数学建模入门练习题
数学建模第一天培训用到的例题
例1.管道包扎问题:用带子包扎管道,使带子全部包住管道,且用料最省。
例2.地面上的方桌在起伏不平的地面上能不能让桌子的四个脚同时着地?例3.赛程安排---加细五支足球队在同一场地上进行单循环比赛,共进行十场比赛。
如何安排赛程对各队来说都是公平的?例4:交通路口红绿灯十字路口绿灯亮15秒,最多可以通过多少辆汽车?1.调查一个路口有关红绿灯的数据验证模型是否正确。
10.位置,走向,车道数,时间。
绿灯时间,通过的车数(至少三次)。
数据不同的原因。
20.模型的假设与实际是否一致。
模型的参数与实际是否一致。
30.模型的计算结果与观测结果是否一致?不一致时,为什么?如何修改模型2.分析汽车开始以最高限速穿过路口的时间。
3.给出穿过路口汽车的数量随时间变化的数学模型。
4.你能继续组建行进中的汽车遇到红灯时的数学模型吗?假设司机见到红灯后的反应时间是0.35秒,刹车(非紧急刹车)后的加速度平均为-6.5米/秒。
试讨论红灯亮后第九辆车的运动状态。
5.请你根据前面的分析进一步给出通过十字路口的汽车的数量如何依赖于绿灯亮的时间的模型,能否通过分析这个模型对这个路口交通流量的优化管理提出改进建议。
例5:人员疏散建模分析意外事件发生时建筑物内的人员疏散所用的时间例6.生猪饲养一头重量是100kg的猪,在上一周每天增重约2kg。
五天前售价为7.8元/kg,但现在猪价下降到7.5元/kg,饲料每天需花费7.1元。
前期育肥的投入大约500元。
求出售猪的最佳时间。
问题1.在售猪问题中,对每天的饲养花费做灵敏性分析,分别考虑饲养花费对最佳售猪时间和相应收益的影响。
如果有新的饲养方式,每天的饲养花费为8元,会使猪按2.2公斤/天增重,那么是否值得改变饲养方式?求出使饲养方式值得改变的最小的增重率。
问题2:你能想到什么?目前市场上销售一种“雷达牌”蚊香,每盘蚊香如上图所示,图中标有a,b数值(单位:毫米),使用时拆成两片,如右图所示.经过实验发现,该蚊香的燃烧速度约为每小时120毫米.请用近似的方法回答下列问题.(1)每一片蚊香大约可以燃烧多长时间;(2)根据市场需求请设计持续燃烧时间分别为4小时、8小时、10小时的蚊香,蚊香燃烧速度不变.分别计算出它们的a值.讨论题:研究停车场的照明设施。
数学建模练习题
数学建模练习题数学建模是运用数学工具和方法来解决实际问题的一种综合能力。
它不仅培养了学生的逻辑思维能力,还提高了他们的问题解决能力和实践操作能力。
为了巩固数学建模的理论知识和应用能力,以下是一系列数学建模练习题,帮助大家提升数学建模水平。
题目一: 财务规划假设你是一家公司的财务经理,现需要为公司制定一份财务规划报告。
请根据以下信息,回答相应问题:1. 公司现有资金500万元,年利率为2%;2. 公司每月开支为30万元;3. 公司每季度向银行贷款100万元,年利率为3%;4. 公司每年收入为800万元。
请回答以下问题:1. 请计算公司一年的利润是多少?2. 如果公司每年的开支增加到40万元,一年的利润会有何变化?3. 如果公司每个季度向银行贷款300万元,一年的利润会有何变化?4. 请提出一些建议,如何优化财务规划,提高公司的利润。
题目二: 交通流量某城市的交通局需要对城市道路的交通流量进行研究和预测。
请根据以下信息,回答相应问题:1. 城市拥有5条主要道路,分别为A、B、C、D、E;2. 每条道路的通行能力为100辆/小时;3. 每条道路的通行时间为8小时/天;4. 城市每天的交通流量为3000辆。
请回答以下问题:1. 请计算城市每条道路的日平均通行量是多少?2. 如果城市每天的交通流量增加到5000辆,每条道路的通行能力是否足够?3. 如果城市每条道路的通行时间减少到6小时/天,每天的交通流量不变,城市每条道路的日平均通行量会有何变化?4. 请提出一些建议,如何应对城市交通流量的持续增加。
题目三: 人口预测某国家正进行人口统计和预测工作。
请根据以下信息,回答相应问题:1. 该国家近年来人口增长率为2%;2. 该国家现有人口为1亿;3. 该国家每年有200万人出生,80万人死亡;4. 该国家每年有30万人移民。
请回答以下问题:1. 请计算该国家5年后的预计人口数量是多少?2. 如果该国家每年有150万人出生,100万人死亡,预计人口增长率会有何变化?3. 如果该国家每年有50万人移民,预计人口增长率会有何变化?4. 请提出一些建议,如何应对人口增长带来的社会问题。
