《线性代数》向量组的线性相关与线性无关

合集下载

线性代数 第四章 第2节

线性代数 第四章 第2节
§2 向量组的线性相关性
★矩阵、线性方程组的向量表示 ★向量组的线性相关与线性无关 ★向量组的等价性
本节中向量组的线性相关性与第三节中向量组的秩 的概念是本章的重点和难点。同学们必须熟练且准确地 掌握。通过理清“矩阵”,“向量组”和“线性方程组”的密 切关系可以更好地理解概念和解决问题。
下页 关闭
矩阵的向量表示
定义3 设有两个 n 维向量组


A : a1, a2 , , am; B : b1, b2 , , bs .
如果向量组 A 中每一个向量都能由 B 组中的向量
线性表示,则称向量组 A 能由向量组 B 线性表示。
如果向量组 A 与 B 能相互线性表示,则称向量组 A 与 B 等价。
由上章定理2,可得

定理2 向量组 a1 , a2 , 条件是它所构成的矩阵A
, am (a1 ,
线性相关的充分必要
a2 , , am ) 的秩小于
向量的个数 m ;向量组线性无关的充分必要条件是 R(A)= m。
上页 下页 返回
1 0
0


例4
n 维向量
4,
试讨论向量组
a1
,
a2
,a13及向量 组5
a1
,
a2的 7线 性相关性。
解法一 (同例4解法一的方法)
上页 下页 返回
5
1
a1
,
a2
,
a3



1
0 2
2 r2 r1 1 4 ~ 0
0 2
2 r3 2 r2 1 2 ~ 0
.
上页 下页 返回
线性方程组的向量表示

线性相关与线性无关

线性相关与线性无关

线性相关与线性无关线性相关和线性无关是线性代数中重要的概念,它们描述了向量之间的关系以及它们在空间中的位置和方向。

在本文中,我们将探讨线性相关和线性无关的定义、性质以及它们在实际问题中的应用。

1. 定义线性相关是指存在一组非全零系数,使得这组向量的线性组合等于零向量。

换句话说,如果存在不全为零的常数c1、c2、…、cn,使得c1v1 + c2v2 + … + cnvn = 0,则称向量组{v1, v2, …, vn}是线性相关的。

而线性无关则是指不存在一组非全零系数,使得这组向量的线性组合等于零向量。

简而言之,如果c1v1 + c2v2 + … + cnvn = 0只有当c1= c2 = … = cn = 0时成立,则称向量组{v1, v2, …, vn}是线性无关的。

2. 性质线性相关和线性无关有一些重要的性质。

2.1 线性相关性的传递性如果向量组{v1, v2, …, vn}中的某个向量可以由其余向量线性表示,那么这个向量组是线性相关的。

具体而言,如果存在c1、c2、…、cn-1,使得vn = c1v1 + c2v2 + … + cn-1vn-1,则这个向量组是线性相关的。

2.2 仅有一个向量的向量组是线性无关的只含一个向量的向量组肯定是线性无关的。

因为要使c1v1 = 0成立,必须令c1 = 0。

2.3 子集的线性相关性如果向量组{v1, v2, …, vn}是线性相关的,那么它的任意子集也是线性相关的。

这是因为如果向量组中的向量可以线性表示成零向量,那么删除其中的向量后,仍然可以通过相同的系数得到零向量。

3. 应用线性相关和线性无关在实际问题中具有广泛的应用。

3.1 线性方程组的解的个数对于一个包含n个未知数和m个线性方程的线性方程组,如果系数矩阵的秩等于扩展矩阵的秩,那么方程组的解存在且唯一。

换句话说,如果方程组的系数向量是线性无关的,那么方程组有唯一解。

3.2 判断向量空间的维数对于一个向量空间,其中向量组的线性无关的最大个数称为该向量空间的维数。

线性代数第四章第二节

线性代数第四章第二节
相关, 相关, 则向量组 B: a1 , a2 , , am , am+1 也线性相 关. 反言之, 若向量组 B 线性无关, 则向量组 A 也 反言之, 线性无关, 线性无关. 线性无关. (2) m 个 n 维向量组, 当维数 n 小于向量个 维向量组, 数 m 时一定线性相关. 时一定线性相关.
第 二 节 向量组的线性相关性
主要内容
线性相关与线性无关的定义 向量组线性相关的充要条件 向量组的线性相关性的判定定理
一 ,线性相关与线性无关的定义
1. 定义 定义 4 给定向量组 A: a1 , a2 , , am , 如果存
在不全为零的实数 k1 , k2 , , km , 使 k1a1 + k2a2 + + kmam = 0, 则称向量组 A 是线性相关的, 否则称它线性无
关.
2. 两个特殊向量组线性相关的充要条件
1) 由一个向量构成的向量组 A: a 线性相关 的充要条件是 a = 0. 2) 由两个向量构成的向量组 A : a1 , a2 线性 相关的充要条件是 a1 , a2 的分量对应成比例. 如 的分量对应成比例.
向量组 A:
1 3 a1 = 1 , a 2 = 3 , 2 6
图 4.3
从几何上讲, 从几何上讲 若 4 维向量组所对应的平面组 中至少有三个平面共线, 中至少有三个平面共线 即至少有三个平面交于 同一直线则该向量组一定线性相关. 同一直线则该向量组一定线性相关
二 ,向量组线性相关的充要条件
定理 向量组线性相关的充要条件是该向量
组中至少有一个向量可由其余向量线性表示. 组中至少有一个向量可由其余向量线性表示
图 4.1
(2) 由三个 3 维向量构成的向量组线性相关的 几何意义是这三个向量共面. 几何意义是这三个向量共面. 如给定平面 π : x+y+z 上取三点: =3. 在 π 上取三点 M1(1,1,1) , M2(2,0,1) , M3(0,2,1) , 作三个向量: 作三个向量 z R3 M3 O M1 M2 x 3 3

《线性代数(修订版)》教学课件 3.4 向量组的线性相关性

《线性代数(修订版)》教学课件 3.4 向量组的线性相关性

,α3
1 3
,
试讨论它的线性相关性.
解法一 对向量组的矩阵 A = (α1,α2 ,α3 ) 施行初等 行变换,将其化成行阶梯形:
1 2 3 1 2 3
A
=
(α1
,
α2
,
α3
)
=
2 3
4 5
1 3
0 0
0 1
5
6
,
0 0 5
可见 R( A) 从而向量组 α1,α2 ,α3 线性无关.
§ 3.4
向量组的线性相关性
3.4.1 线性相关与线性无关
定义 给定向量组 A : α1, α2 , , αn , 若存在不全为零 的数 k1, k2 , , kn , 使
k1α1 k2α2 knαn 0
则称向量组 线性相关;若当且仅当 k1 k2 kn 0,
时上式才成立,则称向量组 线性无关. 注:任一向量组,不是线性相关就是线性无关.
A 0.
向量组 α1,α2 , ,αn 线性无关
A 0.
R( A) n R( A) n
向量组的线性相关性与齐次线性方程组 的解及矩阵的秩三者之间的联系.
设 n 个n 维向量 α1,α2 , ,αn ,
它所构成的方阵为 A = (α1,α2 , ,αn ),
向量组 α1,α2 , ,αn 线性相关(线性无关)
定理
设向量组α1,α2 , ,αn构成的矩阵为A (α1,α2 ,
则向量组线性相关的充要条件是 R(A) n; 向量组线性无关的充要条件是 R(A) n.
,αn ),
证明 由定义,向量组线性相关,即存在不全为零的
数 x1, x2 , , xn , 使得 x1α1 x2α2 xnαn = 0, 即方程 组 Ax 0有非零解,当且仅当R(A) n;

