人教版八年级上册完全平方公式的综合应用(习题及答案)

合集下载

14.2.2 完全平方公式 初中人教版八年级上册数学课时习题(含答案)

14.2.2 完全平方公式 初中人教版八年级上册数学课时习题(含答案)

14.2.2 完全平方公式一、单选题1.下列计算正确的是( )A.2×32=36B.(﹣2a2b3)3 =﹣6a6b9C.﹣5a5b3c÷15a4b=﹣3ab2c D.(a﹣2b)2 =a2﹣4ab+4b2 2.下列计算正确的是( )A.(a―b)2=a2―b2B.(a+b)2=a2+b2C.(―a―b)2=a2―2ab+b2D.(a―b)2=a2―2ab+b2 3.设(a+3b)2=(a-3b)2+A,则A=( )A.6ab B.12ab C.-12ab D.24ab 4.下列运算正确的是( )A.x2+x3=2x5B.(―2x)2·x3=4x5C.(x+y)2=x2―y2D.x3y2÷x2y3=xy5.下列等式一定成立的是( )A.a2+a3=a5B.(a+b)2=a2+b2C.(2ab2)3=6a3b6D.(x-a)(x-b)=x2-(a+b)x+ab 6.下列等式不正确的是( )A.(a+b)(a-b)=a2-b2B.(a+b)(-a-b)=-(a+b)2C.(a-b)(-a+b)=-(a-b)2D.(a-b)(-a-b)=-a2-b27.有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为( )A.28B.29C.30D.31 8.已知2n+212+1(n<0)是一个有理数的平方,则n的值为( )A.﹣16B.﹣14C.﹣12D.﹣10 9.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是( )A.4B.5C.6D.7二、填空题10.(x―y)(x+y)= ;(a―b)2= .11.计算①(2x+y)(2x―y)= ;②(2x+3y)2= . 12.若x―y=3,xy=2,则x2+y2= .13.若a=b+1,则代数式a2―2ab+b2+2的值为 .14.a2―3a+1=0,则a2+1的值为 a215.已知a,b,c为ΔABC的三边长,且a2+b2=8a+12b―52,其中c是ΔABC中最短的边长,且c为整数,则c= .三、解答题16.已知a,b,c是△ABC的三边长,且满足a2+b2―4a―8b+20=0,c=3cm,求△ABC的周长.17.已知(a+b)2=60,(a―b)2=80,求a2+b2及ab的值.18.用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,请求出其阴影部分的面积为多少.参考答案1--9DDBBD DBBC10.x2-y2;a2-2ab+b211.4x2―y2;4x2+12xy+9y212.1313.314.715.3或416.解:∵a2+b2―4a―8b+20=0∴a2―4a+4+b2―8b+16=0∴(a―2)2+(b―4)2=0,又∵(a―2)2≥0,(b―4)2≥0∴a―2=0,b―4=0,∴a=2,b=4,∴△ABC的周长为a+b+c=2+4+3=9cm.17.解:∵(a+b)2=60,(a-b)2=80,∴a2+b2+2ab=60①,a2+b2-2ab=80②,∴①+②得:2(a2+b2)=140,解得:a2+b2=70,∴70+2ab=60,解得:ab=-5.18.解:设矩形的长为a,宽为b,根据图①得:(a-b)2=12,根据图②得:(a-2b)2=8,∴a―b=23a―2b=22,解得a=43―22b=23―22,由图③知阴影部分面积=(a-3b)2=(43-22-63+62)2=(-23+42)2=44-166.。

14.2.2 完全平方公式 第1课时 完全平方公式【习题课件】八年级上册人教版数学

14.2.2 完全平方公式 第1课时 完全平方公式【习题课件】八年级上册人教版数学
值是(
D
)
B. -5
A. 6
C. -3
D. 4
【解析】由2 a2- a -3=0,得2 a2- a =3,
∴(2 a +3)(2 a -3)+(2 a -1)2=4 a2-9+4 a2-4 a +1=8 a2-4 a -8=
4(2 a2- a )-8=4×3-8=4.
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
14.2.2 完全平方公式
第1课时 完全平方公式
基础通关
能力突破
素养达标
14. 已知 x , y 为任意有理数,记 M = x2+ y2, N =2 xy ,则 M 与 N 的大
小关系为(
B
)
A. M > N
B. M ≥ N
C. M ≤ N
D. 不能确定
基础通关
能力突破
素养达标
完全平方公式
2. 计算:( x +2 y )2=(
A
)
A. x2+4 xy +4 y2
B. x2+2 xy +4 y2
C. x2+4 xy +2 y2
D. x2+4 y2
3.9 x2- mxy +16 y2是一个完全平方式,那么 m 的值是(
B. -12
A. 12
C. ±12
【解析】∵ M = x2+ y2, N =2 xy ,
∴ M - N = x2+ y2-2 xy =( x - y )2.