数学建模练习题
数学建模练习题一、基础数学知识类某企业生产两种产品,生产每吨产品A需耗用原料1吨、工时4小时,生产每吨产品B需耗用原料2吨、工时3小时。
若企业每月原料供应量为10吨,工时供应量为36小时,求该企业每月生产产品A和产品B的数量。
某湖泊污染问题,已知污染物的降解速度与污染物浓度成正比,求污染物浓度随时间的变化规律。
计算由曲线y=x^2和直线x=2、y=0所围成的图形的面积。
二、统计分析类2, 4, 6, 8, 10, 12, 14, 16, 18, 20某地区居民消费水平(y)与收入(x)之间的关系,数据如下表所示,求出线性回归方程。
| 收入(x) | 消费水平(y) || | || 1000 | 800 || 1500 | 1200 || 2000 | 1600 || 2500 | 2000 || 3000 | 2400 |三、优化方法类某企业生产三种产品,产品A、B、C的单件利润分别为5元、4元、3元。
生产每吨产品A、B、C所需的原料分别为2吨、1吨、1吨。
若企业每月原料供应量为10吨,求该企业每月生产产品A、B、C的数量,使得总利润最大。
某企业生产两种产品,产品A、B的单件利润分别为10元、8元。
生产每吨产品A、B所需的工时分别为4小时、3小时。
若企业每月工时供应量为120小时,求该企业每月生产产品A、B的数量,使得总利润最大。
四、离散数学类关系矩阵为:| 1 0 1 0 || 0 1 0 1 || 1 0 1 0 || 0 1 0 1 |A (3)>B (4)> D\ |\ (2)\ /C (1)>五、实际问题建模类某城市交通拥堵问题,分析道路宽度、车辆数量、交通信号等因素对交通拥堵的影响,建立数学模型。
某地区水资源分配问题,考虑农业、工业、生活用水等因素,建立数学模型,并提出合理的水资源分配方案。
六、运筹学方法类一位背包客有最大负重为50公斤的背包,现有五种物品,每种物品的重量和价值如下表所示。
数学建模题目及答案
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
大学生数学建模练习题
大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
数学建模入门练习题
《数学建模入门》练习题练习题1:发现新大陆!发现新大陆!人人都能做到,可是最终哥伦布做到了。
为什么哥伦布能做到呢?练习题2:棋盘问题有一种棋盘有64个方格,去掉对角的两个格后剩下62个格(如下图),给你31块骨牌,每块是两个格的大小。
问能否用这些骨牌盖住这62个方格?练习题3:硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。
最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。
为了能赢得这场比赛,你决定先放还是后放呢?练习题4:高速问题一个人从A 地出发,以每小时30公里的速度到达B地,问他从B 地回到A 地的速度要达到多少?才能使得往返路程的平均速度达到每小时60公里?、练习题5:登山问题某人上午八点从山下的营地出发,沿着一条山间小路登山,下午五点到达山顶;次日上午八点又从山顶开始下山(沿同一条小路)返回,下午五点又到达了山下的营地。
问:是否能找到一个地点来回时刻是相同的?练习题6:兄弟三人戴帽子问题解放前,在一个村子里住着聪明的三兄弟,他们除恶杀了财主的儿子,犯了人命案。
县太爷有意想免他们一死,决意出一个难题测测他们是否真的聪明,如果他们能在一个时辰内回答出来,就免他们一死,否则就被处死。
题目如下:兄弟三人站成一路纵队(老三选择了站在最前面,他后面是老二,老大站在了最后面 ),并分别被蒙住了眼睛,县太爷说我这里有两顶黑帽子和三顶红帽子,接着分别给他们头上各带了一顶帽子,然后又分别把被蒙住的眼睛解开。
此时,老大只可以看见老三和老二头上的帽子,老二只可以看见老三头上的帽子,老三看不见帽子。
只有一个时辰的时间,看谁能说出自己头上帽子的颜色,第一句声音有效。
现在开始!(县太爷有多少种带帽子的方案,那一种最难?你能回答吗?)练习题7:做出空间图形做出由曲面222y x z +=与2226y x z --=相交的空间曲线和所围成的立体的图形。
