第二十一章 气相色谱法
气相色谱
第一章气相色谱法一色谱法概论色谱法是一种重要的分离分析方法,它是根据组分在两相中作用能力不同而达到分离目的的。
色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。
他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。
这种方法因此得名为色谱法。
以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。
●色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;●自上而下运动的一相(一般是气体或液体)称为流动相;●装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。
当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。
色谱法的分类根据流动相的状态可分为:气相色谱(GC)、液相色谱(LC)、超临界流体色谱(SFC) 按固定相在支持体中的形状分:柱色谱、平板色谱——纸色谱、薄层色谱按分离机理分类●利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。
●利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。
●利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。
利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方法,称为凝胶色谱法或尺寸排阻色谱法。
按机理分:吸附色谱、分配色谱、离子交换色谱、排阻色谱二色谱流出曲线及有关术语色谱流出曲线和色谱峰:由检测器输出的信号强度对时间作图,所得曲线称为色谱流出曲线。
曲线上突起部分就是色谱峰。
(一)基线:在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。
药物分析题第十七到二十一章
第十七章合成抗菌药物的分析(一)最佳选择题1.下列能作为测定左氧氟沙星中光学异构体的HPLC流动相添加剂使用的金属离子是()A。
Cu2+ B. Fe3+ C。
Co2+ D. Na+ E。
Au3+2.《中国药典》(2010年版)鉴别诺氟沙星采用的方法是()A.紫外分光光度法B.气相色谱法C.高效液相色谱法D.化学反应鉴别法E.红外分光光度法3.具有丙二酸呈色反应的药物是()A.诺氟沙垦B.磺胺嘧啶C.磺胺甲嗯唑D.司可巴比妥E.盐酸氯丙嗪4.《中国药典》(2010年版)氧氟沙星中“有关物质”检查采用的方法是()A.紫外分光光度法B.薄层色谱法C.高效液相色谱法D.气相色谱法E.毛细管电泳法5.《中国药典》(2010年版)对于盐酸洛美沙星片的含量测定采用的方法是( )A.紫外分光光度法B.非水溶液滴定法C.离子对高效液相色谱法D.气相色谱法E.荧光分光光度法6.左氧氟沙星原料药的含量测定,《中国药典》(2010年版)采用的是离子对高效液相色谱法,其中所用的离子对试剂是()A.高氯酸钠B.乙二胺C.磷酸二氢钠D.庚烷磺酸钠盐E.氢氧化四丁基铵7.复方磺胺甲嗯唑中所包含的有效成分是()A.磺胺甲嗯唑和磺胺嘧啶B.磺胺嘧啶和对氨基苯磺酸C.磺胺异嗯唑和磺胺甲嗯唑D.磺胺甲嗯唑和甲氧苄啶E.磺胺和对氨基苯磺酸8.下列含量测定方法中,磺胺类药物未采用的方法是()A.沉淀滴定法B.溴酸钾法C.紫外分光光度法D.非水溶液滴定洼E.亚硝酸钠滴定法9.用亚硝酸钠滴定法测定磺胺甲噁唑含量时,ChP2010选用的指示剂或指示终点的方法是( )A.永停法B.外指示剂法C.内指示剂法D.淀粉E.碘化钾—淀粉10.复方磺胺甲嚼唑注射液中磺胺、对氨基苯磺酸以及甲氧苄啶降解产物的检查.ChP2010采用的方法是()A.薄层色谱法B.紫外分光光度法C.高效液相色谱法D.比色法E.高效毛细管电泳法(二)配伍选择题[11-12]A.吸光度B.甲醇与乙醇C.光学异构体D.乙醚、乙醇与丙酮E.防腐剂11。
气相色谱法原理
气相色谱法原理
气相色谱法(GC)是一种常用的分离和分析技术,其原理基
于不同物质在固定相和移动相相互作用不同而实现分离。
气相色谱法主要包括样品的进样、分离、检测和数据处理等步骤。
首先,待分析的样品通常通过进样器加热转化为气相,然后进入色谱柱。
色谱柱是整个气相色谱系统的核心组成部分,它通常由内衬固定相的不锈钢或玻璃管构成。
固定相是涂覆在色谱柱内壁的材料,它可以吸附或与样品分子发生化学反应。
移动相是由惰性气体(如氮气、氦气)组成的载气,它在柱内流动并带动待分离的样品分子。
样品在色谱柱中被分离的过程是通过样品分子与固定相和移动相之间的相互作用来实现的。
不同物质在色谱柱中的行为不同,有些物质与固定相相互作用较强,因此在柱中停留的时间较长;而有些物质与移动相相互作用较强,因此在柱中停留的时间较短。
通过调整色谱柱的温度和流动相的流速,可以实现对不同物质的分离。
在气相色谱法中,分离后的化合物被引入检测器进行检测。
常用的检测器包括火焰离子化检测器(FID)、电子捕获检测器(ECD)、质谱检测器(MS)等。
检测器可以根据化合物的
性质进行选择,以提高检测的灵敏度和选择性。
最后,通过数据处理和分析,可以得到样品中不同化合物的含量和结构信息。
数据处理可以包括色谱峰的面积计算、峰的标识和峰的相对保留时间计算等。
总的来说,气相色谱法的原理是基于不同物质在固定相和移动相之间的相互作用差异来实现分离和分析。
通过调整色谱柱的条件和选择合适的检测器,可以提高分离和检测的效果,实现对复杂样品的分析。
气相色谱法PPT课件
沿陡峭。如B
A
B
对称因子[ƒs (symmetry factor)]
即拖尾因子(tailing factor):
用来描述峰形对称程度的。
计算公式为:
fs
W0.05h 2A
一、气相色谱法的分类和特点
(一)分类 按固定相的聚集状态分: 气固色谱法(GSC),属吸附色谱 气液色谱法(GLC),属分配色谱
按操作形式分,气相色谱属柱色谱.