八年级数学上册《完全平方公式》练习题及答案解析

八年级数学上册《完全平方公式》练习题及答案解析

八年级数学上册《完全平方公式》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.下列计算正确的是( )A .236a a a ⋅=B .()32639a a =C .2225420a a a ⋅=D .444235a a a +=2.若多项式294x mx -+是一个完全平方式,则m 的值为( )A .12B .12±C .6D .6±3.我们经常利用完全平方公式以及变形公式进行代数式变形.已知关于a 的代数式2A a a =+,请结合你所学知识,判断下列说法正确的有( )个①当2a =-时,2A =;①存在实数a ,使得104A +<; ①若10A -=,则2213a a +=;①已知代数式A 、B 、C 满足A B -=B C -=22218A B C AB AC BC ++---=.A .4B .3C .2D .14.阅读材料:我们把形如2ax bx c ++的二次三项式(或其中一部分)配成完全平方式的方法叫做配方法.配方法的基本形式就是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2(1)3x -+,2(2)2x x -+,2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方.则下列说法正确的个数是( ) ①2(2)2x x +-和2(31)x ++都是224x x ++不同形式的配方①22(1)4x k x --+是完全平方式,则k 的值为3 ①23534b b +-有最小值,最小值为2 A .0 B .1 C .2 D .35.小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为( )A .10mB .12mC .15mD .18m6.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是( )A .1B .3C .4D .8二、填空题7.若m ,n 是关于x 的方程x 2-3x -3=0的两根,则代数式m 2+n 2-2mn =_____.8.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.9.如果用公式222()2a b a ab b +=++计算2()a b c ++,那么第一步应该写成2()a b c ++=________.三、解答题10.已知xy (1)求代数式2x 2+2y 2﹣ x y 的值;(2)2x y 的值.11.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++①()220y +≥①()2244y ++≥①代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?12.图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m 、n 表示图b 中小正方形的边长为 .(2)用两种不同方法表示出图b 中阴影部分的面积;(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式2()m n +,2()m n -,mn ;(4)根据(3)中的等量关系,解决如下问题:已知7a b +=,5ab =,求2()a b -的值.参考答案:1.D【分析】运用同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项的运算法则分别对各项进行运算,即可得出结果【详解】解:A 、235a a a ⋅=,故A 不符合题意;B 、()326327a a =,故B 不符合题意; C 、2245420a a a =,故C 不符合题意;D 、444235a a a +=,故D 符合题意.故选:D .【点睛】本题主要考查同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项,解答的关键是对这些知识点的运算法则的掌握与应用.2.B【分析】利用完全平方公式的结构特征解答即可.【详解】解:①9x 2-mx +4是一个完全平方式,①-m =±12,①m =±12.故选:B .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.B【分析】利用代数式的值可判断①,利用完全平方公式可判断①,利用公式变形,整体代入求值可判断①,根据A B -=B C -=A C -=222A B C AB AC BC ++---配方得出(222111222++,然后代入求值可判断①. 【详解】解①当2a =-时,()2222A =--=,故①正确; ①存在实数a ,使得221110442A a a a ⎛⎫+=++=+≥ ⎪⎝⎭,故①不正确; ①若10A -=,①21a a +=,当0,01a =≠,①0a ≠, ①11a a-=-, 则2221123a a a a ⎛⎫+=-+= ⎪⎝⎭; 故①正确;①已知代数式A 、B 、C 满足A B -=B C -=①()()A C A B B C -=-+-=则222A B C AB AC BC ++--- =()22212222222A B C AB AC BC ++---=()()()222111222A B B C A C -+-+-=(222111222++ =18;故①正确,①正确的个数有3个,故选B .【点睛】本题考查代数式求值,完全平方公式性质,二次根式的混合运算,掌握完全平方公式及其变形公式,和代数式求值方法是解题关键.4.C【分析】①各式化简得到结果,比较即可作出判断;①利用完全平方公式的结构特征判断即可;①原式配方后,求出最小值,即可作出判断.【详解】解:①①(x +2)2-2x= x 2+2x +4,(x +1)2+3= x 2+2x +4,①(x +2)2-2x 和(x +1)2+3都是x 2+2x +4不同形式的配方,符合题意;①x 2-2(k -1)x +4是完全平方式,则k -1=2或k -1=-2,即k =3或-1,不符合题意;①原式=34(b 2-4b +4)+2=34(b -2)2+2,当b =2时,取得最小值,最小值为2,符合题意. 故选:C .【点睛】此题考查了配方法的应用,以及偶次方的非负性,熟练掌握完全平方公式是解本题的关键.5.C【分析】根据题意设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC =8m ,设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,在Rt①ABC 中,AB 2+BC 2=AC 2,即x 2+82=(x +2)2,解得x =15,故AB =15m ,即旗杆的高为15m .故选:C .【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.6.C【分析】根据运算程序代值求解得到输出结果的规律求解即可.【详解】解:把x =2代入得:2÷2=1,把x =1代入得:1+5=6,把x =6代入得:6÷2=3,把x =3代入得:3+5=8,把x =8代入得:8÷2=4,把x =4代入得:4÷2=2,把x =2代入得:2÷2=1,……以此类推,可知每6个一循环,且输入次数与输出结果的对应规律是:61n +对应1;62n +对应6;63n +对应3;64n +对应8;65n +对应4;6n +6对应2;①202163365=⨯+,①经过2021次输出的结果是4.故选:C .【点睛】本题考查运算程序背景下的数字规律,根据运算程序算出输出结果,然后找到输出结果的规律是解决问题的关键.7.21【分析】先根据根与系数的关系得到m +n =3,m n =﹣3,再根据完全平方公式变形得到m 2+n 2﹣2mn =(m +n )2﹣4mn ,然后利用整体代入的方法计算.【详解】解:①m ,n 是关于x 的方程x 2-3x -3=0的两根,①m +n =3,m n =﹣3,①m 2+n 2﹣2mn =(m +n )2﹣4mn =32﹣4×(﹣3)=21.故答案为:21.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a =. 8.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.9.22()2()a b c a b c ++++【分析】利用完全平方公式即可得.【详解】[]2222()()()2()a b c a b c a b c a b c ++=++=++++,故答案为:22()2()a b c a b c ++++.【点睛】本题考查了完全平方公式,熟记公式是解题关键.10.(1)27;(2)【分析】(1)求得x +y 和x y 的值,再利用完全平方公式变形求值即可;(2)根据x <1,先分母开方,约分,再代入求值即可;(1)解:原式=2x 2+4xy +2y 2﹣5xy =2(x +y )2﹣5xy ,①2x =2y ==,①x +y =24,(221xy ==,①原式=2×42﹣5×1=2×16﹣5=27;(2)解:①x =21,①x yx yx y =x y=1 =﹣1= 【点睛】本题考查了二次根式的性质,二次根式的混合运算,完全平方公式,掌握相关运算法则是解题关键.11.(1)−3; (2)13; (3)当x 取5时,花园的面积最大,最大面积是50m 2.【分析】(1)根据阅读材料将所求的式子变形为()213x --,再根据非负数的性质得出最小值; (2)根据阅读材料将所求的式子变形为()23|1|0a b -++=,再根据非负数的性质求出a 、b ,代入b a 计算即可;(3)先根据矩形的面积公式列出式子,再根据阅读材料将式子变形,求出最值即可.(1)解:()222213x x x --=--,①()210x -≥,①()2133x --≥-,①代数式222x x --的最小值为−3;(2)①()2269|1|3|1|0a a b a b -+++=-++=,①a −3=0,b +1=0,①a =3,b =−1, ①1133b a -==, 故答案为:13; (3)设()m AB x =,由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ①()2250x --≤,①当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.12.(1)m n -;(2)方法①:2()()()m n m n m n --=-,方法①:2()4m n mn +-;(3)22()()4m n m n mn -=+-;(4)29.【分析】(1)根据图形即可得出图b 中小正方形的边长为m n -;(2)直接利用正方形的面积公式得到图中阴影部分的面积为2()m n -;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为2()4m n mn +-;(3)根据图中阴影部分的面积是定值得到等量关系式;(4)利用(3)中的公式得到22()()4a b a b ab -=+-.【详解】解:(1)图b 中小正方形的边长为m n -.故答案为m n -;(2)方法①:2()()()m n m n m n --=-;方法①:2()4m n mn +-;(3)因为图中阴影部分的面积不变,所以22()()4m n m n mn -=+-;(4)由(3)得:22()()4a b a b ab -=+-,7a b +=,5ab =,2()a b ∴-222a ab b =-+2()4a b ab =+-2745=-⨯4920=-29=.【点睛】本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.。