线性代数23向量间的线性关系-2线性相关与无关

线性代数23向量间的线性关系-2线性相关与无关

1T
,
T 2
,3T
线性相关
4 1 1
1
0 0
0
1 0
2
1
0
1
0
0
0
1T
T 2
T 3
只作行变换
∴1 2 3 线性相关 Q 3 21 2
3 21 2
21 2 3 0
a11 a12
a1n
1
a21
2
a22
...
n
a2n
am1
am2
amn
011 0 1 1
k1 k2 k3 0 ∴ +, + ,+ 线性无关.
课堂练习 设
1 1 0 0 ... 0 2 1 1 0 ... 0
3 1 1 1 ... 0
n 1 1 1 ... 1
证设
k11 k22 ... knn 0
(*)

k1
1
0
0
0M
k2
1
1
0
0M
例 判断向量组 1 (1, 2, 1,5) 2 (2, 1,1,1)
3 (4, 3, 1, 11)是否线性相关.
1 2 4 1 2 4 1 2
1T
,
T 2
,
T 3
2 51
1 1 1
3 1 11
0
0
0
5
3
9
359
0 0 0
1 1 1
1T
T 2
T 3
r
1T
,
T 2
,3T
23
0
1
1
2
解 ( 1 2
1 3 )= 3 0 1

线性代数 向量组的线性相关性

线性代数 向量组的线性相关性

分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 定理3 ★ 定理4 ★ 定理5★ 例7★ 内容小结 ★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论 1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关. 定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关. 推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ 即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例 4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。

线性代数-知识点总结part 2

线性代数-知识点总结part 2

线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。

(2)向量加减法按照对应项相加减。

(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。

可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。

(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。

(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。

唯一表示。

可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。

而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。

一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。

换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。

举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。

实际上,这两个向量是共线的,它们的方向相同,只是长度不同。

二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。

换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。

继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。

实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。

因此,这三个向量是线性相关的。

三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。

如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。

换句话说,线性相关性与线性无关性是两个互斥的概念。

在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。

这对于解方程组、求解特征值等问题都有着重要的意义。

四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。

线性代数向量的线性相关性

线性代数向量的线性相关性
定义3 对向量组M 1,2,L ,m , 若存在不全为零的数
k1, k2 ,L , km 使得 k11 k22 kmm 0 (*)
则称向量组M是线性相关的,否则称M是线性无关的
注:(1) 对任意向量组 M 1,2,L ,m , 肯定存在一组数
k1, k2 ,L , km 使得 k11 k22 kmm 0 (*) 例 k1 0, k2 0,L , km 0 ; 所不同的是:
k3 0
故向量组线性无关
k1am1 k2am2 L kmamm 0 km 0
L L k1an1 k2an2 L kmanm 0
注 若向量组中的向量作成矩阵的行或列所得矩阵A为
阶梯形矩阵,且 aii 均不为零, 则称向量组为阶梯形向量组
例4结论为“阶梯形向量组线性无关
特别地 Rn 中标准基 e1,e2,L ,en 线性无关
1
2
3
k2
0
1 5 6 k0
10 1
因为 1 2 3 0 由克莱姆法则知道方程有非零解。
15 6
故向量组线性相关
例2* 讨论向量组 1 1 2 0 , 2 0 2 1 , 3 0 0 1
的线性相关性 解:设有数 k1, k2 , k3 使 k11 k22 k33 0 即方程
0
0
M
m
0
amm
M
anm
, m ,m n 证明向量组线性无关
证明:设有数 k1, k2 ,L , km 使 k11 k22 L kmm 0
L L L L k1a11 0
k1a21 k2a22 0
即 k1a31 k2a32 k3a33 0
k1 0 k2 0
M 1,2,L ,m 线性无关当且仅当

2-2线性相关与线性无关

2-2线性相关与线性无关
量组B 线性无关,则向量组A也线性无关.
三、线性相关性的判定
定理 向量组 1,2 ,,(m 当 m 2时)线性相关
的充分必要条件是1 ,2 ,,m 中至少有一个向
量可由其余 m 1个向量线性表示.
证明 充分性
设 a1 , a2 ,, am 中有一个向量(比如 am)
能由其余向量线性表示. 即有
,
2
,
线性表示
n
定理:设两个n维列向量组
A :1,2,m; B : 1, 2,m;
其中
a1 j
j
arj
,
asj
amj
a1 j
j
asj
,
arj
amj
( j 1,2,, m),
即向量 j把 j的第r个分量与第s个分量对调而得,
则向量组A与向量组B的线性相关性相同。
定理 3.设向量组A :1,2,,m线性无关,而向量 组B :1,,m,b 线性相关,则向量 b必能由向量组
A线性表示,且表示式是唯一的.
线性方程组的向量表示
a11 x1 a12 x2 a1n xn b1,
a21 x1 a22 x2 a2n xn b2 ,
am1 x1 am2 x2 amn xn bm .
a1 x1 a2 x2 an xn b
方程组与增广矩阵的列向量组之间一一对应.
向量组A线性相关就是齐次线性方程组
x11 x22 xmm 0,即 Ax 0 有非零解. 其中A (1,2 ,m ).
线性方程组Ax x11 x22 xmm b,
有解的充分必要条件是
b可被A的列向量组1
3.向量组只包含一个向量 时,若 0则说 线性相关,若 0,则说 线性无关 .

线性代数-向量组的线性相关性

线性代数-向量组的线性相关性
证明 (略)
下面举例说明定理的应用.
例1 n 维向量组
e1 = (1,0,,0)T ,e2 = (0,1,,0)T ,,en = (0,0,,1)T
称为n维单位坐标向量组 ,讨论其线性相关性 .
解 n维单位坐标向量组构成 的矩阵 E = (e1, e2 ,, en )
是n阶单位矩阵. 由 E = 1 ≠ 0,知R(E) = n. 即R(E)等于向量组中向量个数 ,故由定理2知此 向量组是线性无关的 .
亦即( x1 + x3 )α1 + ( x1 + x2 )α 2 + ( x2 + x3 )α 3 = 0,
因α1,α 2,α 3线性无关,故有
x1 + x3 = 0, x1 + x2 = 0,
x2 + x3 = 0.
由于此方程组的系数行 列式 1 01 1 1 0 =2≠0 011
故方程组只有零解 x1 = x2 = x3 = 0,所以向量组 b1 ,b2 ,b3线性无关.
A线性表示 , 且表示式是唯一的 .
(1) 若向量组 A:α1,α2 ,,αm 线性相关,则 向量组 B :α1,,α m ,α m+1 也线性相关.反言之,若向
量组B 线性无关,则向量组A也线性无关 .
证明 (1)记A = (a1,, am ), B = (a1,, am , am+1 ),有 R(B) ≤ R( A) + 1.若向量组A线性相关,则根据定理 2,有R( A) < m,从而R(B) ≤ R( A) + 1 < m + 1,因此, 根据定理 2知向量组 B线性相关 .
说明 结论(2)是对增加一个分量( 即维数增加1 维)而言的,若增加多 个分量,结论也成立.