按柱的粗细不同分:
填充柱色谱法:将固定相填充在金属
或玻璃管中(内径4mm~6mm)
毛细管柱色谱:毛细管柱(0.1mm~0.5mm)
分为
开口毛细管柱
和固体。(沸点在500℃以下,热稳定性 好,分子量在400以下的物质)。 目前气相色谱法所能分析的有机物,约 占全部有机物(约300万种)的20%。
气相色谱两大弱点: a.受试样蒸汽压限制 b.定性困难
二、气相色谱仪 gas chromatographic instruments
气相色谱仪
气相色谱仪
柱制备对柱效有较大影响,填料装填 太紧,柱前压力大,流速慢或将 柱堵 死;反之空隙体积大,柱效低。
4.检测系统(detection system) 色谱仪的眼睛。包括检测器、控温装 置;若作制备,则在检测器后面接分 步收集器。 作用:按组分浓度或质量随时间的变化,
转化成相应电信号
检测器:
广普型——对所有物质均有响应;
气化室: 将液体试样瞬间气化的 装置。无催化作用。
3.色谱柱系统(column system) 包括恒温控制装置,是色谱仪的心脏部
分。
柱材质:不锈钢管或玻璃管,内径3-6 毫米。长度可根据需要确定。
色谱分析法
29
9.分配系数K与分配比k的关系
ms cs Vs Vm K k k cm m m Vs Vm
其中β称为相比率。 相比率是反映色谱柱柱型特点的又一个参数。例如,对 填充柱,其β值一般为6~35,对毛细管柱,其β值一般 为60~600。
11:19
30
10. 分配比与保留时间的关系
11:19
37
• 但由于死时间tM包含在tR中,而tM并不参加柱 内的分配,所以理论塔板数、理论塔板高并不 能真实地反映色谱柱的好坏。为此: • 常用有效塔板数或有效塔板高度作衡量柱效能 的指标。计算式如下:
' ' tR t 2 R 2 n有 效 5.54( ) 16( ) Y1 Y 2
H有效
第六章
色谱分析法
11:19
1
第一节 概述
一、色谱法简介 u 色谱法是由1906年俄国植物学家茨维特最早创立的。
11:19
2
石油醚
植物叶石 油醚溶液
CaCO3
11:19
3
色谱法中: 起分离作用的分离柱称为色谱柱。 固定在柱内的填充物称固定相。 携带试样混合物流过此固定相的流体(气体或 液体),称为流动相。
L n H
n称为理论塔板数。
11:19
35
(2)
以气相色谱为例,载气进入色谱柱不是连续
进行的,而是脉动式,每次进气为一个塔板体积。
(3) 所有组分开始时存在于第0号塔板上,而且试
样沿轴(纵)向扩散可忽略。
(4) 分配系数在所有塔板上是常数,与组分在某
一塔板上的量无关。
11:19
36
塔板理论指出:
i.保留时间tR:指被测组分从进样开始到出现色 谱峰最高点时所需的时间,如图15-6中的O΄B 所示。
气相色谱法工作原理
气相色谱法工作原理
气相色谱法(Gas chromatography, GC)是一种常用的分离和
分析技术,其工作原理基于样品分子在固定相和流动相之间的分配平衡。
在气相色谱法中,样品首先被注入进色谱柱,色谱柱通常是由具有高表面活性的固定相填充的长管状物质构成。
接下来,通过使用一个称为载气的流动相,样品组分被推送通过色谱柱。
在色谱柱内,样品组分与固定相发生相互作用。
具有极性的组分会与固定相之间的化学吸附力发生作用,而非极性的组分则会通过色谱柱的惰性表面发生物理吸附作用。
这些作用力会导致样品组分在色谱柱内以不同的速度进行分离。
最终,在色谱柱的出口处,各个组分将会陆续出现。
为了检测和分析这些组分,常常会使用一种称为检测器的设备。
检测器可以根据被分离组分的特性,如折射率、导电性或化学反应性,对它们进行识别和测量。
由于气相色谱法的灵敏度高、分离效果好、分析速度快等优点,因此在许多领域得到了广泛应用。
无论是在环境监测、食品质量控制还是药物分析等方面,气相色谱法都扮演着重要的角色。
气相色谱分析
2021/8/1
5
1.色谱法概述
色谱法是一种分离技术。在分析化学 领域中是一种新型的分离分析方法。 气相色谱是色谱中普遍使用的一种。
2021/8/1
6
1.1 色谱法的产生和发展
俄 国 植 物 学 家 Tsweet 发 明 的 方 法后来被称为“经典液相色谱 法”。 (1906年) 所使用的玻璃管称为色谱柱。 管内的碳酸钙填充物称为固定 相。 淋洗液称为流动相或淋洗剂。 混合物中的各组分被称为溶质。
2021/8/1
7
❖色谱法普遍用来分离无色物质,但色谱法 这个名称一直被沿用下来。
❖1941年Martin和Synge 发现了液-液(分配)
色谱法,阐述了气-固吸附色谱原理,提出 气-液色谱法设想; (1952 年诺贝尔化学奖)
❖色谱学成为分析化学的重要分支学科,则 是以气相色谱的产生、发展为标志。
内径细 0.1-0.5mm 柱长 50-300m/常用石英
毛细管柱
2021/8/1
22
2.5 检测系统
➢检测器、控温装置 ➢将经色谱柱分离后的各组分按其特性及
含量转化为相应的电讯号。
➢根据检测原理不同,浓度型、质量型
➢浓度型:热导池、电子捕获检测器 ➢质量型:氢火焰离子化、火焰光度检测
器
2021/8/1
2021/8/1
3
第 一 1 色谱法概述 章 2 气相色谱仪