人教版八年级上册数学 14.2.2完全平方公式 同步习题(含解析)

人教版八年级上册数学 14.2.2完全平方公式 同步习题(含解析)

14.2.2完全平方公式同步习题一.选择题(共10小题)1.计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y22.若a﹣b=5,ab=﹣6,则a2﹣3ab+b2的值为()A.13B.19C.25D.313.若x2+y2=(x+y)2+A=(x﹣y)2﹣B,则A、B的数量关系为()A.相等B.互为相反数C.互为倒数D.无法确定4.若x+y=6,x2+y2=20,求x﹣y的值是()A.4B.﹣4C.2D.±25.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy6.若(ax+3y)2=4x2+12xy+by2,则a,b的值分别为()A.a=4,b=3B.a=2,b=3C.a=4,b=9D.a=2,b=9 7.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则a1﹣a2的值为()A.﹣1B.﹣4039C.4039D.18.下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)29.设m=xy,n=x+y,p=x2+y2,q=x2﹣y2,其中,①当n=3时,q=6.②当p=时,m=.则下列正确的是()A.①正确②错误B.①正确②正确C.①错误②正确D.①错误②错误10.如果(x+3)2=x2+ax+9,那么a的值为()A.3B.±3C.6D.±6二.填空题(共5小题)11.已知a,b满足a﹣b=1,ab=2,则a+b=.12.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.13.已知(2020+x)(2018+x)=55,则(2020+x)2+(2018+x)2=.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n (n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)5展开式共有六项,系数分别为.拓展应用:(a﹣b)4=.三.解答题(共3小题)16.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.17.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.18.同学们知道,完全平方公式是:(a+b)2=a2+b2+2ab,(a﹣b)2=a2+b2﹣2ab,由此公式我们可以得出下列结论:ab=[a+b)2﹣(a2+b2)]①(a﹣b)2=(a+b)2﹣4ab②利用公式①和②解决下列问题:已知m满足(3m﹣2020)2+(2019﹣3m)2=5,(1)求(3m﹣2020)(2019﹣3m)的值;(2)求(6m﹣4039)2的值.参考答案1.解:(2x﹣y)2=4x2﹣4xy+y2,故选:A.2.解:∵a﹣b=5,ab=﹣6,∴a2﹣3ab+b2=(a﹣b)2﹣ab=52﹣(﹣6)=31,故选:D.3.解:∵x2+y2=(x+y)2+(﹣2xy)=(x﹣y)2﹣(﹣2xy),∴A=﹣2xy,B=﹣2xy,∴A=B.故选:A.4.解:∵x+y=6,x2+y2=(x+y)2﹣2xy=20,∴2xy=62﹣20=16,∴xy=8,∴(x﹣y)2=x2+y2﹣2xy=20﹣2×8=4,∴x﹣y=±2,故选:D.5.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.6.解:(ax+3y)2=4x2+12xy+by2,则a2x2+6axy+9y2=4x2+12xy+by2,故a2=4且6a=12,b=9,解得:a=2,b=9.故选:D.7.解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴a1=20192,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴a2=20202,∴a1﹣a2=20192﹣20202=(2019+2020)(2019﹣2020)=﹣4039,故选:B.8.解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.9.解:当n=3时,即x+y=3,由可得,x﹣y=2,因此,x=,y=,∴q=x2﹣y2═﹣==6,因此①正确;当p=时,即x2+y2=,又∴x﹣y=2,∴x2﹣2xy+y2=4,∴﹣2xy=4,∴m=xy=,因此②正确;故选:B.10.解:∵(x+3)2=x2+6x+9,∴a=6.故选:C.11.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.12.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.13.解:∵(2020+x)(2018+x)=55,∴(2020+x)2+(2018+x)2=[(2020+x)﹣(2018+x)]2+2(2020+x)(2018+x)=22+2×55=114.故答案为114.14.解:原式=(10.1﹣0.1)2=102=100.故答案是:100.15.解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1 5 10 10 5 1,a4﹣4a3b+6a2b2﹣4ab3+b4.16.解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=343.17.解:(1)原式=(200+1)2=2002+2×200×1+12=40401;(2)原式=19992﹣(1999﹣1)(1999+1)=19992﹣19992+1=1.18.解:(1)设3m﹣2020=x,2019﹣3m=y,∴x2+y2=5且x+y=﹣1,∴(3m﹣2020)(2019﹣3m)=xy=[(x+y)2﹣(x2+y2)]=﹣2;(2)(6m﹣4039)2=[(3m﹣2020)﹣(2019﹣3m)]2=(3m﹣2020)2+(2019﹣3m)2﹣2(2019﹣3m)(3m﹣2020)=x2+y2﹣2xy=5+4=9.。

