,使其在各个行业的应用得到进一步扩大。

3. 批量定制和个性化需求随着市场竞争的加剧和产品同质化的趋势,批量定制和个性化需求成为市场发展的一个重要方向。

感应加热电源市场也不例外,市场上出现了一些可以满足不同需求的定制化产品。

这些产品具有更高的适应性和灵活性,能够更好地满足不同行业的加热需求。

2024年感应加热设备市场前景分析

2024年感应加热设备市场前景分析

2024年感应加热设备市场前景分析引言感应加热设备是一种利用感应加热原理进行加热的装置。

随着科技的快速发展和工业生产的需求增加,感应加热设备得到了广泛的应用。

本文将对感应加热设备市场的前景进行分析,并讨论其发展趋势和影响因素。

市场规模与增长趋势感应加热设备市场在过去几年中呈现出良好的增长态势。

根据市场研究公司的数据,预计未来几年感应加热设备市场的规模将继续扩大。

这主要由于以下几个因素的影响:1.工业生产需求的增加:随着工业领域对高效、节能的加热设备的需求增加,感应加热设备作为一种高效、环保的加热方式,得到了广泛应用。

2.技术进步与创新:感应加热设备在技术方面不断创新和改进,使其在加热效率、控制精度等方面有了显著的提升。

这些技术进步进一步推动了市场的扩大。

3.新兴行业应用:感应加热设备在新兴行业中的应用越来越广泛,例如新能源、汽车制造、航空航天等领域,这也为市场的增长提供了新的机遇。

市场竞争与机遇感应加热设备市场的竞争主要来自于技术水平和市场份额。

目前,全球范围内有许多感应加热设备制造商和供应商,市场竞争激烈。

但与此同时,市场也存在一些机遇:1.新技术的应用:感应加热设备市场需要不断引入新技术,提高产品的性能和竞争力。

例如,随着人工智能技术的发展,感应加热设备可以更好地实现智能化控制和优化加热效果。

2.国家政策的支持:许多国家对于节能环保型加热设备的发展给予了政策的支持和激励措施,这将为感应加热设备市场的发展提供良好的环境和机会。

3.国际市场的拓展:随着全球化的进程加快,感应加热设备市场的机遇不再局限于国内市场。

开拓国际市场将为感应加热设备制造商带来更多的机会和竞争优势。

市场面临的挑战与问题感应加热设备市场面临着一些挑战和问题,制约了其进一步发展的速度和规模。

以下是一些主要问题:1.高成本:相较于传统加热设备,感应加热设备的成本较高,导致一些中小型企业在选型时犹豫不决。

因此,减少成本是一个亟待解决的问题。

2024年感应加热电源市场分析现状

2024年感应加热电源市场分析现状

2024年感应加热电源市场分析现状引言感应加热是一种高效、可控的加热方式,近年来在工业生产中得到了广泛应用。

感应加热电源作为感应加热系统的核心部件,在市场上占据着重要的地位。

本文通过对感应加热电源市场现状的分析,旨在全面了解该市场的发展趋势和未来前景。

市场规模与发展趋势据统计数据显示,全球感应加热设备市场规模在近几年持续增长。

感应加热电源作为感应加热设备的核心组成部分,市场需求也呈现出同样的增长趋势。

感应加热技术的高效、节能、环保等优点,使得感应加热设备在各个行业中得到了广泛应用,加速了感应加热电源市场的发展。

随着电子科技的不断进步,感应加热电源的技术水平也在不断提高。

创新的电源设计和控制系统的应用,使得感应加热电源具备更高的效率和更灵活的控制能力。

除此之外,市场对于环保节能的要求也在不断提升,这进一步推动了感应加热电源市场的发展。

市场竞争格局目前,全球感应加热电源市场并不集中在少数几家公司手中,竞争格局相对分散。

主要的竞争对手包括ABB、SIEMENS、Schneider Electric等知名电气设备制造商,以及一些专注于感应加热电源领域的中小型企业。

由于感应加热电源市场的高技术含量和市场需求的不断变化,市场竞争较为激烈。

在这个竞争环境下,企业需要不断加强技术创新和产品研发能力,提供更加高效、稳定和智能化的感应加热电源产品,才能在市场中保持竞争优势。

市场发展机遇与挑战随着各行各业对感应加热技术的不断需求,感应加热电源市场面临着广阔的发展空间。

特别是在汽车、航空航天、能源等领域,感应加热技术的应用前景非常广泛。

例如,随着新能源汽车的快速发展,对于电动汽车电池组的加热需求也在增加,这为感应加热电源的市场提供了新的机遇。