气 3 气相色谱分析理论基础
相 色
4 分离条件的选择
谱 5 检测器
分 析
6 定性定量方法
2021/8/1
4
主要参考书目
❖ 仪器分析,朱明华,高等教育出版社 ❖ 现代仪器分析,杜廷发,国防科技大学
气相色谱法的定义
气相色谱法的定义气相色谱法是一种分离和分析化合物的技术,广泛应用于化学、生物化学、环境科学等领域。
它利用气相色谱仪将混合物中的化合物分离出来,然后通过检测器进行定量和定性分析。
气相色谱法具有分离效率高、分析速度快、灵敏度高等优点,因此在科学研究和工业生产中得到了广泛的应用。
气相色谱法的原理是利用气相色谱柱对混合物中的化合物进行分离。
当混合物进入色谱柱时,不同化合物会因为其与固定相的亲和力不同而在色谱柱中以不同速度移动,从而实现分离。
随后,通过检测器对分离出来的化合物进行检测和定量分析。
气相色谱法可以通过不同的检测器实现对化合物的定性和定量分析,常用的检测器包括质谱检测器、火焰光度检测器、电子捕获检测器等。
气相色谱法的应用非常广泛。
在化学领域,气相色谱法可以用于分析有机化合物、无机化合物、生物大分子等。
在生物化学领域,气相色谱法可以用于药物代谢动力学研究、蛋白质结构分析等。
在环境科学领域,气相色谱法可以用于大气污染物的监测、水体中有机污染物的分析等。
此外,气相色谱法还被广泛应用于食品安全监测、药品质量控制等领域。
随着科学技术的不断发展,气相色谱法也在不断改进和完善。
新型的色谱柱材料、检测器技术以及数据处理方法的不断涌现,使得气相色谱法在分析精度、灵敏度和分辨率上得到了显著提高。
同时,气相色谱法与其他分析技术的结合也为其应用拓展提供了更多可能性,例如与质谱联用技术结合可以实现对复杂混合物的高效分析。
总之,气相色谱法作为一种重要的分离和分析技术,在化学、生物化学、环境科学等领域发挥着重要作用。
随着科学技术的不断进步,相信气相色谱法在未来会有更广阔的应用前景。
现代仪器分析复习题(答案版)
现代仪器分析复习题(答案版)现代仪器分析复题选择题(20道)第一章:绪论1,仪器分析法的主要特点是A,分析速度快但重现性低,试样用量少但选择性不高B,灵敏度高但重现性低,选择性高但试样用量大C,分析速度快,灵敏度高,重现性好,试样用量少,选择性高D,分析速度快,灵敏度高,重现性好,试样用量少,准确度高2,同一人员在相同条件下,测定结果的精密度称为A,准确性B,选择性C,重复性D,再现性3,不同人员在不同实验室测定结果的精密度称为A,准确性B,选择性C,重复性D,再现性4,分析测量中系统误差和随机误差的综合量度是A,精密度B,准确度C,检出限D,灵敏度第二章5,受激物质从高能态回到低能态时,如果以光辐射形式释放多余能量,这种现象称为A,光的吸收B,光的发射C 光的散射D光的衍射6,光谱分析法与其他仪器分析法的不同点在于光谱分析法研究涉及的是A,试样中各组分间的相互干扰及其消除B,光与电的转换及使用C,光辐射与试样间的相互作用与能级跃迁D,试样中各组分的分离7,每一种分子都具有特征的能级结构,因此,光辐射与物质作用时,可以获得特征的分子光谱。
根据试样的光谱,可以研究A,该试样中化合物的分子式B,试样中的各组分的分配及相互干扰C,试样的组成和布局D,试样中化合物的相对分子质量8,依照产生光谱的物质类型不消,光谱可以分为A,发射光谱、吸收光谱、散射光谱B,原子光谱、分子光谱、固体光谱C,线光谱、带光谱和连续光谱D,X射线发射光谱、X射线吸收光谱、X射线荧光光谱、X射线衍射光谱9,频次、波长、波数及能量的关系是A,频率越低,波长越短,波数越高,能量越低B,频次越低,波长越长,波数越低,能量越高C,频次越高,波长越短,波数越高,能量越高D,频率越高,波长越高,波数越低,能量越高10,光谱分析法是一种()来确定物质的组成和结构的仪器分析方法A,利用物质与光相互作用的信息B,利用光的动摇性C,利用光的粒子性D,利用物质的折射、干预、衍射和偏振征象第四章11,原子吸收光谱法中的物理干扰可用下述哪种方法消除A,释放剂B,保护剂C,标准加入法D,扣除背景12,与火焰原子吸收法相比,石墨炉原子吸收法有以下特点A,灵敏度高且重现性好B,基体效应的阿丹重现性好C,试样量大但检出限低D,原子化效率高,因而绝对检出限低13,用原子吸收光谱法测定钙时,加入1%的钾盐溶液,其作用是A,减小背景B,作释放剂C,作消电离剂D,提高火焰温度14,原子吸收光谱分析中,塞曼效应法是用来消除A,化学干扰B,物理干扰C,电离干扰D,背景干扰15,通常空心阴极灯是A,用碳棒做阳极,待测元素做阴极,灯内充低压惰性气体B,用钨棒做阳极,待测元素做阴极,灯内抽真空C,用钨棒做阳极,待测元素做阴极,灯内充低压惰性气体D,用钨棒做阴极,待测元素做阳极,灯内充惰性气体16,原子吸收光谱法中,背景吸收产生的干扰首要表现为A,火焰中产生的分子吸收及固体微粒的光散射B,共存干扰元素发射的谱线C,火焰中待测元素产生的自吸现象D,集体元素产生的吸收17,原子吸收法测定钙时,加入EDTA是为了消除()的干扰A,镁B,锶C,H3PO4D,H2SO418,原子吸收分光光度计中的单色器的位置和作用A,放在原子化器之前,并将激起光源发出的光变为单色光B,放在原子化器之前,并将待测元素是的共振线与邻近线分开C,放在原子化器以后,并将待测元素是的共振线与邻近线分开D,放在原子化器之后,并将激发光源发出的连续光变为单色光19,原子吸收测定中,以下叙说和做法精确的是A,一定要选择待测元素中的共振线作分析线,绝不可接纳其他谱线作分析线B,在维持稳定和适宜的光强度前提下,应尽量选用较低的灯电流C,对于碱金属元素,一定要选用富燃火焰进行测定D,消除物理干扰,可选用高温火焰第五章20有人用一个试样,分别配制成四种不同浓度的溶液,分别测得的吸光度如下。