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题(学生版)一.选择题(共8 小题)1.(2015•遵义)下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2 D.(a+2)(a﹣2)=a2﹣4 2.(2015•诏安县校级模拟)若x2+ax+9=(x+3)2,则a 的值为()A.3 B.±3 C.6 D.±63.(2015•邵阳)已知a+b=3,ab=2,则a2+b2 的值为()A.3 B.4 C.5 D.64.(2015 春•灵璧县校级期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab5.(2015 春•澧县期末)若a﹣b=1,ab=2,则(a+b)2 的值为()A.﹣9 B.9 C.±9 D.36.(2015 春•栾城县期末)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12 B.﹣12 C.12 或﹣12 D.367.(2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0 B.1 C.2 D.38.(2015•黄冈中学自主招生)已知实数x、y、z 满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+ (2z﹣x)2 的最大值是()A.12 B.20 C.28 D.36二.填空题(共6 小题)9.(2015•太原一模)计算(a﹣2)2 的结果是.10.(2015•南充一模)若x﹣= ,则x2﹣= .11.(2015•东营模拟)已知(x﹣1)2=ax2+bx+c,则a+b+c 的值为.12.(2015 春•江都市期末)若m=2n+3,则m2﹣4mn+4n2 的值是.13.(2015 春•扬州校级期末)已知a>b,ab=2 且a2+b2=5,则a﹣b= .14.(2015 春•金堂县期末)在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3 这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5= ,并说出第7 排的第三个数是.三.解答题(共4 小题)15.(2015 春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x2+y2(2)(x2﹣1)(y2﹣1).16.(2015 春•乐平市期中)思考:“两个相邻整数的平均数的平方”与“两个相邻整数的平方数的平均数”是否相等?如果不相等,那么他们又相差多少呢?17.(2014 秋•蓟县期末)已知a,b 是有理数,试说明a2+b2﹣2a﹣4b+8 的值是正数.18.(2015 春•苏州期末)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为.探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m,宽为y m,(1)用含x、y 的代数式表示正方形的边长为;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.人教版八年级数学上册14.2.2《完全平方公式》同步训练习题(教师版)一.选择题(共8 小题)1.(2015•遵义)下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2 D.(a+2)(a﹣2)=a2﹣4选D2.(2015•诏安县校级模拟)若x2+ax+9=(x+3)2,则a 的值为()A.3 B.±3 C.6 D.±6考点:完全平方公式.专题:计算题.分析:根据题意可知:将(x+3)2 展开,再根据对应项系数相等求解.解答:解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.点评:本题主要考查完全平方公式的应用,利用对应项系数相等求解是解题的关键.3.(2015•邵阳)已知a+b=3,ab=2,则a2+b2 的值为()A.3 B.4 C.5 D.6考点:完全平方公式.分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.解答:解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选C点评:本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.4.(2015 春•灵璧县校级期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab考点:完全平方公式.专题:计算题.分析:已知等式两边利用完全平方公式展开,移项合并即可确定出A.解答:解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选B点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.5.(2015 春•澧县期末)若a﹣b=1,ab=2,则(a+b)2 的值为()A.﹣9 B.9 C.±9 D.3考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到(a+b)2=(a﹣b)2+4ab,然后利用整体代入的方法进行计算.解答:解:∵a﹣b=1,ab=2,∴(a+b)2=(a﹣b)2+4ab=12+4×2=9.故选B.点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.6.(2015 春•栾城县期末)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12 B.﹣12 C.12 或﹣12 D.36考点:完全平方公式.分析:运用完全平方公式求出(2a±3b)2 对照求解即可.解答:解:由(2a±3b)2=4a2±12ab+9b2,∴染黑的部分为±12.故选:C.点评:本题主要考查完全平方公式,熟记完全平方公式是解题的关键.7.(2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0 B.1 C.2 D.3考点:完全平方公式.专题:计算题.分析:观察知可先把多项式转化为完全平方形式,再代入值求解.解答:解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D.点评:本题考查了完全平方公式,属于基础题,关键在于灵活思维,对多项式扩大2 倍是利用完全平方公式的关键.8.(2015•黄冈中学自主招生)已知实数x、y、z 满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+ (2z﹣x)2 的最大值是()A.12 B.20 C.28 D.36考点:完全平方公式;代数式求值.专题:计算题.分析:由题意实数x、y、z 满足x2+y2+z2=4,可以将(2x﹣y)2+(2y﹣z)2+(2z﹣x)2,用x2+y2+z2 和(xy+yz+xz)表示出来,然后根据完全平方式的基本性质进行求解.解答:解:∵实数x、y、z 满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28∴当x+y+z=0 时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2 的最大值是28.故选C.点评:此题主要考查完全平方式的性质及代数式的求值,要学会拼凑多项式.二.填空题(共6 小题)9.(2015•太原一模)计算(a﹣2)2 的结果是a2﹣4a+4 .考点:完全平方公式.分析:根据完全平方公式计算即可.解答:解:(a﹣2)2=a2﹣4a+4,故答案为:a2﹣4a+4点评:此题考查完全平方公式,关键是完全平方公式的形式计算.10.(2015•南充一模)若x﹣=,则x2﹣= ±.考点:完全平方公式;平方差公式.分析:根据完全平方公式,先将原式两边平方,求出x+,再根据平方差公式把要求的式子进行变形,代入计算即可.点评:本题考查的是完全平方公式和平方差公式的应用,正确把代数式应用完全平方公式和平方差公式进行变形是具体点关键.11.(2015•东营模拟)已知(x﹣1)2=ax2+bx+c,则a+b+c 的值为 0 .考点:完全平方公式.分析:将x=1 代入已知等式中计算即可求出a+b+c 的值.解答:解:将x=1 代入得:(1﹣1)2=a+b+c=0,则a+b+c=0.故答案为:0.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(2015 春•江都市期末)若m=2n+3,则m2﹣4mn+4n2 的值是 9 .考点:完全平方公式.专题:计算题.分析:原式利用完全平方公式分解后,把已知等式变形后代入计算即可求出值.解答:解:∵m=2n+3,即m﹣2n=3,∴原式=(m﹣2n)2=9.故答案为:9点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.(2015 春•扬州校级期末)已知a>b,ab=2 且a2+b2=5,则a﹣b= 1 .考点:完全平方公式.专题:计算题.分析:由a 大于b,得到a﹣b 大于0,利用完全平方公式化简(a﹣b)2,把各自的值代入计算,开方即可求出值.解答:解:∵a>b,即a﹣b>0,ab=2 且a2+b2=5,∴(a﹣b)2=a2+b2﹣2ab=5﹣4=1,则a﹣b=1,故答案为:1点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(2015 春•金堂县期末)在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3 这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5= a5+5a4b+10a3b2+10a2b3+5ab4+b5 ,并说出第7 排的第三个数是21 .考点:完全平方公式;规律型:数字的变化类.分析:观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1 组成,而其余的数则是等于它“肩”上的两个数之和.解答:解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;第7 排的第三个数是21,故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5;21点评:考查了完全平方公式问题,利用学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.三.解答题(共4 小题)15.(2015 春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x2+y2(2)(x2﹣1)(y2﹣1).考点:完全平方公式.专题:计算题.分析:(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式利用多项式乘以多项式法则计算,整理后将各自的值代入计算即可求出值.解答:解:(1)∵x+y=3,xy=﹣8,∴原式=(x+y)2﹣2xy=9+16=25;(2)∵x+y=3,xy=﹣8,﹣∴原式=x 2y 2﹣(x 2+y 2)+1=64﹣25+1=40.点评: 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.(2015 春•乐平市期中)思考:“两个相邻整数的平均数的平方”与“两个相邻整数的平方 数的平均数”是否相等?如果不相等,那么他们又相差多少呢?考点: 完全平方公式.分析: 设这两个整数分别为 a 、a+1,则依据题意得到代数式,通过作差来比较它们的大 小.解答: 解:设这两个整数分别为 a 、a+1,则( )2﹣[ ]= ]2=﹣ .即它们不相等,且它们又相差﹣ .=﹣[点评: 本题考查了完全平方公式.根据题中的信息列出代数式是解题的关键.17.(2014 秋•蓟县期末)已知 a ,b 是有理数,试说明 a 2+b 2﹣2a ﹣4b+8 的值是正数. 考点: 完全平方公式;非负数的性质:偶次方.分析: 先把常数项 8 拆为 1+4+3,在分组凑成完全平方式,从而判断它的非负性. 解答: 证明:原式=a 2+b 2﹣2a ﹣4b+1+4+3=a 2﹣2a+1+b 2﹣4b+4+3=(a ﹣1)2+(b ﹣2)2+3,∵(a ﹣1)2≥0;(b ﹣2)2≥0;∴(a ﹣1)2+(b ﹣2)2+3≥3.∴a2+b2﹣2a﹣4b+8 的值是正数.点评:主要考查了完全平方式的运用,解题的关键要利用完全平方式的非负性来判断,并通过添项凑完全平方式.18.(2015 春•苏州期末)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为2cm .探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m,宽为y m,(1)用含x、y 的代数式表示正方形的边长为;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.考点:完全平方公式.分析:探究一:根据平方差公式进行解答;探究二:(1)根据正方形周长与边长的关系,即可解答;(2)作差进行比较,即可解答.解答:解:探究1:设两个正方形的边长分别为a,b,则a+b=20,a2﹣b2=40(a+b)(a﹣b)=4020(a﹣﹣b)=40,a﹣b=2(cm),故答案为:2cm.点评:本题考查了平方差公式和完全平分公式,解决本题的关键是熟记公式.。