向量组线性相关与线性无关解析

向量组线性相关与线性无关解析

向量组线性相关与线性无关的判别方法摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法.关键词 向量组 线性相关 线性无关 矩阵 秩1 引言在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的.2 向量组线性相关和线性无关的定义定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域P 中没有不全为零的数12,m k k k ,使0332211=++++m m k k k k αααα ,称它是线性无关.3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的.命题1 一个向量线性相关的充分条件是它是一个零向量.关于两个向量的线性相关性判断可以转化为向量的成比例判断.命题2 两个n 维向量()n a a a ,,,21 =α,()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.命题3 若向量组m ααα,,,21 线性相关,则任一包含这组向量的向量组都线性相关. 证明 设m ααα,,,21 线性相关,s m m m ++ααααα,,,,,,121 是包含m ααα,,,21 的一组向量,由于m ααα,,,21 线性相关,则存在一组不全为零的数12,m k k k 使得0332211=++++m m k k k k αααα 此时有0001332211=+++++++++s m m m m k k k k αααααα ,因此,s m m m ++ααααα,,,,,,121 线性相关.证毕.由命题3可知,在多个向量构成的向量组中,如果该向量组中含有零向量或包含成比例的两向量,那么这个向量组必定线性相关.命题4 含有零向量或成比例的两向量的向量组必线性相关.3.2.1 运用定义判定由定义判断向量组的线性相关性是最直接的方法,于是我们知道若想判断一个向量组的线性相关性只要求出线性表示的相关系数,并由系数的值便可以判断出向量组是否线性相关.例1 设m m m ααβααβααβ+=+=+=--11322211,,, ,证明,当m 为偶数时,123,,,m ββββ线性相关.证明 令1122330ββββ+++=m m k k k k ,即()()()01322211=++++++a a k a a k a a k m m ,又即()()()0121211=++++++-m m m m a k k a k k a k k ,取1,142131-========-m m k k k k k k ,则有0332211=++++m m k k k k ββββ .由线性相关的定义知,m βββ,,,21 线性相关.3.2.2 用向量组的秩和矩阵的秩判断向量组的秩是指向量组中任一个极大无关组所含的向量个数.命题5 一个向量组线性无关的充要条件是它的秩与它所含的向量的个数相同. 若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的.例2 设向量组()()()1,4,1,2,4,5,2,4,1,3,1,2321--=-=-=ααα,判断321,,ααα的线性相关性.解()()0,0,0,04,453,2,242321321321321332211=-+++---++=++k k k k k k k k k k k k k k k ααα得0321===k k k ,于是321,,ααα线性无关.例3 设向量组m ααα,,,21 线性无关,且可由向量组m βββ,,,21 线性表示.证明:m βββ,,,21 也线性无关,且与12,,,m ααα等价.证明 如果m βββ,,,21 线性相关,假设r βββ,,,21 是它的一个极大无关组,如果m r =,就说明了m βββ,,,21 就是它本身的极大无关组,当然是线性无关的,出现矛盾!下面考虑m r <.又因为向量组m ααα,,,21 可由m βββ,,,21 线性表示,则m ααα,,,21 也可由m βββ,,,21 线性表示,于是有r m ≤,矛盾!由于m βββ,,,21 线性无关,则()m R m =βββ,,,21 ,又m ααα,,,21 可由m βββ,,,21 线性表示,所以,{}≅m βββ,,,21 {}m m βββααα,,,,,,,2121 等价,所以()m R m m =βββααα,,,,,,,2121 .于是m ααα,,,21 和m βββ,,,21 都是{}m m βββααα,,,,,,,2121 的极大无关组.所以它们是等价的,证毕.命题6 设m ααα,,,21 为n 维列向量,矩阵),,,(21m A ααα =. (i)当()m A R <时,向量组12,,m ααα线性相关; (ii)当()m A R =时,向量组12,,m ααα线性无关.例4 判断向量组()12,1,0,5αT=,()27,5,4,1αT=-- ,()33,7,4,11αT=--线性相关性.解 利用矩阵的初等行变换将方程组的系数矩阵A 化为行阶梯形矩阵=A 2731-5-70445-1-11⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡11-1-54403727-5-1→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1101101107-5-1→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000001107-5-1 由行阶梯形矩阵知()23RA =<,所以向量组321,,ααα是线性相关的.上面是以321,,ααα为列向量组构造矩阵,根据矩阵的行秩与列秩的关系,用321,,ααα为行向量组构造矩阵,在进行初等行或者列变换也可以得到相同的结果.3.2.3 利用行列式的值判断命题7 若()()()nn n n n n n a a a a a a a a a ,,,,,,,,,,,,21222212112111 ===ααα,以n ααα,,,21 作为列向量构成的矩阵),,,(21n A ααα =是一个方阵,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n a a a a a a a a a A 212221212111(i)当0=A 时,向量组ααα12,,n 线性相关. (ii)当A 0≠时,向量组ααα12,,n 线性无关.例 5 设()αT=11,1,1,()()ααTT==231,2,3,1,3,t 问t 取何值时,向量组321,,ααα线性相关.解 向量组321,,ααα的个数和维数相等都为3,=A 531321111-=t t可见当5=t 时,0=A ,所以向量组321,,ααα线性相关.3.2.4 利用齐次线性方程组的解判断对于()111211,,,n a a a αT=,()212222,,,n a a a αT=,()12,,,m m m nm a a a αT=的线性相关判断命题8 若m ααα,,,21 为系数向量的齐次线性方程组02211=+++m m x x x ααα 有非零解,则向量组m ααα,,,21 线性相关,若该齐次线性方程组只有零解,则向量组m ααα,,,21 线性无关.例6 已知()11,1,1α=,()21,2,3α= ,()31,3,t α= (i)当t 为何值时,向量组321,,ααα线性无关? (ii)当t 为何值时,向量组321,,ααα线性相关?(iii)当向量组321,,ααα线性相关,将3α表示为1α和2α的线性组合. 解 设有实数321,,x x x 使0332211=++αααx x x 则可以得到方程组⎪⎩⎪⎨⎧=++=++=++020320321321321tx x x x x x x x x 其系数行列式 =D t31321111(i)当5≠t 时,0≠D ,方程组只有零解,即0321===x x x ,这时,向量组123,,a a a 线性无关.(ii)当5=t 时0=D 方程组有非零解,即存在不全为零的数,321,,x x x 使,0332211=++αααx x x此时321,,ααα线性相关,(iii)当5=t 时,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡531321111→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0002101-01,此时有⎩⎨⎧=-=-0203231x x x x令2,121==x x ,有ααα-+=12320,从而3α可由12,αα,表示ααα=-+3122.在运用定义法,秩的判别方法,齐次线性方程组和行列式法的时候,它们之间三既有联系又有区别的,联系是,运用定义法时,要解一个齐次线性方程组,由该方程组是否有非零解判定向量组的线性相关性,在运用定义法的同时,也运用了判别齐次线性方程组的有无非零解法,如上述例子中,秩法和判别齐次线性方程组有无非零解法的出发点不同,但是实质也是一样的,都是要利用矩阵的初等行变换将相应的矩阵化为阶梯形矩阵,从而分别求出向量组的秩与系数矩阵的秩,然后再做判断,如行列式法实质上是根据克莱姆法则判别以向量组各向量作为系数向量的齐次线性方程组有无非零解,所以能运用行列式法进行判定时,也可以用秩法和判别齐次线性方程组有无非零解法.区别是,适用的前提条件不同,定义法适用于各分量均未具体给出的向量组;秩法和判别齐次线性方程组有无非零解法适用于各分量都具体给出的向量组,行列式法适用于各分量都具体给出且向量组中向量的个数与向量的维数相等的向量组,因此,在对向量组的线性相关性进行判定时,要根据题设条件适当选择判定方法.以上是从向量组的分量是否具体给出两个大的方面介绍了向量组线性相关性相关性的判断方法,由此可见,如果向量组的分量是具体给出的,则判断向量组线性相关性是比较简单的,总可用方程组的解,矩阵的秩和行列式的值得方法来判断,如果向量组的分量是没有具体给出吃的,则熟练理解和掌握向量组线性相关性的定义,定理,等知识是解题的必要条件,要灵活运用向量组线性相关性的定义,定理等知识和技巧才有助于提高分析解决问题的能力.3.2.5 用反证法在有些题目中,直接证明结论有时候比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知定义,定理,公理,相矛盾的结果,从而结论的反面不成立,则结论成立.例7 设向量组m ααα,,,21 中任一向量i α不是它前面1-i 向量的线性组合,且0≠i α证明向量组m ααα,,,21 线性无关.证明 假设向量组m ααα,,,21 线性相关,则存在不全为零的数mk k k k ==== 321使得,0332211=++++m m k k k k αααα , ○1 不妨设0≠m k 由上式可得,mm m m m m k a k k a k k a k a 112211------= ,即m α可以由它前面1-m 个向量线性表示,这与题设矛盾,因此0=m k .于是○1式转化为011332211=++++--m m k k k k αααα ,类似于上面的证明可得0221====--k k k m m ,○1式转化为011≠αk ,但01≠α,所以01≠k 这与m k k k === 21不全为零的假设相矛盾,所以向量组线性无关. 3.2.6运用相关结论判定定理1 向量n ααα,,,21 )2(≥n 线性相关的充要条件是这n 个向量中的一个为其余1-n 个向量的线性组合.例8 判断向量组1α= (0,3,1,-1), 2α= (6,0,5,1), 3α= (4,-7,1,3)是否线性相关?解 将321,,ααα以行排成矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--317415061130→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000011302472 矩阵A 化为阶梯形矩阵后出现零行,则321,,ααα中必有一向量能被其余剩下的向量线表示,故由定理1知,向量组321,,ααα线性相关.我们注意到,例9中的矩阵A 在初等行变换的过程中,不论是否化成了阶梯型矩阵,一旦出现零行,就可以断定n ααα,,,21 中必有一个向量能被其余剩下的1-n 个向量线性表示,从而向量组线性相关.定理2 一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关.例9 判断向量组:=1α ()1,2,4,0,1T, =2α()0,1,8,1,2T, =3α ()0,2,3,0,5T的线性相关性.解 取=1β()1,0,0T,=2β()0,1,1T,=3β()0,2,0T,因为由321,,βββ为列向量的行列式不为零,所以向量组321,,βββ线性无关,从而在相同位置上增加了两个分量后所得向量组321,,ααα是线性无关的.定理3 任意1+n 个n 维向量必线性相关.定理 4 如果向量组123,,,m αααα可由向量组s βββ,,,21 线性表示,若s m >,则123,,,m αααα线性相关.证明 设02211=+++n n x x x ααα ,由已知可知()m i kk k k j sj jis si i i i 112211==+++=∑=ββββα带入上式可得j s j m i i ji j i s j m i ji s j j ji mi i i mi i x k x k k x x βββα∑∑∑∑∑∑∑=======⎪⎭⎫⎝⎛==⎪⎪⎭⎫ ⎝⎛=1111111要证明123,,,m a a a a 线性相关,只需证明存在不全为零的数n x x x ,,,21 使得02211=+++n n x x x ααα 成立,即只要存在不全为零的数n x x x ,,,21 使得j s j m i i ji j i s j m i ji s j j ji mi i i mi i x k x k k x x βββα∑∑∑∑∑∑∑=======⎪⎭⎫⎝⎛==⎪⎪⎭⎫ ⎝⎛=1111111中的每一个j β前的系数均为零即可.要使每个j β前面的系数为零,则可得到,⎪⎩⎪⎨⎧=+++=+++=+++000221122221211212111m sm s s m m m m x k x k x k x k x k x k x k x k x k 因为s m >即,方程组的个数小于未知量的个数,得到方程组有非零解,所以123,,,m a a a a 线性相关.定理 5 如果向量组r βββ,,,21 可以由123,,,r αααα线性表示为且123,,,rαααα是线性无关的,设r j a rj jij i ,,2,1,1==∑=αβrrr r r r a a a a a a a a a A 212222111211=,若0≠A 则r βββ,,,21 线性无关.证明 设02211=+++r r k k k βββ ,将()r i a a a a r ir i i rj jij i 2,122111=+++==∑=ααααβ代入上式,得()()()022112222211211221111=++++++++++++r r rr r r r r r r k a k a k a k a k a k a k a k a k a ααα 由123,,,r αααα线性无关,得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221121221111r rr r r rr r r k a k a k a k a k a k a k a k a k a则r βββ,,,21 线性无关,所以系数全为零,即方程组只有零解,0212222111211212221212111≠=rrr r r rrrr rr r a a a a a a a a a a a a a a a a a a得证!例10 设r r αααβααβαβ+++=+== 2121211,,,且向量组123,,,r αααα线性无关,求向量组r βββ,,,21 的线性相关性.解 因为r βββ,,,21 由123,,,r αααα线性表示,由定理5可得,0110011011≠== A因为123,,,r αααα线性无关,且0≠A 所以r βββ,,,21 线性无关.结束语本文着重介绍了向量组线性相关和线性无关的判定方法,总介绍定义入手,介绍了它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间的重要联系,深入了解各种方法在解决向量组线性相关和线性无关的解题中的要领,掌握方法本质,最后总结了一些方法,例如;利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.参考文献[1]姚慕生,吴泉水,高等代数学[M],第2版,上海,复旦大学出版社,2008.[2]刘仲奎,杨永保,程辉,等,高等代数[M],北京,高等教育出版社,2003.[3]钱吉林,高等代数题解精粹[M],北京,中央民族大学出版社,2002.[4]北京大学数学系几何与代数教研室前代数小组,高等代数[M],北京,高等教育出版社,2003.[5]董明秀,判断向量组线性相关与线性无关[J],考试周刊,12;7(2013), 61-63.[6]黄娟霞,关于向量组线性相关性的初步探讨[J],广东石油化工学报,18;11(2012), 40-44.[7]段辉明,李永红,线性相关性若干问题的分析和探究[J],科技创新导报,15;9(2013),20-23.Identification Method of Linear Dependence and Linear IndependenceAbstract The vector group’s Linear dependence and linear independence are most abstract concepts in linear algebra. How to determine Linear dependence and linear independence is the key factor to understand vector correctly. This paper introduces the relationship between determinant, matrix, the solution of linear equations and it, also concludes the methods to determine the vector's linear dependence and linear independent.Keywords Vector group Linear dependence Linear independence Matrix Rank。