仪器分析期末考试重点及习题答案
1、指示电极、参比电极的定义 指示电极、 2、什么是电位分析法 电位法测量常以待测溶液作为电池的电解 质溶液, 浸入两个电极, 一个是指示电极, 质溶液, 浸入两个电极, 一个是指示电极, 另 一个是参比电极, 在零电流条件下, 通过测量 一个是参比电极, 在零电流条件下, 两电极间的电位差, 两电极间的电位差,对组分进行分析的一种电 化学分析方法。 化学分析方法。 3、电位测定法的依据 能斯特方程
仪器分析
期 复习
ቤተ መጻሕፍቲ ባይዱ
第一章 色谱法分离原理
1、色谱流出曲线及相关术语。 色谱流出曲线及相关术语。 保留时间t 调整保留时间t 保留时间tR、调整保留时间tR’ 相对保留值(r 相对保留值(r21/α) 分配比、 2、分配比、分配系数的概念 k=tR’/tM 色谱分离的基本理论: 3、色谱分离的基本理论:塔板理论 描述色谱柱的柱效能,塔板数越大, 描述色谱柱的柱效能,塔板数越大,柱效越高 =16( =16( n理论=16(tR/Y)2, n有效=16(tR’/Y)2 , H=L/n
2、AAS中干扰的类型 AAS中干扰的类型 3、引起原子吸收线变宽的主要因素 4、原子吸收的定量分析 定量依据: 定量依据:A=kC 相关计算 定量方法: 定量方法: 标准曲线法 标准加入法(消除基体效应) 标准加入法(消除基体效应)
UV第九章 UV-Vis
1、紫外可见光的波长范围 2、紫外可见吸收光谱的产生(由分子中价电子的跃
第二章 GC
1、气相色谱仪的流程及各个部件的主要作用 2、气相色谱的类型 气固色谱(原理) 气固色谱(原理) 气液色谱(原理) 气液色谱(原理) 2、气相色谱的定性和定量方法 定性:保留值、 定性:保留值、与其它仪器分析方法连用 定量: 定量:峰面积或峰高定量 3、从一张色谱流出曲线上可以得到哪些有用的信息? 从一张色谱流出曲线上可以得到哪些有用的信息?
简述气相色谱的分离原理
简述气相色谱的分离原理气相色谱(Gas Chromatography,简称GC)是一种广泛应用于化学分析领域的分离技术。
它是通过将混合物分离成单一组分并进行分析的方法,利用挥发性的气体作为载气,将混合物分离成各个组分,然后利用检测器对分离出的组分进行检测和定量分析。
气相色谱的分离原理是基于物质在固定相和移动相中的分配系数不同,使得各个组分按照一定的顺序被分离和检测。
以下将具体介绍气相色谱的分离原理。
一、分离原理:气相色谱分离原理是基于组分在固定相和移动相之间的物理和化学相互作用的差异来实现的。
分离的主要机制包括吸附、分区和解离等。
1. 吸附:吸附是指组分与固定相表面的物理吸附或化学吸附。
当样品通过柱子时,具有亲和力的组分会被固定相表面吸附,而无亲和力或亲和力较小的组分则较快通过。
吸附机制是常用的分离机制之一。
2. 分区:分区是指固定相与移动相之间的物理和化学分配。
固定相通常是涂在柱子内壁上的薄膜,移动相则是气体。
样品在移动相中溶解,然后在固相和移动相之间发生分配,根据其溶解度在两相之间分配的程度来分离。
分区机制是气相色谱的主要分离机制。
3. 解离:解离是指在色谱柱中的分子发生化学反应,产生离子,通过正负离子的移动来实现分离。
解离机制常用于分离极性化合物。
二、相关参考内容:1. 《仪器分析原理》(赵伟主编,高等教育出版社)- 第七章气相色谱分离原理该书介绍了气相色谱的基本原理和仪器原理,并详细解释了气相色谱的分离机制和方法。
2. 《现代色谱分离科学与技术》(吴进忠主编,化学工业出版社)- 第九章气相色谱该书详细介绍了气相色谱的原理、仪器和应用,并使用大量例子和图表来说明气相色谱的分离机制和方法。
3. 《色谱分析原理与技术》(陈忱,吴仁德主编,化学工业出版社)- 第四章气相色谱该教材详细介绍了气相色谱的原理、仪器和应用,并提供了实验操作和案例分析,有助于读者更好地理解和应用气相色谱。
4. 《分析化学原理》(吴裕民主编,人民教育出版社)- 第十章气相色谱该教材系统地介绍了气相色谱原理、仪器和应用,并提供了许多实例和实验操作,有助于初学者理解和掌握气相色谱的基本原理和技术。
分析化学教材(系列一)