完全平方公式的综合应用习题及答案

完全平方公式的综合应用习题及答案

完全平方公式的综合应用(习题)➢ 例题示范例1:已知12x x -=,求221x x +,441x x +的值. 【思路分析】① 观察题目特征(已知两数之差与两数之积11x x⋅=,所求为两数的平方与),判断此类题目为“知二求二”问题;② “x ”即为公式中的a ,“1x”即为公式中的b ,根据他们之间的关系可得:2221112x x x x x x ⎛⎫+=-+⋅ ⎪⎝⎭; ③ 将12x x -=,11x x⋅=代入求解即可; ④ 同理,24224221112x x x x x x⎛⎫+=+-⋅ ⎪⎝⎭,将所求的221x x +的值及2211x x ⋅=代入即可求解.【过程书写】例2:若2226100x x y y -+++=,则x =_______,y =________.【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”. 观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=.根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-.➢ 巩固练习1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____.2. 已知3x y +=,2xy =,求22x y +,44x y +的值.3. 已知2310a a -+=,求221a a +,441a a+的值. 4. (1)若229x mxy y ++是完全平方式,则m =________.(2)若22916x kxy y -+是完全平方式,则k =_______. 5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______个,分别是__________ ______________________________.6. 若22464100a b a b +--+=,则a b -=______.7. 当a 为何值时,2814a a -+取得最小值,最小值为多少? 8. 求224448x y x y +-++的最值.➢ 思考小结1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题:若x 满足(210)(200)204x x --=-,试求22(210)(200)x x -+-的值. 解:设210-x =a ,x -200=b ,则ab =-204,且(210)(200)10a b x x +=-+-=,由222()2a b a ab b +=++得,即22(210)(200)x x -+-的值为508.根据以上材料,请解答下题:若x 满足22(2015)(2013)4032x x -+-=,则(2015)(2013)x x --=______.【参考答案】➢ 例题示范例1.解:12x x -=∵例2:1-3 ➢ 巩固练习1. 913 2. 517 3. 7 474. ±6 ±245. 5 24x - -4 8x -8x 4x6. 87. 4a =时取得最小值,最小值为-2 8. 最小值为3➢ 思考小结1. 不相等,相差2()4a b -2. 2 014。