练习题10:过三峡大坝请你说明船舶是如何从上游通过长江三峡大坝去下游的,又是如何从下游通过长江三峡大坝去上游的。
数学建模基础练习一及参考答案
数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
入门级数学建模练习题
入门级数学建模练习题2. 假设在一所大学中,一位普通教授以每天一本的速度开始从图书馆借出书。
再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书?3. 一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早6:00从B下山,晚18:00到A。
问是否有一个时刻t,这两天都在这一时刻到达同一地点?4. 如何将一个不规则的蛋糕I平均分成两部分?5. 兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家中的狗一直在二人之间来回奔跑。
已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。
分析半小时后,狗在何处?6. 甲乙两人约定中午12:00至13:00在市中心某地见面,并事先约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。
用图解法计算,甲乙两人见面的可能性有多大?7. 设有n个人参加某一宴会,已知没有人认识所有的人,证明:至少存在两人他们认识的人一样多。
8. 一角度为60度的圆锥形漏斗装着10端小孔的面积为0.59. 假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜坡,计算这种情下的刹车距离。
如果汽车由西驶来,刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。
包扎时用很长的带子缠绕在管道外部。
为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。
:顶=1:a:b,选坐v>0,而设语雨速L,v≤x vv+1),v>x.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周收回书的1/10,设教授已借出书的册数是时间t的函数小x的函数,则它应满足其中初始条件表示开始时教授借出数的册数为0。
解该线性问题得X=70[1-e?t]由于当∞时,其极限值为70,故在充分长的时间内,一位普通教授大约已借出70本书。
3.解:我们从山脚A点为始点记路程,设从A到B路程函数为f,即t时刻走的距离为f;同样设从B点到A点的路程为函数g。
数学建模基础问题与答案!(有答案)
y=[102,100,120,77,46,93,26,69,65,85]';
x=[ones(10,1),x1',x2'];
[b,bint,r,rint,stats]=regress(y,x);
b,bint,stats,
%%%%改进,建立二元多项式
x(:,1)=[];
rstool(x,y)
结果
这是一个多元回归问题。若设回归模型是线性的,即设 用regress(y,x,alpha)求回归系数。得
b =
66.5176
0.4139
-0.2698
bint =
-32.5060 165.5411
-0.2018 1.0296
-0.4611 -0.0785
Y=[708 793 958 1278 1467 1704 1904 1904 1987 2021 2213 2536 2960]';
n=length(x);
X=[ones(n,1) x];
[b,bint,r,rint,stats]=regress(Y,X);
b,bint,stats
%残差图
rcoplot(r,rint)
S =
R: [3x3 double]
df: 11
normr: 7.2162
模型为:
方法3程序(t3_3.m)
x=17:2:29;x=[x,x];
y=[20.48,25.13,26.15 30,26.1,20.3,19.35,24.35,28.11,26.3,31.4,26.92,25.7,21.3];
是否重点:重点