然而,市场的发展也伴随着一些挑战。

首先,技术创新和产品研发能力是企业能否在市场上生存和发展的重要关键。

其次,成本控制和供应链管理对于感应加热电源企业来说也是一大挑战。

此外,市场竞争激烈,企业需要不断提升品牌影响力和销售渠道建设,才能在市场中获取更多的份额。

2024年高频感应加热电源市场规模分析

2024年高频感应加热电源市场规模分析

2024年高频感应加热电源市场规模分析摘要本文主要对高频感应加热电源市场规模进行了细致分析。

首先介绍了高频感应加热技术的基本原理和应用领域。

然后,通过对市场需求、竞争格局和发展趋势的分析,预测了高频感应加热电源市场的规模。

1. 引言高频感应加热技术是一种高效、精确的加热方法,广泛应用于金属加热、熔化、烧结等领域。

随着工业自动化水平的提高和对能源的要求,高频感应加热电源不断发展壮大。

本文对高频感应加热电源市场规模进行了研究和分析,旨在为相关行业提供参考依据。

2. 高频感应加热技术概述高频感应加热技术是通过将高频电流引入导电体内部,产生温度升高的加热方法。

其基本原理为利用电磁感应原理,使导电体在高频电磁场中发生涡流,从而产生热能。

高频感应加热技术具有加热速度快、能耗低、操作方便等优点,被广泛应用于金属加热、熔化和烧结等领域。

3. 高频感应加热电源市场需求分析根据市场调研和行业情况,得出以下高频感应加热电源市场需求分析:3.1 市场规模随着高频感应加热技术应用范围的扩大,高频感应加热电源市场规模也在不断增长。

预计未来几年内,市场规模将保持稳定增长。

3.2 市场竞争格局目前,高频感应加热电源市场存在一些主要的竞争厂商。

这些厂商在市场份额和产品质量方面有一定的优势。

然而,由于技术门槛较高,新进入者面临较大的挑战。

竞争格局将随着技术进步和市场需求的变化而不断演变。

4. 高频感应加热电源市场发展趋势分析4.1 技术进步随着科技的不断进步,高频感应加热技术也在不断改进。

新材料的应用、更高的加热效率和更精确的控制系统等技术创新将推动市场的发展。

4.2 应用领域扩大除了传统的金属加热、熔化和烧结领域,高频感应加热技术在新能源、汽车制造等领域的应用也将得到扩大,为市场规模的增长提供更多的机会。

4.3 环保要求增加随着环保意识的增强和对能源效率要求的提高,高频感应加热电源将面临更多的环保压力。

未来市场将迎来更加节能、环保的高频感应加热电源产品。

电力电子技术的发展给感应加热电源带来的机遇和挑战

电力电子技术的发展给感应加热电源带来的机遇和挑战
Ke r y wo ds: po e lcr c ;i du to ai w ree tonis n c in he t powe ; d veo ng r e lpm e t n
众所周知,早在 1 世纪科学家就发现了电磁感应现 9 象 ,以及后来的集肤效应 、邻近效 应和圆环效应,这些
生堡
D : 1 . 6  ̄ i n 0 21 3 . 1 . . 2 OI 03 9 . s .1 0 —6 92 00 0 9 s 0 60
三 竺 兰 !竺 兰 !! 兰
电力 电子技术 的发展给 感应加热 电源带来 的机遇和挑 战
墨要电,了5发 子芬,0技遇 中石;宏)究 关术学西随展 总安科提发研 摘技源陕6源 键油发感给带 结源巨电着的 图;与力电趋 分发展西力势 了和李亮感来 词大挑电电。 :感工应应的 结展 加 类唐程安子机 :学战子 电 目应现加 热, 合中宏热 术 前加学技 号媛,7 电所院电 感热进术 力材分1 应面而的 电料杨伴 (电析 加临出展 西的 源 热大 状

T 2 .; N8 M9 45 T 6文献 标 志 码 :A
文章 编 号 :1 0 —6 92 1)60 0 —4 0 2 13(0 00 .0 60
Op o t n t sa d Ch l n e fI d c i n He tn o rBr u h y t e p r u i e n a l g so u t a i g P we o g tb i e n o h
快速发展 ,感 应加热电源在理论 、频率 、电路 、控 制等
收稿 日期 :2 1—62 ;修回 日期 :2 1—92 0 0 ・3 0 0 0 —8 0 作者 简介 :唐媛芬 (9 O ) 18~ ,女,江 苏扬 州人 ,讲 师,导 师李宏 教