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题) 例题示范例1:已知x = 2,求x2 ^2,x4•丄的值.x x x【思路分析】观察题目特征(已知两数之差和两数之积1x 1,所求为两数的平方和),x判断此类题目为“知二求二”问题;1“x”即为公式中的a,“ - ”即为公式中的b,根据他们之间的关系可得:x2 1x —x1将X-— =2,x 2 2x 丄;xi 1 )=X —x1x - =1代入求解即可;x同理,X4•[二x2x4I即可求解.【过程书写】-2x2•丄,将所求的X2•厶的值及x2 x例2: 若x2 -2x + y2 +6y +10 =0,贝U x= _____ ,y= _______ .【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.观察等式左边,x2 -2x以及y2 6y均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到(x-1)2• (y • 3)2 = 0 . 根据平方的非负性可知:(x -1)2 =0且(y 3)^0,从而得到x=1,厂-3 .巩固练习1.若(a—2b)2=5,ab =1,则a2+4b2 =________ ,(a + 2b)2= ____ .2.已知x • y =3,xy =2,求x2 y2,x4 y4的值.1 13. 已知a2 -3a •仁0,求a2•盲,a^ —的值.a a4. (1)若x2+mxy + 9y2是完全平方式,则m= _________ .(2)若9x2-kxy+16y2是完全平方式,则k= __________ .5. 多项式4x2 4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______ ,分别是____________2 2 a6. 若a +4b -6a-4b+10 = 0 ,贝U b = _________ .7. 当a为何值时,a2 -8a 14取得最小值,最小值为多少?8. 求x2 4y^4x 4y 8 的最值.思考小结1. 两个整数a,b (a z b)的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题: 若x 满足(210 _x)(x_200) =一204,试求(210 _x)2 (x — 200)2的值. 解:设210-x=a, x-200=b,则ab=- 204,且 a b = (210 _x) (x 一200) =10 ,由(a b)2 = a2 2ab b2得,a2 b2 =(a b)2 -2ab = 102 -2 (-204) =508 ,即(210 -x)2 (x-200)2的值为508.根据以上材料,请解答下题:若x满足(2015 -x)2 (2 013-x)2=4032,贝U (2 015 - x)(2 013 —x) = ____ .【参考答案】例题示范1例 1 .解:•/ x 2x --x丿=4 224 2X 2X 2 =34 1.913 2. 517 3. 747 4. ±i24 5. 52 -4x -4 8x -8x 6. 8 例2: 1 巩固练习 x 4 7. a =4时取得最小值,最小值为-28. 最小值为3思考小结1. (a -b)2 -3=36= 36-222. 2 0144。

人教版八年级数学上册14.2.2 完全平方公式(解析版)

人教版八年级数学上册14.2.2 完全平方公式(解析版)

第十四章 整式的乘法与因式分解14.2.2 完全平方公式一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.形如222a ab b ++和222a ab b -+的式子称为完全平方式,若24x ax ++是一个完全平方式,则a 等于A .2B .4C .2±D .4±【答案】D【解析】∵x 2+ax +4是一个完全平方式,∴a =±4.故选D . 2.已知11x x -=,则221x x += A .0 B .1 C .2 D .3【答案】D【解析】∵x -1x =1,∴(x -1x )2=1,即x 2-2+21x =1,∴x 2+21x=3.故选D . 3.下列计算:①(a+b )2=a 2+b 2;②(a -b )2=a 2-b 2;③(a -b )2=a 2-2ab -b 2;④(-a -b )2=-a 2-2ab+b 2.其中正确的有A .0个B .1个C .2个D .3个【答案】A4.若用简便方法计算21999,应当用下列哪个式子A .(20001)(20001)-+B .2(19991)+C .(19991)(19991)+-D .2(20001)-【答案】D【解析】A .2(20001)(20001)20001-+=-,故错误; B .22(19991)2000+=,故错误;C .2(19991)(19991)19991+-=-,故错误;D .22(20001)1999-=,正确.故选D .5.已知a +b =-3,ab =2,则2()a b -的值是A .1B .4C .16D .9【答案】A【解析】∵a +b =-3,ab =2,∴(a -b )2=a 2+b 2-2ab =a 2+b 2+2ab -4ab =(a +b )2-4ab =(-3)2-4×2=9-8=1, 故选A .学&科网6.若9x 2+kxy +16y 2是完全平方式,则k 的值为A .12B .24C .±12D .±24【答案】D【解析】已知9x 2+kxy +16y 2是完全平方式,可得kxy =±2×3x ·4y ,解得k =±24.故选D . 二、填空题:请将答案填在题中横线上.7.a +b -c =a +(__________);a -b +c -d =(a -d )-(__________).【答案】b -c ;b -c【解析】a +b -c =()a b c +-;a -b +c -d =()()a d b c ---,故答案为:b -c ;b -c .三、解答题:解答应写出文字说明、证明过程或演算步骤.8.已知有理数m ,n 满足2()9m n +=,2()1m n -=,求下列各式的值. (1)mn ;(1)22m n +.9.计算:(1)2399;(2)2247942727-⨯+.【解析】(1)原式222(4001)400240011159201=-=-⨯⨯+=.(2)原式2222472472727(4727)20400=-⨯⨯+=-==.10.先化简,再求值:(1)2(2)(1)x x x -++,其中1x =.(2)4(21)(12)x x x x ⋅+--,其中140x =.11.一个正方形的边长为cm a ,减少2cm 后,这个正方形的面积减少了多少? 【解析】依题意有222222(2)(44)4444a a a a a a a a a --=--+=-+-=-, 即这个正方形面积减少了2(44)cm a -.。

2020年人教版八年级数学上册14.2.2《完全平方公式》同步练习(含答案)

2020年人教版八年级数学上册14.2.2《完全平方公式》同步练习(含答案)

2020年人教版八年级数学上册14.2.1《完全平方公式》同步练习一、选择题1.已知是一个完全平方式,则m的值是A. B. 1 C. 或1 D. 7或2.如果是完全平方式,那么k的值是A. B. 6 C. D.3.若,,则A. 25B. 29C. 69D. 754.运用乘法公式计算的结果是A. B. C. D.5.已知,那么代数式的值是A. 6B. 4C. 2D. 06.下列运算正确的是A. B.C. D.7.的值等于A. B. C. 5 D. 18.下列计算结果正确的是A. B. C. D.9.下列式子正确的是A. B.C. D.10.已知,则的值等于A. 1B. 0C.D.二、填空题11.已知,则的值是______.12.已知是完全平方式,则常数m的值是______.13.已知,,则xy的值为______ .14.若关于x的二次三项式是完全平方式,则a的值是______ .15.已知,则的值为______ .16.已知,如果,,那么的值为______.17.若代数式是一个完全平方式,则______.18.已知,,则 ______ .19.已知:,则 ______ .20.如果多项式是完全平方式,那么______.三、解答题21.已知:,,求下列各式的值.22.已知,,求:的值.23.计算24.计算:25.已知,,求的值.求证:无论x、y为何值,代数式的值不小于0.26.回答下列问题填空: ______ ______若,则 ______ ;若,求的值.参考答案1. D2. C3. B4. C5. B6. B7. D8. B9. A10. C11. 2312.13. 414.15. 1416. 117. 或1018. 28或3619. 2720.21. 解:,当,,;,当,,.22. 解:,,原式;,,原式.23. 解:原式;原式.24. 解:原式;原式.25. 解:,;证明,无论x、y为何值,代数式的值不小于0.26.解:(1)、2.(2)23.两边同除a得:,移向得:,.。