分析化学教材(系列一)目录第一章绪论第二章误差和分析数据处理第三章滴定分析法概论第四章酸碱滴定法第五章配位滴定法第六章氧化还原滴定法第七章沉淀滴定法和重量分析法第八章电位法和永停滴定法第九章光谱分析法概论第十章紫外可见分光光度法第十一章荧光分析法第十二章红外吸收光谱法第十三章原子吸收分光光度法第十四章核磁共振波谱法第十五章质谱法第十六章色谱分析法概论第十七章气相色谱法第十八章高效液相色谱法第十九章平面色谱法第二十章毛细管电泳法第二十一章色谱联用分析法附录一元素的相对原子质量(2005)附录二常用化合物的相对分子质量附录三中华人民共和国法定计量单位附录四国际制(SI)单位与cgs单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp)符号表第1章概论1.1定量分析概述1.1.1分析化学的任务和作用1.1.2定量分析过程1.1.3定量分析方法1.2滴定分析法概述1.2.1滴定分析法对反应的要求和滴定方式1.2.2基准物质和标准溶液1.2.3滴定分析中的体积测量1.2.4滴定分析的计算思考题习题第2章误差与分析数据处理2.1有关误差的一些基本概念2.1.1误差的表征——准确度与精密度2.1.2误差的表示——误差与偏差2.1.3误差的分类——系统误差与随机误差2.2随机误差的分布2.2.1频率分布2.2.2正态分布2.2.3随机误差的区间概率2.3有限数据的统计处理2.3.1数据的集中趋势和分散程度的表示——对μ和σ2.3.2总体均值的置信区间——对μ的区别间估计2.3.3显著性检验2.3.4异常值的检验2.4测定方法的选择与测定准确度的提高2.5有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1酸碱反应3.1.2酸碱反应的平衡常数3.1.3活度与浓度,平衡常数的几种形式3.2酸度对弱酸(碱)形态分布的影响3.2.1一元弱酸溶液中各种形态的分布3.2.2多元酸溶液中各种形态的分布3.2.3浓度对数图3.3酸碱溶液的H+浓度计算3.3.1水溶液中酸碱平衡处理的方法3.3.2一元弱酸(碱)溶液pH的计算3.3.3两性物质溶液pH的计算3.3.4多元弱酸溶液pH的计算3.3.5一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6强酸(碱)溶液pH的计算3.3.7混合酸和混合碱溶液pH的计算3.4酸碱缓冲溶液3.4.1缓冲容量和缓冲范围3.4.2缓冲溶液的选择3.4.3标准缓冲溶液3.5酸碱指示剂3.5.1酸碱指示剂的作用原理3.5.2影响指示剂变色间隔的因素3.5.3混合指示剂3.6酸碱滴定曲线和指示剂的选择3.6.1强碱滴定强酸或强酸滴定强碱3.6.2一元弱酸(碱)的滴定3.6.3滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4多元酸和多元碱的滴定3.7终点误差3.7.1代数法计算终点误差图及其应用3.7.2终点误差公式和终点误差图及其应用3.8酸碱滴定法的应用3.8.1酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1分析化学的定义、任务和作用1.2分析化学的特点和分类1.3分析化学的发展趋势1.4学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1试样的采集2.2固体物料试样的制备2.3试样的分解思考题第3章定量分析中的误差及数据处理3.1误差的基本概念3.2误差的传递3.3有效数字的表示与运算规则3.4随机误差的正态分布3.5少量数据的统计处理3.6数据的评价——显著性检验、异常值的取舍3.7回归分析3.8提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1化学分析法概述4.2滴定分析法概述4.3标准溶液与基准物4.4化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1分析化学的任务和作用0.2分析方法的分类0.2.1无机分析和有机分析0.2.2化学分析和仪器分析0.2.3常量分析、半微量分析和微量分析。
气相色谱学
第一章概述一、气相色谱的发展历史从二十世纪初俄国植物学家茨维特发现色谱,到1941年英国人马丁发明气相色谱开始,如今已有一百多年的时光,其中气相色谱的诞生也有了近百年的历史。
有人形象的比喻,当年气相色谱就像一个呱呱坠地的婴儿,度过了天真烂漫的童年,充满生机和幻想的少年和青年,如今已步入体格健壮、阅历、经验丰富的中年。
这里,我们回顾气相色谱的发展历史,将其归纳为以下多点大事:(1)1903年俄国植物学家茨维特发现了色谱(碳酸钙为固定相,叶绿素为样品,石油醚为流动相的液固色谱)。
(2)1941年英国人马丁发明了气相色谱(流动相为气体,固定相为吸附剂或塗在惰性载体上的高沸点液体)。
(3)1956年荷兰学者范第姆特总结当时气相色谱实践经验,提出了速率理论,即有名+C g+C L·u的范氏方程。
HETP=A+ Bu式中:A—多路效应项(涡流扩散),它的大小跟所用载体颗粒粗细有关。
纵向气态扩散项(分子扩散),它的大小跟载气线速度成反比,线速度越小,纵向扩散越严重。
B=2r D g ,r跟色谱柱的几何形状有关,对填充柱来讲,r在0.5~0.7,对毛细管柱r=1.D g 与组分性质、柱温柱压、载气性质有关。
待分析组分的分子量大,或载气的分子量大,一般D g 值都小,随之B值也小。
D g 值随柱温的增高而加大,随柱温降低而减小,随柱压增加而减小,随柱压减小而增大。
C g—气相传质阻力项,表示气液或气固两相进行质量交换时所受的阻力。