中频感应加热电源的设计

中频感应加热电源的设计
近邻效应——当两根通有交流电的导体靠得很近时,在互相影响下,两导体中的电流要重新分布。当两根导体流的电流是反方向时,最大电流密度出现在导体内侧;当两根导体流的电流是同方向时,最大电流密度出现在导体外侧,这种现象称为近邻效应。
圆环效应:若将交流电通过圆环形线圈时,最大电流密度出现在线圈导体的内侧热电源的大容量化,可将大容量化技术分为二大类:一类是器件的串、并联,另一类是多台电源的串、并联器件的均流问题,由于器件制造工艺和参数的离散性,限制了器件的串、并联数目,且串、并联数越多,装置的可靠性越差。多台电源的串、并联技术是在器件串、并联技术基础上进一步大容量化的有效手段,借助于可靠的电源串、并联技术,在单机容量适当的情况下,可简单地通过串、并联运行方式得到大容量装置,每台单机只是装置的一个单元或一个模块。感应加热电源逆变器主要有并联逆变器和串联逆变器,串联逆变器输出可等效为一低阻抗的电压源,当二电压源并联时,相互间的幅值、相位和频率不同或波动时将导致很大的环流以致逆变器器件的电流产生严重不均,因此串联逆变器存在并机扩容困难;而对并联逆变器,逆变器输入端的直流大电抗器可充当各并联器之间的电流缓冲环节,使得输入端的AC/DC或DC/AC环节有足够的时间来纠正直流电源的偏差,达到多机并联扩容。
①高频率
目前,感应加热电源在中频频段主要采用晶闸管,超音频频段主要采用IGBT,而高频频段,由于SIT存在高导通损耗等缺陷,主要发展MOSFET电源。感应加热电源谐振逆变器中采用的功率器件利于实现软开关,但是,感应加热电源通常功率较大,对功率器件,无源器件,电缆,布线,接地,屏蔽等均有许多特殊要求,尤其是高频电源。因此,实现感应加热电源高频化仍有许多应用基础技术需要进一步探讨。
金属中产生的功率为:
(1-5)
感应电势和发热功率不仅与频率和磁场强弱有关,而且与工件的截面大小、截面形状等有关,还与工件本身的导电、导磁特性等有关。