高中数学建模试题及答案
高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
数学建模学习题及答案
数学建模学习题及答案问题一某公司生产两种产品,产品A和产品B。
每单位产品A需要2个小时的生产时间,销售价格为100元;每单位产品B需要3个小时的生产时间,销售价格为150元。
公司有8个小时的生产时间。
由于市场需求限制,公司至少需要生产2个单位的产品A和3个单位的产品B。
试问公司应该如何安排生产,以最大化销售收入?答案:设公司生产产品A的数量为x,产品B的数量为y。
根据题意,可以得到以下条件:- 2x + 3y ≤ 8 (生产时间限制)- x ≥ 2 (至少生产两个单位的产品A)- y ≥ 3 (至少生产三个单位的产品B)我们的目标是最大化销售收入,即最大化100x + 150y。
这是一个线性规划问题,我们可以用图像法求解。
将不等式转化为等式得到以下三条线性方程:- 2x + 3y = 8- x = 2- y = 3通过绘制图形,我们发现可行解为以下三个点:(2, 2),(2, 3),(4, 2)。
计算销售收入可得:- (2, 2):100 * 2 + 150 * 2 = 500- (2, 3):100 * 2 + 150 * 3 = 650- (4, 2):100 * 4 + 150 * 2 = 800所以,公司应该生产2个单位的产品A和3个单位的产品B,以达到最大化销售收入800元。
问题二某体育品牌公司要推出一个全新的运动鞋产品。
公司决定在市场上投放三种不同系列的运动鞋,分别为A系列、B系列和C系列。
经过市场调查,公司预计每年销售的鞋子数量分别为A系列1000双,B系列1500双和C系列2000双。
公司希望能够合理分配资源,以便最大程度地满足市场需求。
请问,应该如何分配每种系列的鞋子生产数量?答案:设A系列的鞋子生产数量为x,B系列的鞋子生产数量为y,C 系列的鞋子生产数量为z。
根据题意,我们有以下限制条件:- x ≥ 1000 (A系列鞋子需求)- y ≥ 1500 (B系列鞋子需求)- z ≥ 2000 (C系列鞋子需求)要最大程度地满足市场需求,我们的目标是最大化x + y + z。
数学建模基础期末考试试题
数学建模基础期末考试试题# 数学建模基础期末考试试题## 一、选择题(每题3分,共30分)1. 数学建模的基本步骤不包括以下哪一项?A. 问题定义B. 数据收集C. 模型构建D. 编程实现2. 在数学建模中,以下哪一项不是模型的类型?A. 确定性模型B. 随机性模型C. 线性模型D. 非线性模型3. 以下哪个是数学建模中常用的优化算法?A. 遗传算法B. 神经网络C. 决策树D. 支持向量机4. 在进行数学建模时,以下哪个步骤是不必要的?A. 模型验证B. 模型分析C. 模型求解D. 模型编程5. 以下哪个不是数学建模中的数据预处理方法?A. 数据清洗B. 数据标准化C. 数据可视化D. 数据压缩6. 在数学建模中,以下哪个是模型的评估指标?A. 准确率B. 召回率C. F1分数D. 所有上述7. 下列哪一项不是数学建模的基本原则?A. 可解释性B. 可操作性C. 可验证性D. 复杂性8. 在数学建模中,以下哪个不是模型的构建方法?A. 基于物理的模型B. 基于经验的模型C. 基于统计的模型D. 基于直觉的模型9. 在数学建模中,以下哪个是模型的优化方法?A. 梯度下降法B. 牛顿法C. 蒙特卡洛法D. 所有上述10. 在数学建模中,以下哪个不是模型的验证方法?A. 交叉验证B. 留一法验证C. 随机抽样验证D. 正向验证## 二、简答题(每题10分,共20分)1. 简述数学建模的基本流程,并说明每个步骤的重要性。
2. 描述数学建模中模型评估的常用方法,并解释它们的作用。
## 三、应用题(每题25分,共50分)1. 假设你正在为一家零售商进行库存管理的数学建模。
请描述你将如何定义问题、收集数据、构建模型、求解模型以及验证模型。
2. 给定一个实际问题:预测某城市未来一年的月均温度。
请列出你将使用的建模步骤,并简述你将如何应用这些步骤来解决这个问题。
请注意,以上试题仅供参考,具体考试内容和形式可能因课程设置和教师要求而有所不同。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学建模练习题