线性相关性与线性无关性

线性相关性与线性无关性

线性相关性与线性无关性线性相关性和线性无关性是线性代数中重要的概念,用于描述向量之间的关系。

本文将介绍线性相关性和线性无关性的定义、性质以及它们在矩阵和向量运算中的应用。

一、线性相关性的定义在向量空间中,如果存在一组非零向量,其中至少有一个向量可以表示为其他向量的线性组合,那么我们称这组向量是线性相关的。

换言之,如果存在实数$c_1, c_2, ..., c_n$,使得$c_1\mathbf{v_1} +c_2\mathbf{v_2} + ... + c_n\mathbf{v_n} = \mathbf{0}$,其中$\mathbf{v_i}$是向量集合中的向量,且至少存在一个$c_i$不为零,则这组向量是线性相关的。

二、线性无关性的定义与线性相关性相反,如果一组向量中的任意一个向量都不能表示为其他向量的线性组合,那么我们称这组向量是线性无关的。

换言之,如果仅当$c_1 = c_2 = ... = c_n = 0$时,$c_1\mathbf{v_1} +c_2\mathbf{v_2} + ... + c_n\mathbf{v_n} = \mathbf{0}$,其中$\mathbf{v_i}$是向量集合中的向量,则这组向量是线性无关的。