2024年感应电炉市场分析现状

2024年感应电炉市场分析现状

2024年感应电炉市场分析现状摘要感应电炉是一种高效、环保且节能的加热设备,近年来在工业制造和家庭使用领域得到广泛应用。

本文从市场规模、竞争态势、应用领域等多个角度对感应电炉市场进行了分析,旨在提供给相关行业从业者和投资者参考和决策依据。

1. 引言感应电炉是基于感应加热原理工作的电炉设备,利用高频电流在导体内产生涡流完成加热作业。

相比传统的火焰或电阻加热方式,感应电炉具有加热速度快、温度均匀、能源利用率高等优势,因此在一系列应用场景中得到了广泛的应用。

2. 市场规模分析感应电炉市场在近年来呈现快速增长的趋势。

全球范围内,工业制造行业对感应电炉需求大,主要应用于金属熔炼、锻造、热处理等领域。

根据市场研究机构的数据显示,2019年全球感应电炉市场规模达到XX亿美元,并且预计未来几年仍将保持较高的增长率。

3. 竞争态势分析感应电炉市场竞争激烈,主要厂商包括XX、XX、XX等。

这些厂商通过产品创新、技术研发和市场推广等手段不断提升产品性能和市场竞争力。

同时,一些新兴企业也加入到市场竞争中,通过低价策略和专业化定位来争夺市场份额。

4. 应用领域分析感应电炉在不同领域中有着广泛的应用。

工业制造行业是感应电炉主要应用领域之一,其中金属熔炼和热处理是最为常见的应用场景。

感应电炉在家庭使用领域也有一定市场份额,如电磁炉就是一种常见的家用感应电炉。

此外,医疗、航天、能源等领域也开始逐渐应用感应电炉。

5. 持续创新和发展趋势为了应对市场竞争,厂商们不断进行产品创新和技术改进。

在感应电炉领域,研发出更高效、更节能的设备是主要的发展方向。

此外,随着人们对环保意识的提高,环保型感应电炉也成为行业的发展趋势。

同时,与人工智能、物联网等技术的结合也为感应电炉的应用带来了更多可能性。

结论感应电炉作为一种高效、环保且节能的加热设备,其市场前景广阔。

全球感应电炉市场规模正在不断扩大,竞争态势也越发激烈。

应用领域广泛,持续创新和发展趋势也为市场带来了更多机遇和挑战。

感应加热的工作原理

感应加热的工作原理

感应加热的工作原理感应加热是一种通过电磁感应原理实现加热的技术。

它广泛应用于许多领域,如工业加热、医疗设备、家用电器等。

本文将详细介绍感应加热的工作原理及其应用。

一、电磁感应基本原理电磁感应是指在一个导体中,当它处于一个变化的磁场中时,会产生感应电流。

根据法拉第电磁感应定律,感应电流的大小与导体受到的磁场变化速率成正比。

感应加热利用了这一原理,通过变化的磁场产生感应电流,进而使导体加热。

二、感应加热的基本原理感应加热的基本原理是利用交变磁场通过感应线圈产生感应电流,然后由感应电流在导体内部生成焦耳热,使导体加热。

具体而言,感应加热系统由直流电源、感应线圈和工件构成。

当在感应线圈中通以交变电流时,产生的交变磁场穿透工件,根据法拉第电磁感应定律,在工件内部产生感应电流。

由于导体的电阻使感应电流在导体内部通过转化成热量,从而使工件加热。

三、感应加热的优势与应用感应加热相较于传统的加热方式具有许多优势。

首先,感应加热快速且高效,能够在短时间内将工件加热至所需温度,节省了能源和时间。

其次,感应加热的加热均匀性好,能够使导体内部均匀受热,避免了局部过热或不足的情况。

此外,感应加热还具有安全可靠、操作简单等特点。

感应加热广泛应用于许多行业和领域。

其中,工业加热是主要的应用领域之一。

例如,金属加热、焊接、淬火等工艺都常使用感应加热技术。

此外,感应加热还应用于医疗设备,如高频电刀、疼痛治疗仪等。

家用电器方面,感应加热也得到了广泛应用,如感应炉、电热水壶等。

四、感应加热的发展趋势随着科技的不断进步和发展,感应加热技术也在不断创新与发展。

一方面,感应加热的效率和精度不断提高,为各行各业带来了更高的加热效果和精确控制。

另一方面,感应加热的节能环保特性也备受重视,各种新材料和工艺的应用使得感应加热更加节能环保,减少了对环境的影响。

总结起来,感应加热利用了电磁感应原理,通过交变磁场产生感应电流,进而使导体加热。

它具有快速、高效、加热均匀等优势,并广泛应用于工业加热、医疗设备、家用电器等领域。

中频电磁感应加热器设计

中频电磁感应加热器设计

摘要本文以感应加热为研究对象,简要介绍了感应加热的基本原理和特点,阐述了感应加热技术的现状及其发展趋势。

本文主要研究了感应加热器的设计方法。

感应加热器是利用工件中的涡流的焦耳效应将工件加热,这种加热方式具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。

如何设置感应线圈的参数使之满足被加热工件中性能要求普遍关注的问题。

传统的设计方法是利用线圈在整个电路中的等效电阻地位,利用一系列电磁学公式计算出线圈的性能参数。

然而这种基于实验的系统设计方法却耗时费力,并且测量成本高。

因此,近似模拟方法对于感应加热器的设计和研究具有重要意义。

本文的主要工作是建立感应加热器的近似设计方法。

从感应加热理论的一系列经过实验数据修正过的理论曲线为依据,根据工艺要求得出相关物理参数,并通过计算得到感应器的设计参数。

关键词:第一章绪论1.1 国内外感应加热的发展与现状随着现代科学技术的发展,对机械零件的性能和可靠性要求越来越高,金属零件的性能和质量除材料成分特新外,更与其加热技术密不可分。

例如,加热速度的快慢不仅影响生产效率而且影响产品的氧化程度,局部温度过冷或过热可能导致产品变形甚至损坏等。

由于感应加热具有热效率高,便于控制等优点,目前在金属材料加工,处理等方面得到广泛应用。

在工业发达国家,感应加热研究起步较早,应用也更为广泛。

1890年瑞士技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽式有芯炉,感应加热技术开始进入实用化阶段。

1966年,瑞士和西德开始利用可控硅半导体器件研制感应加热装置。

从此感应加热技术开始飞速发展,并且被广泛用于生产活动中。

在我国,感应加热技术起步比较晚,与世界发达国家相比存在较大的差距。

直到80年代初,感应加热设备才有一定的应用,但因其与其它加热方式相比在节能和无环境污染等方面的显著优势,近几年来得到了长足的发展,已经广泛应用于钢铁、石油、化工、有色金属、汽车、机械、和军工产品的零部件热处理方面,且随着感应加热技术的进一步发展,其市场应用前景将越来越广阔。

感应加热电源的发展动态及选用

感应加热电源的发展动态及选用
展 ,引起了感应加热 电源技术以致整个电力 电子学领域
的一场革命,同时感应加热电源及应用得到了飞速发
展。
1半导体开关器件 .
2 世纪5 年代末 ,半导体硅晶闸管的出现标志着 0 0
以固态半导体 器件为核心的现 代电力 电子学的开始 ,在
中频 ( ~ k z 1 8 H )范围内,晶闸管感应加热装置逐步取 代了传统的中频发电机组。然而,由于晶闸管本身开关 特性等参数的限制,仍然存在着关断不可控、工作频率 范围窄等缺点, 难以满足不同负载的要求,尤其是在高
频 (0 H 以上 )范 围内 ,这些局 限性给 电源的研制带 1k z 来了很大的技 术难 度。
定程度上填补了国内相关电源研制和开发的空白。
7年代末8 年代初,随着一大批新型的电力电子 0 0 半导体器件的研制开发成功,为更高频率和更大功率
感应加热电源的研制提供 了坚实的基础 。其 中MO F T SE
维普资讯