C g值跟填充柱颗粒(d p)大小有关。
d p减小时,C g也减小;反之,d p增大时,C g也增大。
C L—液相传质阻力项,表示组份从气液界面扩散到固定液内部,然后又扩散回到气液界面所受的阻力。
液膜厚度d f增厚,C L也增大;反之,d f变薄,C L减小。
固定液分子量变大,C L也随之增大;反之,固定液分子量变小,C L也随之减小。
(4)在速率理论指导下,1958年美国工程师戈雷,发明了毛细管柱(开管柱)气相色谱法。
GC-hgh
第二节
气相色谱仪
一、气相色谱仪器
gas chromatographic instruments
GC-7890气相色谱仪
外观
内部结构
6890气相色谱仪内部结构
二、气相色谱结构流程 process of gas chromatograph
载气→减压→净化→稳压→ →色谱柱→检测器→记录仪 进样
三、气相色谱仪主要部件
担体:化学惰性的多孔性固体颗粒,具有较大的比表面积。
1. 作为担体使用的物质应满足的条件
• • 比表面积大,孔径分布均匀; 化学惰性,表面无吸附性或吸附性很弱,与被分离组份
不起反应; • • 具有较高的热稳定性和机械强度,不易破碎; 颗粒大小均匀、适度。一般常用60~80目、80~100目。
2.气液色谱中所用担体:
GC主要是利用物质的沸点、极性及吸附性质的
差异来实现混合物的分离,其过程如图1所示。
图1 气相分析流程图
气相色谱法的特点和应用
“三高” “一快” “一广” 1.高效能: 一般填充柱的理论塔板数可达数千,毛细管柱可
达一百多万。
2.高选择性: 可以使一些分配系数很接近的以及极为复杂、
难以分离的物质,获得满意的分离。
3.高灵敏度:可以检测1011~1013g物质,适合于痕量分析。 4.分析速度快: 通常一个试样的分析可在几分钟到几十分钟
内完成。
5.应用广泛: 可以分析气体试样,也可分析易挥发或可衍生
转化为易挥发的液体和固体。 分析的有机物,约占全部有机物(约300万种)的20%。 一般说来,沸点低于500摄氏度以下的热稳定性好相对分子质 量在400以下的物质,原则上都可以用气相色谱进行分析。
main assembly of gas chromatograph
分析化学教材(系列一)Word版
分析化学教材(系列一)目 录第一章 绪论第二章 误差和分析数据处理 第三章 滴定分析法概论 第四章 酸碱滴定法 第五章 配位滴定法 第六章 氧化还原滴定法 第七章 沉淀滴定法和重量分析法 第八章 电位法和永停滴定法 第九章 光谱分析法概论 第十章 紫外可见分光光度法 第十一章 荧光分析法 第十二章 红外吸收光谱法 第十三章 原子吸收分光光度法第十四章核磁共振波谱法第十五章 质谱法 第十六章 色谱分析法概论 第十七章 气相色谱法 第十八章 高效液相色谱法 第十九章 平面色谱法 第二十章 毛细管电泳法 第二十一章 色谱联用分析法 附录一 元素的相对原子质量(2005) 附录二 常用化合物的相对分子质量 附录三 中华人民共和国法定计量单位 附录四 国际制(SI )单位与cgs 单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp) 符号表第1章概论1.1 定量分析概述1.1.1 分析化学的任务和作用1.1.2 定量分析过程1.1.3 定量分析方法1.2 滴定分析法概述1.2.1 滴定分析法对反应的要求和滴定方式1.2.2 基准物质和标准溶液1.2.3 滴定分析中的体积测量1.2.4 滴定分析的计算思考题习题第2章误差与分析数据处理2.1 有关误差的一些基本概念2.1.1 误差的表征——准确度与精密度2.1.2 误差的表示——误差与偏差2.1.3 误差的分类——系统误差与随机误差2.2 随机误差的分布2.2.1 频率分布2.2.2 正态分布2.2.3 随机误差的区间概率2.3 有限数据的统计处理2.3.1 数据的集中趋势和分散程度的表示——对μ和σ2.3.2 总体均值的置信区间——对μ的区别间估计2.3.3 显著性检验2.3.4 异常值的检验2.4 测定方法的选择与测定准确度的提高2.5 有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1 酸碱反应3.1.2 酸碱反应的平衡常数3.1.3 活度与浓度,平衡常数的几种形式3.2 酸度对弱酸(碱)形态分布的影响3.2.1 一元弱酸溶液中各种形态的分布3.2.2 多元酸溶液中各种形态的分布3.2.3 浓度对数图3.3 酸碱溶液的H+浓度计算3.3.1 水溶液中酸碱平衡处理的方法3.3.2 一元弱酸(碱)溶液pH的计算3.3.3 两性物质溶液pH的计算3.3.4 多元弱酸溶液pH的计算3.3.5 一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6 强酸(碱)溶液pH的计算3.3.7 混合酸和混合碱溶液pH的计算3.4 酸碱缓冲溶液3.4.1 缓冲容量和缓冲范围3.4.2 缓冲溶液的选择3.4.3 标准缓冲溶液3.5 酸碱指示剂3.5.1 酸碱指示剂的作用原理3.5.2 影响指示剂变色间隔的因素3.5.3 混合指示剂3.6 酸碱滴定曲线和指示剂的选择3.6.1 