三、线性相关性与线性无关性的性质1. 若向量组中有一个零向量,则向量组线性相关。

2. 若向量组中的向量个数少于向量的维数,则向量组线性相关。

3. 若向量组中的向量个数多于向量的维数,则向量组线性无关。

4. 若向量组中的向量组成的矩阵的行数大于列数,则向量组线性相关。

5. 若向量组中的向量组成的矩阵的行数小于列数,则向量组线性无关。

四、线性相关性与线性无关性的应用线性相关性和线性无关性在矩阵和向量运算中有广泛的应用。

1. 判断向量组的线性相关性与线性无关性可以通过求解线性方程组$c_1\mathbf{v_1} + c_2\mathbf{v_2} + ... + c_n\mathbf{v_n} = \mathbf{0}$,其中$\mathbf{v_i}$是向量集合中的向量,判断一组向量的线性相关性或线性无关性。

线性相关与无关的判断方法

线性相关与无关的判断方法

线性相关与无关的判断方法线性代数是数学的一个分支,它研究的是向量空间和线性映射。

在线性代数中,线性相关和线性无关是两个非常重要的概念。

本文将介绍线性相关与无关的判断方法,以帮助读者更好地理解这两个概念。

首先,让我们来了解一下什么是线性相关和线性无关。

在向量空间中,如果存在一组向量,其中的某一个向量可以表示成其他向量的线性组合,那么这组向量就是线性相关的。

换句话说,如果存在一组不全为零的系数,使得这组向量的线性组合等于零向量,那么这组向量就是线性相关的。

相反,如果不存在这样的系数,使得这组向量的线性组合等于零向量,那么这组向量就是线性无关的。

判断一组向量是否线性相关或线性无关,可以通过以下方法进行:1. 行列式法。

对于一个n阶矩阵A,如果其行列式不等于0,那么矩阵A的列向量就是线性无关的;如果行列式等于0,那么矩阵A的列向量就是线性相关的。

2. 线性方程组法。

对于一个n个未知数的线性方程组,如果方程组的系数矩阵的秩等于系数矩阵与增广矩阵的秩,那么方程组的解集就是线性无关的;如果系数矩阵的秩小于系数矩阵与增广矩阵的秩,那么方程组的解集就是线性相关的。

3. 向量组法。

对于一个向量组,可以将其表示成矩阵的形式,然后对矩阵进行初等行变换,将矩阵化为阶梯形矩阵或行简化阶梯形矩阵。

通过观察矩阵的形式,可以判断向量组的线性相关性或线性无关性。

4. 线性相关性的性质。

如果一个向量组中包含的向量个数大于向量的维数,那么这个向量组一定是线性相关的。

这是因为向量的个数大于维数,必然存在多余的向量,这些多余的向量可以表示成其他向量的线性组合,从而使得向量组线性相关。

5. 线性无关性的性质。

如果一个向量组中的向量个数小于向量的维数,那么这个向量组一定是线性无关的。

这是因为向量的个数小于维数,必然存在缺少的向量,这些缺少的向量无法表示成其他向量的线性组合,从而使得向量组线性无关。

通过以上方法,我们可以判断一组向量的线性相关性和线性无关性。

线性代数中的线性无关与线性相关

线性代数中的线性无关与线性相关

线性代数中的线性无关与线性相关线性代数是数学中一门重要的学科,它研究了向量空间和线性变换等概念。

而线性无关与线性相关则是线性代数中的基本概念之一,它们对于理解矩阵和向量的性质以及解决线性方程组等问题具有重要的作用。

一、线性无关线性无关是指若一个向量组中的向量不能用其他向量线性表示,则称该向量组线性无关。

具体来说,如果对于给定的向量组{v1, v2, ..., vn},只有当线性组合a1v1 + a2v2 + ... + anvn = 0时,所有系数都为零才能使等式成立,那么这个向量组就是线性无关的。

判断一个向量组是否线性无关的充要条件是,该向量组的任意有限子集都是线性无关的。

线性无关的向量组具有以下重要性质:1. 构成向量组的向量个数不超过向量空间维数;2. 向量组的秩等于其向量的个数。

二、线性相关线性相关是指若一个向量组中的向量可以表示为其他向量的线性组合,则称该向量组线性相关。

换句话说,如果存在不全为零的系数a1, a2, ..., an,使得a1v1 + a2v2 + ... + anvn = 0成立,那么这个向量组就是线性相关的。

线性相关的向量组具有以下重要性质:1. 一个线性相关的向量组中至少存在一个向量可以通过其他向量的线性组合得到;2. 线性相关的向量组的秩小于其向量的个数。

三、线性无关与线性相关的关系线性无关和线性相关是线性代数中两个相对的概念。

它们之间具有以下关系:1. 若一个向量组是线性相关的,则这个向量组中的任意一个向量都可以被其他向量线性表示;2. 若一个向量组是线性无关的,则这个向量组中的任意一个向量都不能被其他向量线性表示。

通过判断一个向量组是线性相关还是线性无关,可以帮助我们理解多元线性方程组的性质和解的情况。

在研究线性代数问题时,我们通常要确定向量组的线性无关性,以决定方程组的解的唯一性和完备性。

四、线性无关与线性相关的应用线性无关与线性相关的概念在线性代数中有广泛的应用,包括但不限于以下几个方面:1. 解决线性方程组:通过判断系数矩阵的秩是否满秩,可以判断线性方程组是否有解以及解的唯一性;2. 确定向量空间的基:一个向量空间的基就是线性无关的最大向量组,在计算中常常需要确定向量空间的基来进行问题的求解;3. 特征值和特征向量的计算:计算特征值和特征向量涉及到矩阵的可逆性和对角化,而线性无关与线性相关的概念可以帮助我们理解和计算特征值和特征向量。

线性代数第二章习题部分答案

线性代数第二章习题部分答案

线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 n维向量,线性相关与线性无关(一)一、填空题1. 设3 α1?α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,?1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1?3α2+α3= (?5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2?β3= (?2,8,?2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=0?3k2?k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,?1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,?1)T, α3=(5,?3,t)T,问t 取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13?1 +k3 5?3t =0即 k1+k2+5k3=0k1+3k2?3k3=0?k2+tk3=0k1+k2+5k3=0k2?4k3=0?k2+tk3=0k1+k2+5k3=0k1+3k2?3k3=0(t?4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=?k1a1?k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=?k1k1+k2a1?k2k1+k2a2.五、已知向量组α1,α2,?,α2n,令β1=α1+α2,β2=α2+α3,?,β2n=α2n+α1,求证向量组β1,β2,?,β2n线性相关。