数学建模练习题数学建模练习题数学建模是一种将数学方法应用于实际问题解决的过程,它是数学与实际问题相结合的产物。
通过数学建模,我们可以利用数学的工具和技巧来分析和解决各种实际问题,从而提高问题解决的效率和准确性。
在数学建模的过程中,我们常常会遇到各种练习题,这些练习题旨在让我们熟悉和掌握数学建模的方法和技巧。
下面,我将给大家分享几个数学建模的练习题,希望能够帮助大家更好地理解和掌握数学建模的过程。
第一个练习题是关于货车运输的问题。
假设有一辆货车需要从A地运送货物到B地,货车的最大载重量为C。
现在有一批货物需要运送,每个货物的重量分别为w1、w2、w3...wn。
我们需要确定如何安排这些货物的运输顺序,使得货车的运载能力得到最大利用。
这个问题可以通过建立一个数学模型来解决。
我们可以将货物的重量和运输顺序作为变量,货车的运载能力作为目标函数,通过线性规划等方法来求解最优解。
第二个练习题是关于人口增长的问题。
假设某个国家的人口增长率为r,初始人口为P0。
我们需要确定在未来的t年内,该国家的人口将达到多少。
这个问题可以通过建立一个数学模型来解决。
我们可以将人口增长率和初始人口作为变量,人口数量作为目标函数,通过微分方程等方法来求解未来的人口数量。
第三个练习题是关于股票投资的问题。
假设某只股票的价格随时间的变化服从一个随机过程。
我们需要确定在未来的t年内,该股票的价格将达到多少。
这个问题可以通过建立一个数学模型来解决。
我们可以将股票价格和时间作为变量,通过随机过程的模拟和分析来预测未来的股票价格。
通过以上的练习题,我们可以看到数学建模的过程是多样化和灵活的。
在实际问题解决中,我们需要根据具体情况选择合适的数学模型和方法,以达到最优解。
同时,数学建模也需要我们具备一定的数学知识和技巧,以便能够正确地建立和求解数学模型。
总之,数学建模是一种将数学方法应用于实际问题解决的过程。
通过数学建模,我们可以提高问题解决的效率和准确性。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
建模数学试题及答案
建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。
简单数学建模100例
实用标准
分析与假设
①将 243 颗珠子平均分成 3 份,每份 81 颗,任取其 2 份放置在天平两边,若平衡则稍重的一颗在另 1 份中;若不平衡则
稍重的一颗在天平下沉的 1 份中.
②在找出含有稍重珠子的一份中(含 81 颗),再将其 81 颗珠子平均分成 3 份,每份 27 颗,任取其 2 份放置在天平两边,若 平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
③在找出含有稍重珠子的一份中(含 27 颗),再将其 27 颗珠子平均分成 3 份,每份 3 颗,任取其 2 份放置在天平两边, 若平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
④在找出含有稍重珠子的一份中(含 1 颗),再将其 3 颗珠子平均分成 3 份,每份 1 颗,任取其 2 颗放置在天平两边,若 平衡则另 1 颗稍重的一颗;若不平衡则稍重的一颗为天平下沉的 1 颗.
【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走 20 千米,已知每人最多可带一个人 4 天的食物和水。如果允许将部分食物存放于途 中,其中 1 人最远可深入沙漠多少千米?(要求最后两人返回出发点)
分析与假设 要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和 水?
练习题
文档大全
实用标准
小敏把 100 只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了 那只损坏的小灯泡吗?
【7】水果店进了十筐苹果,每筐
10 个,共 100 个,每筐里的苹果重 量都一样,其中有九筐每个苹果的 重量都是 1 斤,另一筐中每个苹果 的重量都是 0.9 斤,但是外表完全 一样,用眼看或用手摸无法分辨。 现在要你用一台普通的大秤一次把 这筐重量轻的找出来。你可以办到么?