强碱滴定强酸或强酸滴定强碱3.6.2 一元弱酸(碱)的滴定3.6.3 滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4 多元酸和多元碱的滴定3.7 终点误差3.7.1 代数法计算终点误差图及其应用3.7.2 终点误差公式和终点误差图及其应用3.8 酸碱滴定法的应用3.8.1 酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念 1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1 分析化学的定义、任务和作用1.2 分析化学的特点和分类1.3 分析化学的发展趋势1.4 学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1 试样的采集2.2 固体物料试样的制备2.3 试样的分解思考题第3章定量分析中的误差及数据处理3.1 误差的基本概念3.2 误差的传递3.3 有效数字的表示与运算规则3.4 随机误差的正态分布3.5 少量数据的统计处理3.6 数据的评价——显著性检验、异常值的取舍3.7 回归分析3.8 提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1 化学分析法概述4.2 滴定分析法概述4.3 标准溶液与基准物4.4 化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1 分析化学的任务和作用0.2 分析方法的分类0.2.1 无机分析和有机分析0.2.2 化学分析和仪器分析0.2.3 常量分析、半微量分析和微量分析。
第二十一章色谱联用分析法第七版
带电液滴 旳形成
溶剂蒸发和 液滴碎裂
离子蒸发形 成气态离子
第二十一章 色谱联用分析法
仪器分析
电喷雾接口示意图
第二十一章 色谱联用分析法
仪器分析
电喷雾离子化过程示意图
第二十一章 色谱联用分析法
仪器分析
HPLC-ESI-MS谱图主要给出准分子离子旳有关 信息,例如在单电荷情况下旳[M+H]+、[M+Na]+、 [M-H]等,对于生物大分子如蛋白质、肽等, 还能产生大量旳多电荷离子。 ESI常用于强极性、热不稳定化合物及高分子 化合物旳测定。 ESI旳主要缺陷是只能允许非常小旳流动相流 量。
选择离子监测能够把全扫描模式所得旳复杂 旳总离子色谱图变得非常简朴,即取得旳质
量色谱图。提升了敏捷度,同步有更快旳扫 描速度。选择离子监测主要用于定量分析。
第二十一章 色谱联用分析法
(三)选择反应监测
仪器分析
选择反应监测是串联质谱旳一种检测模式,即
监测一种或几种特定旳离子反应,监测几种离 子反应又称为多反应监测(MRM)。
第二十一章 色谱联用分析法
二、高效液相色谱-质谱联用
仪器分析
(一)原理
以高效液相色谱为分离手段,以质谱为 鉴定和测定手段,经过合适接口 (interface)将两者联接成完整仪器。
第二十一章 色谱联用分析法
仪器分析
(二)高效液相色谱-质谱联用仪器
1.高效液相色谱-质谱接口和离子化
接口装置必须既能满足液、质两谱在线 联用旳真空匹配要求,又能实现被分析 组分旳离子化。
给出总离子流色谱图上每一种色谱峰旳质谱
第二十一章 色谱联用分析法
仪器分析
3.总离子流色谱图(TIC)是总离子流强度
第2节气相色谱仪ppt课件
(6) 固定液的相对极性
规定:角鲨烷(异三十烷)的相对极性为零, β,β’—氧二丙睛的相对极性为100.
10/12/2024
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
APL
300
苯
3、硅油
OV-101 350
丙酮
4、 苯基 10%
10/12/2024
表5-1填充柱气液色谱担体一览表
种类 红色
硅 硅藻土 藻 担体 土 类
担体名称
201 红色担体 301 釉化红色担体
6201 红色担体
特点及用途
生产厂家
适用于涂渍非极性固定液分析非极性物 质 由 201 釉化而成,性能介于红色与白色 硅藻土担体之间,适用于分析中等极性 物质
上海试剂厂 大连催化剂厂
10/12/2024
三、气相色谱检测装置
色谱仪的关键部件之一,种类较多,原理和结构各异。 有的具有广普性,如热导检测器;有的具有高选择性,仅对 某类物质有高响应。
1.检测器特性
浓度型检测器: 测量的是载气中通过检测器组分浓度瞬间的变化,检测 信号值与组分的浓度成正比。 质量型检测器: 测量的是载气中某组分进入检测器的速度变化,即检测 信号值与单位时间内进入检测器组分的质量成正比。
g 适宜分析强极性物质和腐蚀性物质
10/12/2024
固定液
固定液:高沸点难挥发有机化合物,种类繁多。 (1)对固定液的要求
应对被分离试样中的各组分具有不同的溶解能力,较好 的热稳定性,并且不与被分离组分发生不可逆的化学反应。
(2)选择的基本原则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b.柱选择项及其影响因素:
影响峰的间距 : 主要受固定相性质,以及柱温影响
1 因为 R
1 所以 ,R 1 R 0 ,无法分离