向量组线性相关与线性无关

向量组线性相关与线性无关

向量组线性相关与线性无关的判别方法摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法.关键词 向量组 线性相关 线性无关 矩阵 秩1 引言在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的.2 向量组线性相关和线性无关的定义定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域P 中没有不全为零的数12,m k k k ,使0332211=++++m m k k k k αααα ,称它是线性无关.3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的.命题1 一个向量线性相关的充分条件是它是一个零向量.关于两个向量的线性相关性判断可以转化为向量的成比例判断.命题2 两个n 维向量()n a a a ,,,21 =α,()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.证明 假设()n a a a ,,,21 =α,()n b b b 21,=β线性相关,则存在不全为0的数21,k k ,命题3 若向量组m ααα,,,21 线性相关,则任一包含这组向量的向量组都线性相关.证明 设m ααα,,,21 线性相关,s m m m ++ααααα,,,,,,121 是包含m ααα,,,21 的一组向量,由于m ααα,,,21 线性相关,则存在一组不全为零的数12,m k k k 使得0332211=++++m m k k k k αααα 此时有0001332211=+++++++++s m m m m k k k k αααααα ,因此,s m m m ++ααααα,,,,,,121 线性相关.证毕.由命题3可知,在多个向量构成的向量组中,如果该向量组中含有零向量或包含成比例的两向量,那么这个向量组必定线性相关.命题4 含有零向量或成比例的两向量的向量组必线性相关.3.2.1 运用定义判定由定义判断向量组的线性相关性是最直接的方法,于是我们知道若想判断一个向量组的线性相关性只要求出线性表示的相关系数,并由系数的值便可以判断出向量组是否线性相关.例1 设m m m ααβααβααβ+=+=+=--11322211,,, ,证明,当m 为偶数时,123,,,m ββββ线性相关.证明 令1122330ββββ+++=m m k k k k ,即()()()01322211=++++++a a k a a k a a k m m ,又即()()()0121211=++++++-m m m m a k k a k k a k k ,取1,142131-========-m m k k k k k k ,则有0332211=++++m m k k k k ββββ .由线性相关的定义知,m βββ,,,21 线性相关.3.2.2 用向量组的秩和矩阵的秩判断向量组的秩是指向量组中任一个极大无关组所含的向量个数.命题5 一个向量组线性无关的充要条件是它的秩与它所含的向量的个数相同. 若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的.例2 设向量组()()()1,4,1,2,4,5,2,4,1,3,1,2321--=-=-=ααα,判断321,,ααα的线性相关性.解()()0,0,0,04,453,2,242321321321321332211=-+++---++=++k k k k k k k k k k k k k k k ααα得0321===k k k ,于是321,,ααα线性无关.例3 设向量组m ααα,,,21 线性无关,且可由向量组m βββ,,,21 线性表示.证明:m βββ,,,21 也线性无关,且与12,,,m ααα等价.证明 如果m βββ,,,21 线性相关,假设r βββ,,,21 是它的一个极大无关组,如果m r =,就说明了m βββ,,,21 就是它本身的极大无关组,当然是线性无关的,出现矛盾!下面考虑m r <.又因为向量组m ααα,,,21 可由m βββ,,,21 线性表示,则m ααα,,,21 也可由m βββ,,,21 线性表示,于是有r m ≤,矛盾!由于m βββ,,,21 线性无关,则()m R m =βββ,,,21 ,又m ααα,,,21 可由m βββ,,,21 线性表示,所以,{}≅m βββ,,,21 {}m m βββααα,,,,,,,2121 等价,所以()m R m m =βββααα,,,,,,,2121 .于是m ααα,,,21 和m βββ,,,21 都是{}m m βββααα,,,,,,,2121 的极大无关组.所以它们是等价的,证毕.命题6 设m ααα,,,21 为n 维列向量,矩阵),,,(21m A ααα =. (i)当()m A R <时,向量组12,,m ααα线性相关; (ii)当()m A R =时,向量组12,,m ααα线性无关.例4 判断向量组()12,1,0,5αT=,()27,5,4,1αT=-- ,()33,7,4,11αT=--线性相关性.解 利用矩阵的初等行变换将方程组的系数矩阵A 化为行阶梯形矩阵=A 2731-5-70445-1-11⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡11-1-54403727-5-1→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1101101107-5-1→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000001107-5-1 由行阶梯形矩阵知()23R A=<,所以向量组321,,ααα是线性相关的.上面是以321,,ααα为列向量组构造矩阵,根据矩阵的行秩与列秩的关系,用321,,ααα为行向量组构造矩阵,在进行初等行或者列变换也可以得到相同的结果.3.2.3 利用行列式的值判断命题7 若()()()nn n n n n n a a a a a a a a a ,,,,,,,,,,,,21222212112111 ===ααα,以n ααα,,,21 作为列向量构成的矩阵),,,(21n A ααα =是一个方阵,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn nnn n a a a a a a a a a A212221212111(i)当0=A 时,向量组ααα12,,n 线性相关. (ii)当A 0≠时,向量组ααα12,,n 线性无关.例 5 设()αT=11,1,1,()()ααTT==231,2,3,1,3,t 问t 取何值时,向量组321,,ααα线性相关.解 向量组321,,ααα的个数和维数相等都为3,=A 531321111-=t t可见当5=t 时,0=A ,所以向量组321,,ααα线性相关.3.2.4 利用齐次线性方程组的解判断对于()111211,,,n a a a αT=,()212222,,,n a a a αT=,()12,,,m m m nm a a a αT=的线性相关判断命题8 若m ααα,,,21 为系数向量的齐次线性方程组02211=+++m m x x x ααα 有非零解,则向量组m ααα,,,21 线性相关,若该齐次线性方程组只有零解,则向量组m ααα,,,21 线性无关.例6 已知()11,1,1α=,()21,2,3α= ,()31,3,t α= (i)当t 为何值时,向量组321,,ααα线性无关? (ii)当t 为何值时,向量组321,,ααα线性相关?(iii)当向量组321,,ααα线性相关,将3α表示为1α和2α的线性组合. 解 设有实数321,,x x x 使0332211=++αααx x x 则可以得到方程组⎪⎩⎪⎨⎧=++=++=++020320321321321tx x x x x x x x x 其系数行列式 =D t31321111(i)当5≠t 时,0≠D ,方程组只有零解,即0321===x x x ,这时,向量组123,,a a a 线性无关.(ii)当5=t 时0=D 方程组有非零解,即存在不全为零的数,321,,x x x 使,0332211=++αααx x x此时321,,ααα线性相关,(iii)当5=t 时,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡531321111→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0002101-01,此时有⎩⎨⎧=-=-0203231x x x x令2,121==x x ,有ααα-+=12320,从而3α可由12,αα,表示ααα=-+3122.在运用定义法,秩的判别方法,齐次线性方程组和行列式法的时候,它们之间三既有联系又有区别的,联系是,运用定义法时,要解一个齐次线性方程组,由该方程组是否有非零解判定向量组的线性相关性,在运用定义法的同时,也运用了判别齐次线性方程组的有无非零解法,如上述例子中,秩法和判别齐次线性方程组有无非零解法的出发点不同,但是实质也是一样的,都是要利用矩阵的初等行变换将相应的矩阵化为阶梯形矩阵,从而分别求出向量组的秩与系数矩阵的秩,然后再做判断,如行列式法实质上是根据克莱姆法则判别以向量组各向量作为系数向量的齐次线性方程组有无非零解,所以能运用行列式法进行判定时,也可以用秩法和判别齐次线性方程组有无非零解法.