r R w o e p i
热 理 表 工 专 处及 面程辑
感应加热电源的发展动态及选用
清华大学核能与新能源技术研究院 ( 北京 10 8 ) 赵前 哲 志大 器 周伟松 周景春 0 0 4 摘要: 本文从感应加热电源采用的半导体开关器件以及电路拓扑技术入手,分析了不同种类的感应加 热电源的应用范围和优缺点。在对感应加热电源发展趋势分析的基础上,提出了感应加热电源选用的基
本原则。


概述
为单极性多子器件,不存在存储时间,具有开关速度 快 、驱动功率小、无二次击穿现象、易并联等优点,
成 为高 频大 功率 感应加 热 电源装 置 的主要 开关 器件 。 早 在8 年 代 中期 ,西 欧 国家就研 制 出 了用功率 场效 应 0

感应加热电源IGBT驱动及保护电路设计

感应加热电源IGBT驱动及保护电路设计

感应加热电源IGBT驱动及保护电路设计摘要本文以感应加热电源IGBT驱动及保护电路为研究对象,阐述感应加热电源的现状与发展趋势、感应加热电源的优点、应用和基本原理。

其中,IGBT(绝缘栅双极晶体管)是一种复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性,易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点。

近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,并得到越来越广泛的应用。

本文分析了感应加热电源的总体结构和介绍了IGBT的基本结构、工作原理、驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,通过对IGBT的学习,来探讨IGBT在当代感应加热领域的广泛应用和发展前景。

关键词:感应加热电源,绝缘栅双极晶体管,IGBT驱动电路,IGBT保护电路。

Induction heating power IGBT drive and protective circuitdesignABSTRACTBased on the induction heating power IGBT drive and protection circuit as the research object, this paper present situation and the development trend of induction heating power supply, the advantages of induction heating power supply, the application and the basic principle. Among them, the IGBT (insulated gate bipolar transistor) is a kind of composite power field effect tube and the advantage of the power transistor and produce a new type of composite device, it also has a high-speed switching and voltage of the MOSFET drive characteristic and low of the bipolar transistor saturation voltage characteristic, easy to realize large current capacity, not only has high input impedance, working speed, good thermal stability and drive circuit, the advantages of simple and has a low voltage state, the advantages of high voltage and current under the big. In recent years the IGBT as power electronics is particularly outstanding in the field of power electronics, and get more and more widely used.This paper analyzes the overall structure of induction heating power supply, and introduces the basic structure, working principle of IGBT, drive circuit, and briefly summarizes the IGBT module selection method and protection measures, etc., through the study of IGBT, to explore the IGBT are widely used in the field of contemporary induction heating and development prospects.KEY WORDS: Induction heating power supply, insulated gate bipolar transistor, IGBT drive circuit, protection circuit for IGB目录前言 (1)第1章感应加热电源的原理 (2)1.1 感应加热电源的基本知识 (2)1.1.1感应加热电源的优点及应用 (2)1.1.2 感应加热电源的基本原理 (2)1.1.3感应加热中的三种效应和穿透深度 (2)1.2 感应加热电源发展现状及趋势 (3)1.2.1感应加热电源频率划分 (3)1.2.2国外高频感应加热电源发展现状 (3)1.2.3国内高频感应加热电源发展现状 (4)1.2.4感应加热电源的IGBT (4)1.3本文研究的内容及任务 (4)1.3.1课题主要研究内容 (4)1.3.2课题目的和要求 (5)第2章IGBT的基本结构和工作原理 (6)2.1 IGBT的工作特性 (6)2.1.1 IGBT的基本结构 (6)2.1.2 IGBT的工作原理 (8)2.1.3 IGBT的工作特性 (8)2.2 IGBT工作原理 (10)2.2.1 IGBT工作方法 (10)2.2.2 导通 (11)2.2.3关断 (11)2.2.4 阻断与闩锁 (12)2.3 英飞凌FZ400R12KS4 (12)2.4 IGBT驱动电路 (12)2.4.1分立元件驱动电路 (13)2.4.2光电耦合器驱动电路 (13)2.4.3脉冲变压器直接驱动IGBT的电路 (14)2.4.4专用集成驱动电路 (14)第3章IGBT的保护电路设计 (16)3. 1 IGBT过压保护电路 (16)3.1.1 IGBT栅极过压保护电路 (16)3.1.2 集电极与发射极间的过压保护电路 (17)3.1.3 直流过电压 (18)3.1.4 浪涌过电压 (18)3.1.5 IGBT开关过程中的过电压 (18)3.2 IGBT过流短路保护电路 (19)3.2.1 IGBT过流保护的分类 (19)3.2.2 过流保护检测电路 (20)3.2.3 过流和短路保护措施 (20)3.3 IGBT过热保护电路 (21)3.4 IGBT欠压保护电路 (22)第4章IGBT的驱动电路 (23)4.1 IGBT的驱动要求 (23)4.2 驱动电路的隔离方式 (23)4.2.1隔离的重要性: (23)4.2.2. 集成光电隔离驱动模块HCPL-316J (23)4.2.2器件特性 (24)4.4.3芯片管脚及其功能介绍 (24)4.4.4 内部逻辑电路结构分析 (26)4.5 IGBT驱动电路 (27)第5章辅助直流稳压电源 (29)5.1辅助直流稳压电源方案的选择 (29)5.2本次设计用的电源 (29)5.2.1 18伏, 15伏稳压电压电源 (29)5.2.2 ±12伏,±5伏双路稳压电源 (30)5.2.3 元器件选择及参数计算 (31)第6章功能仿真 (33)结论..................................................................... 错误!未定义书签。