简单的数学建模题目
简单的数学建模题目一、问题的提出假设我们有一个简单的金融问题:一家银行按照每天的存款利率给客户支付利息,这个利率是存款金额的1%。
客户每天会收到他们存款的利息,但是他们也可能会提取他们的存款。
如果一个客户决定提取他们的存款,他们将只能提取存款的本金,而不能提取利息。
假设一个客户存入1000元,并且决定在接下来的5天内每天提取100元。
我们要计算在5天后,这个客户在银行还有多少钱。
二、建立数学模型1、定义变量:假设客户最初存入的金额为 P元,每天提取的金额为 D元,经过的天数为 N天。
2、建立数学方程:根据题目,我们可以建立以下方程:P - N × D =最终余额这是因为客户每天都会提取D元的金额,并且总存款是P元。
N天后,他们将剩下P - N × D元。
3、填入已知数值:根据题目,P = 1000元,D = 100元,N = 5天。
所以方程变为:1000 - 5 × 100 =最终余额三、执行计算我们可以直接计算这个方程。
1000元减去5天的提取金额(5 × 100元)等于最终的余额。
计算结果为:最终余额 = 500元所以,5天后,客户在银行还有500元。
四、整合答案通过这个简单的数学模型,我们可以清楚地解释这个问题,并且计算出最终的余额。
这个模型还可以应用于其他类似的金融问题,例如不同的存款利率、不同的提取规则等等。
数学建模题目及答案数学建模100题数学建模是应用数学方法和计算机技术,对实际问题进行抽象和概括,建立数学模型的过程。
它是连接数学理论与实际问题的桥梁,能帮助我们更好地理解世界,解决现实问题。
以下是一百个数学建模题目及答案,供大家参考。
题目一:简单的线性回归模型给定一组一元线性回归的数据,解释数据之间的关系,并预测新的数据点的结果。
答案:我们通过最小二乘法拟合一条直线来描述数据之间的关系。
然后,我们使用这条直线来预测新的数据点。
题目二:逻辑回归模型给定一组二元分类的数据,用逻辑回归模型预测新的数据点的类别。
【必刷题】2024七年级数学下册数学建模初步专项专题训练(含答案)
【必刷题】2024七年级数学下册数学建模初步专项专题训练(含答案)试题部分一、选择题:1. 下列哪个选项是数学建模的基本步骤?()A. 提出问题B. 建立模型C. 求解模型D. 验证模型2. 在数学建模中,下列哪个环节是最关键的?()A. 数据收集B. 模型假设C. 模型求解D. 模型分析3. 以下哪个数学方法常用于数学建模?()A. 微积分B. 线性规划C. 概率论D. 数列4. 七年级下册数学建模初步中,以下哪个实例不属于数学建模?()A. 计算手机话费B. 估算公交车到站时间C. 制作班级成绩分布图D. 探究植物生长规律5. 在建立数学模型时,以下哪个步骤是必不可少的?()A. 确定变量B. 选择合适的数学工具C. 编写程序D. 绘制图表6. 以下哪个数学软件在数学建模中应用广泛?()A. WordB. ExcelC. PythonD. Photoshop7. 在数学建模中,以下哪个环节可以帮助我们更好地理解问题?()A. 数据分析B. 模型假设C. 模型检验D. 模型推广8. 以下哪个数学方法不适用于解决线性规划问题?()A. 图解法B. 代数法C. 微分法D. 整数规划法9. 在数学建模中,以下哪个环节需要对模型进行优化?()A. 模型建立B. 模型求解C. 模型检验D. 模型应用10. 以下哪个数学问题适合用数学建模方法解决?()A. 计算圆的面积B. 解一元二次方程C. 探究温度与时间的关系D. 制作班级课程表二、判断题:1. 数学建模就是用数学方法解决实际问题。
()2. 在数学建模过程中,数据收集是可有可无的环节。
()3. 数学建模中,模型假设越复杂,越能准确地描述实际问题。
()4. 数学建模的目的是为了找到唯一正确的答案。
()5. 在数学建模中,模型的检验和评价是不可或缺的环节。
()三、计算题:1. 已知某物体运动的距离与时间的关系为s=5t+2,其中s为距离(米),t为时间(秒)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模入门》练习题
练习题1:发现新大陆!
发现新大陆!人人都能做到,可是最终哥伦布做到了。
为什么哥伦布能做到呢?
练习题2:棋盘问题
有一种棋盘有64个方格,去掉对角的两个格后剩下62个格(如下图),给你31块骨牌,每块是两个格的大小。
问
能否用这些骨牌盖住这62个方格?
练习题3:硬币游戏
如果你和你的对手准备依次轮流地将硬币放在一个长
方形桌子上,使得这些硬币不重叠。
最后放上硬币的人为胜
者,在开始时你有权决定先放还是后放。
为了能赢得这场比
赛,你决定先放还是后放呢?