区别是,适用的前提条件不同,定义法适用于各分量均未具体给出的向量组;秩法和判别齐次线性方程组有无非零解法适用于各分量都具体给出的向量组,行列式法适用于各分量都具体给出且向量组中向量的个数与向量的维数相等的向量组,因此,在对向量组的线性相关性进行判定时,要根据题设条件适当选择判定方法.以上是从向量组的分量是否具体给出两个大的方面介绍了向量组线性相关性相关性的判断方法,由此可见,如果向量组的分量是具体给出的,则判断向量组线性相关性是比较简单的,总可用方程组的解,矩阵的秩和行列式的值得方法来判断,如果向量组的分量是没有具体给出吃的,则熟练理解和掌握向量组线性相关性的定义,定理,等知识是解题的必要条件,要灵活运用向量组线性相关性的定义,定理等知识和技巧才有助于提高分析解决问题的能力.3.2.5 用反证法在有些题目中,直接证明结论有时候比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知定义,定理,公理,相矛盾的结果,从而结论的反面不成立,则结论成立.例7 设向量组m ααα,,,21 中任一向量i α不是它前面1-i 向量的线性组合,且0≠i α证明向量组m ααα,,,21 线性无关.证明 假设向量组m ααα,,,21 线性相关,则存在不全为零的数mk k k k ==== 321使得,0332211=++++m m k k k k αααα , ○1 不妨设0≠m k 由上式可得,mm m m m m k a k k a k k a k a 112211------= ,即m α可以由它前面1-m 个向量线性表示,这与题设矛盾,因此0=m k .于是○1式转化为011332211=++++--m m k k k k αααα ,类似于上面的证明可得0221====--k k k m m ,○1式转化为011≠αk ,但01≠α,所以01≠k 这与m k k k === 21不全为零的假设相矛盾,所以向量组线性无关. 3.2.6运用相关结论判定定理1 向量n ααα,,,21 )2(≥n 线性相关的充要条件是这n 个向量中的一个为其余1-n 个向量的线性组合.例8 判断向量组1α= (0,3,1,-1), 2α= (6,0,5,1), 3α= (4,-7,1,3)是否线性相关?解 将321,,ααα以行排成矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--317415061130→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000011302472 矩阵A 化为阶梯形矩阵后出现零行,则321,,ααα中必有一向量能被其余剩下的向量线表示,故由定理1知,向量组321,,ααα线性相关.我们注意到,例9中的矩阵A 在初等行变换的过程中,不论是否化成了阶梯型矩阵,一旦出现零行,就可以断定n ααα,,,21 中必有一个向量能被其余剩下的1-n 个向量线性表示,从而向量组线性相关.定理2 一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关.例9 判断向量组:=1α ()1,2,4,0,1T, =2α()0,1,8,1,2T, =3α ()0,2,3,0,5T的线性相关性.解 取=1β()1,0,0T,=2β()0,1,1T,=3β()0,2,0T,因为由321,,βββ为列向量的行列式不为零,所以向量组321,,βββ线性无关,从而在相同位置上增加了两个分量后所得向量组321,,ααα是线性无关的.定理3 任意1+n 个n 维向量必线性相关.定理 4 如果向量组123,,,m αααα可由向量组s βββ,,,21 线性表示,若s m >,则123,,,m αααα线性相关.证明 设02211=+++n n x x x ααα ,由已知可知()m i kk k k j sj jis si i i i 112211==+++=∑=ββββα带入上式可得j s j m i i ji j i s j m i ji s j j ji mi i i mi i x k x k k x x βββα∑∑∑∑∑∑∑=======⎪⎭⎫⎝⎛==⎪⎪⎭⎫ ⎝⎛=1111111要证明123,,,m a a a a 线性相关,只需证明存在不全为零的数n x x x ,,,21 使得02211=+++n n x x x ααα 成立,即只要存在不全为零的数n x x x ,,,21 使得j s j m i i ji j i s j m i ji s j j ji mi i i mi i x k x k k x x βββα∑∑∑∑∑∑∑=======⎪⎭⎫⎝⎛==⎪⎪⎭⎫ ⎝⎛=1111111中的每一个j β前的系数均为零即可.要使每个j β前面的系数为零,则可得到,⎪⎩⎪⎨⎧=+++=+++=+++000221122221211212111m sm s s m m m m x k x k x k x k x k x k x k x k x k 因为s m >即,方程组的个数小于未知量的个数,得到方程组有非零解,所以123,,,m a a a a 线性相关.定理 5 如果向量组r βββ,,,21 可以由123,,,r αααα线性表示为且123,,,rαααα是线性无关的,设r j a rj jij i ,,2,1,1==∑=αβrrr r rr a a a a a a a a a A212222111211=,若0≠A 则r βββ,,,21 线性无关.证明 设02211=+++r r k k k βββ , 将()r i a a a a r ir i i rj jij i 2,122111=+++==∑=ααααβ代入上式,得()()()022112222211211221111=++++++++++++r r rr r r r r r r k a k a k a k a k a k a k a k a k a ααα 由123,,,r αααα线性无关,得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221121221111r rr r r rr r r k a k a k a k a k a k a k a k a k a则r βββ,,,21 线性无关,所以系数全为零,即方程组只有零解,0212222111211212221212111≠=rrr r rrrr r rr r a a a a a a a a a a a a a a a a a a得证!例10 设r r αααβααβαβ+++=+== 2121211,,,且向量组123,,,r αααα线性无关,求向量组r βββ,,,21 的线性相关性.解 因为r βββ,,,21 由123,,,r αααα线性表示,由定理5可得,011011011≠==A因为123,,,r αααα线性无关,且0≠A 所以r βββ,,,21 线性无关.结束语本文着重介绍了向量组线性相关和线性无关的判定方法,总介绍定义入手,介绍了它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间的重要联系,深入了解各种方法在解决向量组线性相关和线性无关的解题中的要领,掌握方法本质,最后总结了一些方法,例如;利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.参考文献[1]姚慕生,吴泉水,高等代数学[M],第2版,上海,复旦大学出版社,2008.[2]刘仲奎,杨永保,程辉,等,高等代数[M],北京,高等教育出版社,2003.[3]钱吉林,高等代数题解精粹[M],北京,中央民族大学出版社,2002.[4]北京大学数学系几何与代数教研室前代数小组,高等代数[M],北京,高等教育出版社,2003.[5]董明秀,判断向量组线性相关与线性无关[J],考试周刊,12;7(2013), 61-63.[6]黄娟霞,关于向量组线性相关性的初步探讨[J],广东石油化工学报,18;11(2012), 40-44.[7]段辉明,李永红,线性相关性若干问题的分析和探究[J],科技创新导报,15;9(2013),20-23.Identification Method of Linear Dependence and Linear IndependenceAbstract The vector group’s Linear dependence and linear independence are most abstract concepts in linear algebra. How to determine Linear dependence and linear independence is the key factor to understand vector correctly.This paper introduces the relationship between determinant, matrix, the solution of linear equations and it, also concludes the methods to determine the vector's linear dependence and linear independent.Keywords Vector group Linear dependence Linear independence Matrix Rank(注:可编辑下载,若有不当之处,请指正,谢谢!)推荐精选。