感应加热具有加热效率高

感应加热具有加热效率高

感应加热具有加热效率高、速度快、可控性好及易于实现自动化等优点,广泛应用于金属熔炼、透热、热处理和焊接等工业生产过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可缺少的技术手段。

1.1 感应加热的工作原理感应加热原理为产生交变的电流,从而产生交变的磁场,在利用交变磁场来产生涡流达到加热的效果。

如图1.1:图1.1 感应电流图示当交变电流通入感应圈时,感应圈内就会产生交变磁通#FormatImgID_1#,使感应圈内的工件受到电磁感应电势。

设工件的等效匝数为。

则感应电势:(1-1)如果磁通是交变得,设,则有效值为:感应电势E在工件中产生感应电流使工件内部开始加热,其焦耳热为:(1-4)式中:——感应电流有效值(安),R——工件电阻(欧),t——时间(秒)。

这就是感应加热的原理。

感应加热与其它的加热方式,如燃气加热,电阻炉加热等不同,它把电能直接送工件内部变成热能,将工件加热。

而其他的加热方式是先加热工件表面,然后把热再传导加热内部。

金属中产生的功率为:(1-5)感应电势和发热功率不仅与频率和磁场强弱有关,而且与工件的截面大小、截面形状等有关,还与工件本身的导电、导磁特性等有关。

在感应加热设备中存在着三个效应——集肤效应、近邻效应和圆环效应。

集肤效应:当交变电流通过导体时,沿导体截面上的电流分布式部均匀的,最大电流密度出现在导体的表面层,这种电流集聚的现象称为集肤效应。

近邻效应——当两根通有交流电的导体靠得很近时,在互相影响下,两导体中的电流要重新分布。

当两根导体流的电流是反方向时,最大电流密度出现在导体内侧;当两根导体流的电流是同方向时,最大电流密度出现在导体外侧,这种现象称为近邻效应。

圆环效应:若将交流电通过圆环形线圈时,最大电流密度出现在线圈导体的内侧,这种现象称为圆环效应。

感应加热电源就是综合利用这三种效应的设备。

在感应线圈中置以金属工件,感应线圈两端加上交流电压,产生交流电流,在工件中产生感应电流。

2024年高频感应加热电源市场发展现状

2024年高频感应加热电源市场发展现状

高频感应加热电源市场发展现状概述随着电子设备和工业应用的发展,高频感应加热电源作为一种重要的能源供应方式,正在逐渐成为市场上的热门产品之一。

本文将对高频感应加热电源市场的发展现状进行分析和总结,包括市场规模、应用领域、竞争格局等方面。

市场规模高频感应加热电源市场在近年来呈现出稳步增长的趋势。

根据市场调研数据显示,全球高频感应加热电源市场在2019年的规模达到XX亿美元,并预计在未来几年内将持续增长。

其中,中国市场是全球高频感应加热电源市场的重要组成部分,其市场规模占据全球的较大份额。

应用领域高频感应加热电源广泛应用于各个领域,包括工业制造、医疗设备、汽车制造、航空航天等。

在工业制造领域,高频感应加热电源被广泛应用于金属材料的热处理、焊接、熔炼等工艺。

在医疗设备领域,高频感应加热电源被用于生物医学的研究和临床治疗中。

在汽车制造领域,高频感应加热电源则被应用于汽车零部件的生产和组装。

在航空航天领域,高频感应加热电源则用于航空发动机的相关工艺。

技术发展趋势随着高频感应加热电源市场的不断扩大,相关技术也在不断创新和发展。

目前,市场上已经出现了多种高频感应加热电源的技术,包括电子管型、晶体管型、功率管型等。

随着半导体技术的进步,晶体管型高频感应加热电源在市场上得到广泛应用。

此外,随着数字化和智能化技术的发展,高频感应加热电源也开始向数字化控制和智能化管理方向发展。

市场竞争格局目前,高频感应加热电源市场竞争格局较为分散,市场上存在着众多的生产厂商。

国内外知名的高频感应加热电源企业有ABC公司、XYZ公司等。

这些企业凭借自身的技术实力和品牌影响力,大力推进产品研发和市场拓展,与其他竞争对手形成一定的竞争优势。

发展趋势展望随着工业技术的不断进步和电子设备的广泛应用,高频感应加热电源市场有望继续保持稳步增长的态势。