练习题4:高速问题
一个人从 A 地出发,以每小时30公里的速度到达 B
地,问他从 B 地回到 A 地的速度要达到多少?才能使得往
返路程的平均速度达到每小时60公里?、
练习题5:登山问题
某人上午八点从山下的营地出发,沿着一条山间小路登山,下午五点到达山顶;次日上午八点又从山顶开始下山(沿同一条小路)返回,下午五点又到达了山下的营地。
问:是
否能找到一个地点来回时刻是相同的?
练习题6:兄弟三人戴帽子问题
解放前,在一个村子里住着聪明的三兄弟,他们除恶杀
了财主的儿子,犯了人命案。
县太爷有意想免他们一死,决
意出一个难题测测他们是否真的聪明,如果他们能在一个时辰内回答出来,就免他们一死,否则就被处死。
题目如下:兄弟三人站成一路纵队(老三选择了站在最前面,他后
面是老二,老大站在了最后面 ),并分别被蒙住了眼睛,县太爷说我这里有两顶黑帽子和三顶红帽子,接着分别给他们头上各带了一顶帽子,然后又分别把被蒙住的眼睛解开。
此时,老大只可以看见老三和老二头上的帽子,老二只可以看见老三头上的帽子,老三看不见帽子。
只有一个时辰的时间,看谁能说出自己头上帽子的颜
色,第一句声音有效。
现在开始!
(县太爷有多少种带帽子的方案,那一种最难?你能回答
吗?)
练习题7:做出空间图形
做出由曲面222y x z 与2226y x z 相交的空间曲线和
所围成的立体的图形。
练习题10:过三峡大坝
请你说明船舶是如何从上游通过长江三峡大坝去下游
的,又是如何从下游通过长江三峡大坝去上游的。
换句话说,船舶是如何通过长江三峡大坝的。
练习题12:海盗分金币
有五个海盗在海上抢得了
100枚金币,上岸后他们要分
赃。
他们五个人排了个顺序,第一个人先制定一个分配方
案,如果第一个人的方案被通过并执行,此次分金币的事结
束,如果第一个人的方案被否决,把第一个人杀掉。
100枚金币由其余的四个人分,再由第二个人制定一个分配方
案,依次类推,直到金币被分完。
请你替第一个人制定一个合适的分配方案。
(注:分配方案被通过是指同意的人数大于反对的人
数,否则方案被否决。
)
练习题13:学会管理工作
你的公司需要确定五名员工值一个月(30天)的班,每天只需要安排这五名员工中的二名值班。
请你们安排一个公平、合理、科学的值班表。
练习题14:身高和鞋码的关系
你不认为“身高和鞋码之间有关系吗?”
请把你们三个班同学的身高和对应的鞋码记录下来,制成表(男生、女生分开),然后分别找到它们之间的关系,
用数学(函数和图形)的方法表示出来。
练习题17:学习查资料
请你们查找历年全国大学生数学建模竞赛的题目并制
成一张表。
请你们查找我校历年参加全国大学生数学建模竞赛的
队数和获奖情况并制成一张表。
练习题20:商人们怎样安全过河?
四名商人各带一个随从乘船渡河,一只小船只能容纳二
人,由他们自己划行。
随从们密约,在河的任一岸,一旦随
从的人数比商人多,就杀人越货。
但是如何乘船渡河的大权
掌握在商人们手中。
商人们怎样才能安全渡河呢?
答:我们将四个商人简化成四个“1”,四个随从是四个“0”。
“~~~~~~”是河水,“船”用来表示船的位置。
方案一:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船11110000 10船~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~111000
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船1111000
000船~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~11110
00 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船111100
0011船~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1100
01 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船111000
若要活命,则无法继续。
方案二:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船11110000 00船~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~111100
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~船1111000
000船~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~11110
此步与方案一的第四步相同,所以最终行不通。
没有其他的非重复方案,所以无论如何,商人无法安全渡河。
练习题23:航天飞机的水箱的设计
考虑航天飞机上固定在飞机墙上供宇航员使用的水箱。
水箱的形状为在直圆锥顶上装一
r英尺,设计的水箱表面个球体(像冰激凌的形状,如图)。
如果球体的半径限定为正好6
积为450平方英尺,1x为直圆锥的高,2x为球冠的高,请确定1x、2x的尺寸,使水箱容积最大。