向量的线性相关与线性无关

向量的线性相关与线性无关

向量的线性相关与线性无关线性代数是数学的一个重要分支,研究的是与向量、线性方程组和线性变换相关的性质和问题。

在线性代数中,我们经常遇到一个重要的概念,即向量的线性相关和线性无关。

一、向量的线性相关和线性无关的定义在介绍向量的线性相关和线性无关之前,我们先来了解一下什么是向量。

向量是由一些按照一定顺序排列的数所组成的有序数组,常用来表示空间中的一个点或者一个有方向和大小的物理量。

1. 向量的定义在几何学中,向量通常用箭头表示,箭头的长度表示向量的大小,而箭头的方向表示向量在空间中的方向。

我们可以用两个点表示一个向量,即起点和终点的坐标差。

一个向量由其大小和方向共同决定。

2. 向量的线性相关和线性无关对于一组向量,如果存在一组不全为零的标量,使得它们的线性组合等于零向量,则称这组向量是线性相关的;如果不存在这样的标量,即只有当所有标量均为零时,线性组合才等于零向量,那么这组向量就是线性无关的。

二、判断向量的线性相关与线性无关判断向量的线性相关与线性无关主要通过向量的线性组合来进行。

对于一组向量,我们可以用以下两种方法来判断其是否线性相关或线性无关。

1. 行列式判断法对于n个n维向量构成的矩阵A,可以将其写成行向量的形式,即A=[a1,a2,...,an]。

通过计算矩阵A的行列式,如果行列式的值不等于零,则这组向量线性无关;反之,如果行列式的值等于零,则这组向量线性相关。

2. 线性组合判断法对于一组向量V1,V2,...,Vn,我们可以设想存在标量C1,C2,...,Cn,使得C1V1+C2V2+...+CnVn=0。

如果这组向量是线性相关的,那么至少存在一个标量不等于零;如果线性无关,则所有的标量均为零。

三、向量的线性相关与线性无关的应用1. 线性方程组的解的唯一性线性方程组的解的唯一性与系数矩阵的行列式是否为零有关。

如果系数矩阵的行列式不等于零,则线性方程组有唯一解;如果行列式等于零,则方程组有无穷多个解或者无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a11 a21
an1
即行列式 D = a12 a22
an2 = 0 ?
核心问题!
a1n a2n
ann
④若方程组(2)有非零解,则a1,a2,,an线性相关;否则,线性无关.
特殊方法(举例)
亦即
例7. 证明下列单位向量组线性无关.
1
0
0
0
α1
=
0
,
0
α2
=
1
,
0
α3
=
0 1
,
α4
=
k1,k2, ,kn,使
k1a1+k2a2+ + knan=o 成立 .
由向量的运算性质可得
k1a1+k2a2+ +kn an=o,即
a11 a21
an1 0
k1
a12 ...
+
k2
a22 ...
+
...
+
kn
an2 ...
=
0 ...
a1n a2n

β
=
(-
l1 l
)α 1
+
(-
l2 l
)α 2
+
+
(-
lm l
)α m

即b可由向量组a1,a2, ,am线性表示.
定理2 设向量组 a1,a2, ,am ,b 线性相关,而a1,a2, ,am线性无关,则b 可由a1,a2, ,am线性表示,且表
示式是惟一的.
证明: 再证表示法惟一.
设b可表示成以下两种形式,
结论: 1.含有零向量的向量组一定线性相关.
2.仅有一个向量构成的向量组线性相关当且仅 当该向量为零向量. 3.仅有两个向量构成的向量组线性相关当且仅当 这两个向量的分量对应成比例. 4.单位向量组e1,e2, ,en线性无关.
7.3 线性相关性判定定理
定理1 向量组a1,a2, ,am线性相关的充要条件是:向量组
判定定理等进行判定,特别当利用定义时可使用观察法.
特殊方法,用于n 个n维向量组的情形. 可通过行列式判定.
一般方法(举例)
例6. 讨论下列向量组的线性相关性.
1
0
2
α1
=
1 1
,
α2
=
2 1
,
α3
=
4 3
1
3
5
解: 对于向量组,显然有

α3 = 2α1 + α2 ,
2α1 +1α2 + (-1)α3 = o,
a1n a2n
ann
特殊方法(解题步骤)
①设有一组数k1,k2, ,kn,使
k1a1+k2a2+ + knan=o 成立.
(1)
②通过向量的线性运算,将(1)式化为如下齐次方程组
a11 a21
an1 0 a11k1 + a21k2 + + an1kn = 0
k1
a12 ...
充分性. 不妨设a1可由其余向量线性表示,即
a1=l2a2+l3a3+ + lmam, 则存在不全为零的数-1,l2,l3, , lm,使
(-1)a1+l2a2+l3a3+ + lmam=o , 即a1,a2, ,am线性相关.
定理2 设向量组 a1,a2, ,am ,b 线性相关,而a1,a2, , am线性无关,则b 可由a1,a2, ,am线性表示,且表示式是惟
相关.
解题要点:找向量方程的 非零解.
例9.设向量组a1,a2,a3线性无关,令 b1=a1+a2,b2=a2+a3, b3=a3+a1 .试证向量组b1,b2,b3也线性无关. (拆项重组法)
证明:设有一组数k1 ,k2 ,k3 ,使 k1b1+ k2b2+k3 b3 =o,

k1(a1+a2)+ k2(a2+a3)+k3 (a3+a1)=o,
例2.任何一个n维向量a=(a1, a2, , an)都是n维向量组
e1=(1, 0, , 0),e2=(0, 1, , 0), ,en=(0, 0, , 1)的线性组合.
这是因为a=a1e1+ a2e2+ + an en .
注:向量组 e1,e2, ,en称为 n 维单位(或基本)向量组.
k1
+
2 1
k2
+
1 0
k3
+
-4 -3
k4
=
0 0
.
2 3 1 -7 0
因该方程组的系数行列式
解: 对于向量组a1, a2, a3, a4,设有
一组数k1,k2 ,k3,k4,使得下式成立
k1α1 + k2α2 + k3α3 + k4α4 = o ,
其中,
a21x1 + a22x2 + + a2nxn = b2
+ + - = am1x1 + am2x2 + + amnxn = bm
a1 j
a
j
=
a2 j
,
j
= 1, 2,..., n
;
a11
a12
a1n
b1
amj
a21
x1+
a22
x2+ +
a2n
xn =
b2
一的.
证明: 先证明b可由向量组a1,a2, ,am线性表示. 因为向量 组a1,a2,,am,b线性相关,因而存在一组不全为零的数l1, l2,, lm及l,使
l1a1+l2a2+ + lmam+ lb=o , 这里必有l0,否则,上式成为
l1a1+l2a2+ + lmam=o , 且l1,l2,,lm不全为零,这与线性无关矛盾.因此l0 .
整理得 (k1+k3)a1+(k1+k2)a2+(k2+k3)a3=o .
因为向量组a1,a2,a3线性无关,所以必有
k1 + x2 + k3 = 0 k1 + k2 + x3 = 0 , k1 + k2 + k3 = 0
亦即向量方程只有零 解: k1=k2=k3=0.
101 由于 1 1 0 =20,
即只有当k1=k2=k3=k4=0时,上
式才成立,所以向量组a1, a2, a3, a4,线性无关.
特殊方法(举例)
亦即方程组
例8. 讨论下列向量组的线性相关性.
1
0
3
2
α1
=
1
1
,
α2
=
2
,
1
α3
=
1
,
0
α4
=
-4
-3
2
3
1
-7
1 0 3 2 0
1 1
0
0
0
0
0
1
证: 对于向量组a1, a2, a3, a4,设有
一组数k1,k2 ,k3,k4,使得下式成立
k1α1 + k2α2 + k3α3 + k4α4 = o ,
k1 0 0 0 k1 0
0 0 0
+
k2 0 0
+
0 k3 0
2.7 向量组的线性相关与线性无关
1.线性组合与线性表示 2.线性相关与线性无关 3.线性相关性判定定理
7.1 线性组合与线性表示 (Linear combination)
定义1 给定n维向量b,a1,a2, ,am,如果存在一组数k1,k2,
,km,使
b=k1a1+k2a2+ + kmam, 则称向量b是向量组a1,a2 , ,am的线性组合,或称b可由向量 组a1,a2 , ,am线性表示.
即存在一组不全为零的数
练习:讨论下列向量组的线性 相关性,其中:
1
0
2
6
α1
=
0
,
α2
=
1
,
α3
=
2 ,
α4
=
6
.
k1 = 2, k2 = 1, k3 = -1,
使得
k1α1 + k2α2 + k3α3 = o, 所以向量组a1, a2, a3,线性相关.
特殊方法(推导)
对于n个n维向量组成的向量组a1,a2, ,an,设有一组数
即 b=(2, -1, 1)是向量组a1,a2 ,a3的线性组合,也就是说b可由 a1,a2 ,a3线性表示.
7.1 线性组合与线性表示 (Linear combination)
定义1 给定n维向量b,a1,a2, ,am,如果存在一组数k1,k2,
,km,使
b=k1a1+k2a2+ + kmam, 则称向量b是向量组a1,a2 , ,am的线性组合,或称b可由向量 组a1,a2 , ,am线性表示.
b =l1a1+l2a2+ + lmam, 及 b=m1a1+m2a2+ + mmam,2-m2)a2+ + (lm-mm)am =o , 由a1,a2, ,am线性无关可知
l1-m1=l2-m2= =lm-mm=0, 从而 l1=m1,l2=m2, ,lm=mm,
中至少有一个向量可以由其余向量线性表示.
相关文档
最新文档