随着智能化技术的发展和工业4.0的推进,高频感应加热电源将会更加智能化、高效化,为不同领域的应用带来更多的发展机遇。

2024年感应加热设备市场发展现状

2024年感应加热设备市场发展现状

2024年感应加热设备市场发展现状引言感应加热是一种通过电磁感应原理将电能转化为热能的技术。

近年来,随着工业自动化的推进和能源效率的要求,感应加热设备在各个行业的应用日益普及。

本文将探讨感应加热设备市场的发展现状,包括市场规模、应用领域和未来发展趋势。

市场规模感应加热设备市场在过去几年持续增长,穿越市场规模已经达到了一个令人瞩目的水平。

根据市场研究报告,全球感应加热设备市场在2019年达到了XX亿美元,预计到2025年将增长至XX亿美元。

主要推动市场增长的因素包括工业自动化需求的增加、能源效率的要求以及传统加热技术的替代。

应用领域感应加热设备在许多领域中都有广泛的应用。

其中最主要的领域是金属加热与熔炼。

感应加热通过直接在金属材料中产生涡流从而达到加热的效果,具有高效、均匀加热和无需接触等优点。

因此,该技术被广泛应用于金属热处理、金属焊接、熔炼和铸造等工艺中。

另外,感应加热设备也在医疗、食品加工和电子行业等领域中得到应用。

发展趋势未来几年,感应加热设备市场将面临一些发展趋势和挑战。

首先,随着工业自动化程度的提高,对高效节能的需求将进一步增加。

感应加热作为一种高效节能的加热方式,将在工业应用中大放异彩。

其次,材料和工艺的创新将推动市场发展。

新材料的开发和工艺技术的改进,将为感应加热设备的应用开辟更广阔的空间。

此外,以物联网、大数据和人工智能为代表的新兴科技的发展也将为感应加热设备的智能化和自动化提供更多可能性。

结论感应加热设备市场正处于快速发展阶段,市场规模不断扩大,应用领域不断拓展。

未来市场将受到高效节能需求、材料工艺创新和新兴科技发展的推动。

因此,感应加热设备制造商和供应商应及时抓住机遇,加强研发创新,提高产品质量和性能,以满足市场需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感应加热电源的现状与感应加热电源发展趋势
————————————————————————————————作者:————————————————————————————————日期:
感应加热电源的现状与感应加热电源发展趋势
中频感应加热设备的电源目前主要有两种模式:并联谐振、串联谐振,这是当前许多电炉厂家与铸造企业所共知的。

并联技术成熟稳定,但耗电量偏高;串联谐振技术是我公司最新研发的中频电源,并传统并联电源节能30%,但制造成本稍高,华信电炉中频设备研发能力一直走在世界行业前沿。

感应加热电源是感应加热的核心设备。

感应加热电源是随着电力电子技术、微电子技术和现代控制技术发展成熟的。

自从感应加热技术应用于上业生产以来,人们对感应加热电源作了大量的研究,形成了多种多样的工作方式和功率控制方式。

目前,感应加热电源主要存在着电能转换效率低,装置单位体积功率密度低,EMI大等缺点。

为了获得较高的电能转换效率,就要求电源装置具有较高输入、输出功率因数,并实现电力电子器件的软开关,以降低开关损耗。

为了获得较大的功率密度,就要求尽可能地减小电源装置的体积。

为了减小系统的EMI,就要保证电源系统的电压和电流为正弦波,无高次谐波成份,电子电子器件的开关噪音小。

由于目前功率控制方式及主电路拓扑结构的限制,使得在感应加热电源中同时实现以上要求变得非常困难。

因此研究一种能够同时实现以上要求的、电路拓扑结构简单、功率控制方便的新型电源变得十分紧迫。

一、国外感应加热电源的发展现状
晶闸管的问世后,静止变频器取代了原先的中频机组,成为感应加热的主要供电设备口。

上世纪七十年代,国内将可控硅感应加热电源装置进行了研究、推广和应用。

进入上世纪八十年代和九十年代,随着GTO、GTR、IGBT和大功率MOSFET等全控型大功率开关器件的相继诞生,感应加热电源也不断推陈出新,朝着高功率密度和高频化方向不断发展。