微小变化对R 的影响都很大
1.1 1.2 R 一倍
讨论:
增大柱选择性是改善分离度的最有力手段 气相色谱中,柱选择性取决于固定相性质和柱温 选择合适的固定相,使不同组分的作用产生差别 才能实现分离 一般说,降低柱温可以增大柱的选择性
一、分离度(分辨率)及影响因素
1.分离度定义式 2.影响分离的因素(分离方程,分离度计算式)
1.分离度定义式 分离度:相邻两组分峰顶间距离是峰底宽平均值的几倍
(衡量色谱分离条件优劣的参数)
保留值之差(峰顶间距) RS 峰宽和之半 2(t R 2 t R1 ) RS W1 W2
讨论:
n 太小,许多组分未分开 应设法降低板高,提高柱效
二、实验条件的选择:
色谱条件包括分离条件和操作条件 分离条件是指色谱柱 操作条件是指载气流速、进样条件及检测器 1.色谱柱的选择 2.柱温的选择 3.载气与流速的选择 4.进样条件的选择
1.色谱柱的选择(以气液分配色谱为主)
(1)固定相的选择 (2)柱长的选择
R 1.0 t R 4 基本分离 R 1.5 t R 6 完全分离 R 1.0 完全未分开
2.影响分离的因素(计算式)
n 1 k2 R 4 1 k2
柱效项
n理 L H理
柱容量项
柱选择项
H A B /u C u
R1 2 L1 ( ) R2 L2
注:1.根据R>1.5选择L,一般较短(0.5~6m) 不可以无限延长柱子 2.有效的办法:根据速率理论,制备出 一根性能优良的色谱柱
练习
例:两组分在1 m长柱子上的分离度为0.75,问使用 多长柱子可以使它们完全分 n
R L 或 R
1 H
讨论: 增加柱效是提高分离度的一个直接有效手段 提高柱效、改善分离的途径:增加柱长;降低板高 根据速率理论,降低板高、提高柱效的方法是: 1)采用粒度较小、均匀填充的固定相(A项↓ ) 2)分配色谱应控制固定液液膜厚度(C项↓) CL d 2 f 3)控制适宜的操作条件: BDg 流动相的性质和流速,柱温等(B项↓) 选用分子量较大、线速度较小的载气——N2气, 控制较低的柱温
u u op 选N 2 气 B u u u op 选H 2 气 C u
选择载气应与检测器匹配 TCD→选H2,He(u 大,粘度小) FID→选N2(u 小,粘度大)
常用流速:20-80ml/min
4.进样条件的选择
气化室温度——一般稍高于样品沸点,不超过500C 检测室温度——应高于柱温30~500C 进样量——不可过大,否则造成拖尾峰。 在检测器的灵敏度足够高时,进样量 越小,越有利于得到良好的分离。 注: 检测器灵敏度足够→进样量尽量小 最大允许进样量——使理论塔板数降低10% 的进样量 常用的进样量:气体0.1-1ml,液体0.1-1ul。
c.柱容量项及其影响因素:
影响峰位 主要受固定相用量、柱温和载气流速的影响
k R 1 k
k 0 R0 k k ,R 1 k
k 时 对R的影响 , t R ,峰扩张
k 5 时,k R 变慢
k 10 时,k R 很少, t R
续前
讨论: 综合考虑分离度、分离时间和峰检测几项因素 控制k的最佳范围 2~5 GC中,增加固定液用量和降低柱温可以增加 k
图示
k 影响峰位
n 影响峰宽窄
α影响两峰间距
练习 如何根据具体情况改进分离度?
α太小,两组分未分开 应改变固定相极性,降低柱温
k 太小,n 也太小, 应增大固定液用量,降低柱温
续前
程序升温好处: 改善分离效果 缩短分析周期 改善峰形 提高检测灵敏度
3.载气与流速的选择
选择载气和流速时,应同时考虑对柱效和分析时间的影响
u op H min
u op B C
H min A 2 BC
分离是主要矛盾 u uop 分析时间是主要矛盾 u uop
' t R2 ' t R1
K 2 k2 K 1 k1
前提——在定义式基础上,相邻两组分的n一致(假设)
a.柱效项及其影响因素:
影响色谱峰的宽窄 主要取决于色谱柱性能及载气流速
因为 R n
所以 n R
1 已知 n L 或n H
所以 L 或H n ,R
R1 R2 L1 L2
0.75 1.5 1 L2
L2 4m
2.柱温的选择(柱温
分离度、分析时间)
K , k 降低了固定相的选择性
T
B 2Dg 增大了分子纵向扩散 1 CL 能降低液相传质阻力, DL 固定相检测本底 增加固定液的流失
原则: 1)对难分离组分,在能保证R的前提下,尽量使用低柱 温,应保证适宜的tR及峰不拖尾,减小检测器本底 2)根据样品沸点情况选择合适柱温 柱温应低于组分沸点50~1000C 宽沸程样品应采用程序升温
固定液配比的选择: 高沸点组分→ 比表面积小的载体 低固定液配比(1%~3%) 低柱温 低沸点组分→比表面积大的载体 高固定液配比(5%~25%) 加大k值,达到良好分离 难分离组分→毛细管柱
(2)柱长的选择
L n ,R ,峰宽 ,柱压
k不变,不变 H不变 n L
(1)固定相的选择
固定液的选择: 1 )按 “相似相溶”的规律选择:即极性相似原则 选择。 2)按官能团相似原则选择。 3)按组分主要性质差别: 沸点相差大的选非极性固定液 沸点相差小的选极性固定液 4)同时也应考虑到柱温,以防止固定液流失 柱温 < 固定液最高使用温度 载体的选择:种类,粒度,分布