最新人教版八年级数学上册《完全平方公式》课时练习及答案解析-精品试题.docx

最新人教版八年级数学上册《完全平方公式》课时练习及答案解析-精品试题.docx

新人教版数学八年级上册第十四章第二节完全平方公式课时练习一、选择题(每小题5分,共30分)1.计算(a+b)(-a-b)的结果是()A.a2-b2 B.-a2-b2 C.a2-2ab+b2 D.-a2-2ab-b2答案:D.知识点:完全平方公式解析:解答:(a+b)(-a-b)=-(a+b)(a+b)=-( a2+2ab+b2)=-a2-2ab-b2.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选D.2.设(3m+2n)2=(3m-2n)2+P,则P的值是()A.12mn B.24mn C.6mn D.48mn答案:B.知识点:完全平方公式解析:解答:∵(3m+2n)2=9m2+4n2+12mn=9m2+4n2-12mn+24mn=(3m-2n)2+24mn ∴P=24mn分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.3.若x2-kxy+9y2是一个完全平方式,则k值为()A.3 B.6 C.±6 D.±81答案:C.知识点:完全平方公式解析:解答:∵x2-kxy+9y2是一个完全平方公式;∴x2-kxy+9y2=(x±3y)2∴k应该是±6 .分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选C.4.已知a2+b2=25,且ab=12,则a+b的值是()A.1 B.±1 C.7 D.±7答案:D.知识点:完全平方公式解析:解答:∵a2+b2=25,ab=12;∴a2+b2+2ab=(a+b)2=25+2×12=49;∴a+b应该是±7 .分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选D.5.下列运算正确的是( )A.(a-2b) (a-2b)=a2-4b2B.(P-q)2=P2-q2C.(a+2b) (a-2b)=-a2-2b2D.(-s-t)2=s2+2st+t2答案:D.知识点:完全平方公式解析:解答:A.(a-2b) (a-2b)=a2+4b2-4ab,所以本题错误;B.(P-q)2=P2+q2-2Pq,所以本题错误;C.(a+2b) (a-2b)= a2-4b2,所以本题错误;D.(-s-t)2=s2+2st+t2,本题正确.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选D.6.下列等式成立的是()A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)2答案:B.知识点:完全平方公式解析:解答:A. (-x-1)2=(x+1)2,所以本题错误;B. (-x-1)2=(x+1)2,本题正确;C.(-x+1)2=(x-1)2,所以本题错误;D. (x+1)2≠(x-1)2,所以本题错误.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.7.计算(a+1)(-a-1)的结果是()A.-a2-2a-1B.a2-1C.-a2-1D.-a2+2a-1答案:A.知识点:完全平方公式解析:解答:(a+1)(-a-1)=- (a+1)(a+1)=-(a+1)2=-a2-2a-1分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选A.8.若x+y=10,xy=24,则x2+y2的值为( )A.52B.148C.58D.76答案:A.知识点:完全平方公式解析:解答:∵(x+y)2= x2+y2+2xy=100;∴x2+y2=100-2xy=100-48=52.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选A.9.计算1012等于()A.1002+1B.101×2C.1002+100×1+1D.1002+2×100+1 答案:D.知识点:完全平方公式解析:解答:1012=(100+1)=1002+2×100+1.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选D.10.若(a+b)2=9,(a-b)2=1,则ab的值为( )A.2B.-2C.8D.-8答案:A.知识点:完全平方公式解析:解答:(a+b)2-(a-b)2=2ab-(-2ab)=4ab=9-1;ab的值为2.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选A.11.若(a+b)2=36,(a-b)2=4,则a2+b2的值为( )A.9B.40C.20D.-20答案:C.知识点:完全平方公式解析:解答:(a+b)2+(a-b)2=2 (a 2+b 2)=36+4;a 2+b 2的值为20.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选C.12. 化简:(m+1)2-(1-m)(1+m)正确的结果是( )A.2m 2B.2m+2C.2m 2+2mD.0答案:C.知识点:完全平方公式 平方差公式解析:解答:(m+1)2 -(1-m)(1+m)=m 2+2m+1-1+m 2=2m 2+2m ,分析:此题考查了完全平方公式和平方差公式,再合并同类项即可.故选C.13.已知a+a 1=4,则a 2+(a1)2的值是( ) A.4 B.16 C.14 D.15答案:C.知识点:完全平方公式解析:解答:(a+a 1)2= a 2+(a1)2+2=16;a 2+(a1)2的值为14. 分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选C.14.设(5a+3b)2=(5a-3b)2+A ,则A=( )A.30abB.60abC.15abD.12ab答案:B.知识点:完全平方公式解析:解答:A=(5a+3b)2-(5a-3b)2=30ab-(-30ab)=60ab.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.15.若x 2+y 2=(x+y)2+A=(x-y)2+B ,则A ,B 各等于( )A.-2xy ,2xyB. -2xy ,-2xyC. 2xy ,-2xyD. 2xy ,2xy答案:A.知识点:完全平方公式解析:解答:∵x 2+y 2=(x+y)2+A=(x-y)2+B ;x 2+y 2= x 2+y 2+2xy+A= x 2+y 2-2xy+B∴A=-2xy ,B=2xy.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选A.二、填空题(每小题5分,共25分)16.计算:(-x-y )2=__________答案:x 2+y 2+2xy.知识点:完全平方公式解析:解答:(-x-y)2=[-(x+y)]2= x2+y2+2xy.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.17.x2+y2=(x+y)2-__________=(x-y)2+________.答案:2xy,2xy.知识点:完全平方公式解析:解答:x2+y2=(x+y)2-(2xy)=(x-y)2+2xy.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.18.多项式4x2+1加上一个单项式后能成为一个整式的完全平方,请你写出符合条件的这个单项式是___________.答案:±4x.知识点:完全平方公式解析:解答:4x2+1=(2x+1)2-4x;4x2+1=(2x-1)2+4x.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.19. (a+b)(-b-a)=________答案:-a2-b2-2ab.知识点:完全平方公式解析:解答:(a+b)( -b-a)= -a2- b2-2ab分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.20.已知a+b=6,ab=5,则代数式a2+b2的值是答案:26.知识点:完全平方公式解析:解答:∵a2+b2=(a+b)2-2ab=36-2×5=26.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.三、解答题(每题10分,共50分)21. 计算9992的结果.答案:998001.知识点:完全平方公式解析:解答:9992=(1000-1)2=10002+1-2000=998001.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.22. 解方程2(x-1)2+(x-2)(x+2)=3x(x-5)2答案:x=11知识点:完全平方公式平方差公式合并同类项解析:解答:2(x-1)2+(x-2)(x+2)=3x(x-5)2x2+2-4x+x2-4=3x2-15x3x2-3x2-4x+15x=22x=11分析:本题考查了完全平方公式、平方差公式以及全并同类项,掌握运算法则是解答本题的关键.23.已知:x+y=3,xy=1,试求:(1)x2+y2的值;(2)(x-y)2的值.答案:7,5.知识点:完全平方公式解析:解答:(1) x 2+y 2=(x+y)2-2xy=9-2=7;(2) (x-y)2= x 2+y 2-2xy=7-2=5. 分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.24.已知a+a 1=6,求(a-a 1)2的值. 答案:32.知识点:完全平方公式解析:解答:∵(a+a 1)2=a 2+(a1)2+2=36 ∴a 2+(a1)2=34 又∵(a-a 1)2= a 2+(a1)2-2=34-2=32 分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.25.已知a ,b 是有理数,试说明a 2+b 2-2a-4b+8的值是正数.答案:知识点:完全平方公式 非负数的性质 偶次方解析:解答:证明:原式= a 2+b 2-2a-4b+8= a 2+b 2-2a-4b+1+4+3=(a-1)2+(b-2)2+3∵(a-1)2≥0;(b-2)2≥0;∴(a-1)2+(b-2)2+3≥3.∴a 2+b 2-2a-4b+8的值是正数.分析:先把常数项8拆为1+4+3,在分组凑成完全平方式,从而判断它的非负性.。