尤其是1983年美国GE公司发明的功率器件IGBT,在解决了其挚住问题后(由寄生NPN晶体管引起),大功率高速IGBT已成为众多加热电源的首选器件,频率高达100KHZ以上,功率高达MW级电源已可实现。

1994年,日本采用IGBT 研制出了1200KW,50KHZ的电流型并联逆变感应加热电源,逆变器工作于零电压开关状态,并实现了微机控制;西班牙在1993年也己报道了30KW--60KW,50--100KHZ电流型并联逆变感应加热电源;欧、美地区的其他一些国家如英国、法国、瑞士等国的系列化感应加热电源目前最大容量也达数百千瓦。

二、国内感应加热电源的发展现状
在20世纪80年代末,我国约有20万台60——200KW的高频设备,现在用品闸管中频感应加热装置已完全取代了中频发电机。

从1986年起浙江大学就开始半导体高频感应加热电源的研究。

在90年代初,浙江大学开始对IGBT超音频感应加热电源和MOSFET高频感应加热电源进行研制。

1996年50KW/50KHz的IGBT电流型并联逆变感应加热电源通过了产品鉴定。

同期,浙江大学研制出20KW/300KHZ的MOSFET高频感应加热电源,已被成功应用于小型刀具的表面热处理和飞机涡轮叶片的热应力考核试验中。

今天由自主研发成功的第三代数字型IGBT感应加热装置基于高可靠性、高安全性、低故障率的用户要求,整体结构设计先进,选用全球知名品牌元器件并配置全面的智能化保护系统,成就科诺电源尖端科技水平,代表了国内的最高发展水平。

总的来说,国内高频感应加热电源与国外有较大的差距,现在正朝着以IGBT和MOSFET为主要器件的全固态感应加热电源取代以晶闸管和电子管为主要器件的感应加热电源的方向发展。

一、感应加热电源未来的发展方向
感应加热电源的水平与半导体功率器件的发展密切相关,因此当前功率器件在性能上的不断完善,使得感应加热电源的发展趋势呈现出以下几方面的特点:
(1)大功率、高频率
电力半导体器件的大容量与其使用频率有着极密切的关系。

早期的晶闸管和晶体管由于受到容量与频率互相制约的影响,不能同时获得大功率、高频率的效果。

随着新型器件的发展,如MOSFET,
IGBT,MCT等,未来的感应加热电源必将朝着大功率和高频率两者相统一的方向发展,在这方面仍有许多基础应用技术需要进一步探讨。

(2)低损耗、高功率因数
新型功率器件的通态电阻很小,通态压降小,所以在高频工作条件下,损耗主要表现在基极或门极驱动电路的损耗及器件的开关损耗上。

随着功率器件的发展,再加上驱动电路的不断完善和优化,使得整个装置的损耗明显降低。

另外,由于感应加热电源一般功率都很大,随着整个电网无功及谐波污染要求的提高,具有高功率因数的电源将是今后的发展趋势。

目前谐振技术的引入,一方面降低了电源中开关器件的开通和关断损耗,同时利用锁相技术将逆变器的工作频率锁定在槽路固有的谐振频率内,使得该电源能始终运行在负载功率因数接近为1的状态。

(3)智能化、复合化
智能化指的是功率半导体集成电路本身,包括过电压、欠电压、过电流、过热等检测与保护功能。

复合化指的是在一个功率模块内除了1个或多个功率器件芯片外,还包括相同数量的二极管等,在较小功率模块内也出现了保护电路与功率器件集成一体的电路(IPM)。

因此,采用智能化与复合化的集成电路将使元器件数量减少,自动组装降低了成本,电路本身具有诊断与保护等功能而提高了可靠性。

随着感应加热生产线自动化控制程度及对电源可靠性要求的提高,感应加热电源正朝着智能化控制方向发展,具有计算机智能接口远程控制、故障自动诊断等控制性能的感应加热电源正成为下一代发展目标。

(4)应用范围扩大化
采用感应加热方法对锻造钢坯透热,节水节电,无污染;铸造熔炼方面可以实现普通钢、特种钢、非铁金属材料的精细熔炼,同时可提高效率、无污染、金属成份可控;感应钎焊效率高,对被焊母材无损伤,适用于精度高、批量大的工件和体积大、难移动的母材局部钎焊及各类金属管材的焊接;各类零部件的表面热处理大量采用感应加热方法;钢塑材料制造、铝塑薄膜加工以及食品工业、医药工业的封口工艺也大量地采用感应加热的方式。

(5)数字化控制
电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。

全数字控制是一个新的发展趋势,已经在许多功率变换设备中得到应用。

但是过去数字控制在感应加热中用得较少。

近两年来,电源的高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。

全数字控制的优点是:数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。

相关文档
最新文档