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

第2课时 完全平方公式一.填空1.〔 〕2+=+22520y xy 〔 〕2. 2.=+⨯-227987981600800〔 --2)= .3.3=+y x ,那么222121y xy x ++= .4.0106222=++-+y x y x那么=+y x .5.假设4)3(2+-+x m x 是完全平方式,那么数m 的值是 .6.158-能被20至30之间的两个整数整除,那么这两个整数是 .二.把以下各式分解因式:7.32231212x x y xy -+8.442444)(y x y x -+9.22248)4(3ax x a -+10.2222)(4)(12)(9b a b a b a ++-+-〔11〕.2222224)(b a c b a --+〔12〕.22222)(624n m n m +-〔13〕.115105-++-m m m x x x三.利用因式分解进行计算:〔14〕.419.36.7825.03.2541⨯-⨯+⨯〔15〕.2298196202202+⨯+〔16〕.225.15315.1845.184+⨯+四.〔17〕.将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.〔18〕.212=-b a ,2=ab 求:42332444b a b a b a -+-的值.〔19〕.n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:〔1〕a 与b 的平方和;〔2〕a 与b 的积;〔3〕ba ab +.【课外拓展】〔20〕.△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.〔21〕.c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不管为x,y 何值,整式5422+-xy y x 总为正值.一、填空1.2,25x x y +2.800,798,43.924.-2 5.7或-16. 26、24 二.把以下各式分解因式:7.【解】32231212x x y xy -+=232x(x y )-8.【解】442444)(y x y x -+=42244224(2)(2)x x y y x x y y ++-+=22222()()()x y x y x y ++-9.【解】22248)4(3ax x a -+=2223[(4)16]a x x +-=2223[(4)16]a x x +-=223(2)(2)a x x +-10.【解】2222)(4)(12)(9b a b a b a ++-+-=2[3()2()]a b a b -++=2(5)a b -〔11〕.【解】2222224)(b a c b a --+=22222222(2)(2)a b c ab a b c ab +-++--=222222[()][()]a b c a b c +---=()()()()a b c a b c a b c a b c +++--+-- 〔12〕.【解】22222)(624n m n m +-=222226[()4]m n m n -+-=226()()m n m n -+-〔13〕.【解】115105-++-m m m x x x=125(21)m x x x --+=125(1)m x x --三.利用因式分解进行计算:〔14〕.【解】419.36.7825.03.2541⨯-⨯+⨯ =1(25.378.6 3.9)4+-=1(25.378.6 3.9)4+-=25 〔15〕.【解】2298196202202+⨯+=2(20298)+=90000〔16〕.【解】225.15315.1845.184+⨯+=2(184.515.5)+=40000四.〔17〕.【解】12x ±五.〔18〕.【解】42332444b a b a b a -+-=2222(44)a b a ab b --+=222(2)a b a b --而212=-b a ,2=ab .所以42332444b a b a b a -+-=222(2)a b a b -- =-144⨯=-1. (19).【解】〔1〕因为n b a m b a =-=+22)(,)(,所以22222,2a ab b m a ab b n ++=-+=.即22.a b m n +=+所以a 与b 的平方和为m n +.〔2〕由〔1〕可知:1()4ab m n =- 所以a 与b 的积为1()4m n - 〔3〕由〔1〕〔2〕可知,22.a b m n +=+1()4ab m n =- 所以b a a b +=22a b ab +=1()4m n m n +- 44m n m n+=- 【课外拓展】〔20〕.证明:因为ca bc ab c b a ++=++222,所以222222222a b c ab bc ca ++=++. 即222()()()0a b b c c a -+-+-=.所以0,0,0a b b c c a -=-=-=所以a=b=c.此三角形为等边三角形.〔21〕.【解】△ABC 是等边三角形.理由是:∵0)(22222=+-++c a b c b a∴2222220a b c ba bc ++--=∴22()()0a b b c -+-=所以0,0,a b b c -=-=所以a=b=c.∴△ABC 是等边三角形.〔22〕.证明:5422+-xy y x =2(2)110xy -+≥>.即不管为x,y 何值,整式5422+-xy y x 总为正值.《一元二次方程的应用》 综合练习【知能点分类训练】知能点1 面积问题1.有一个三角形的面积为25cm 2,其中一边比这一边上的高的3倍多5cm ,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm 2的长方形,并使长比宽多2cm ,那么长方形的长是______cm .3.有一间长为18m ,宽为7.5m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m . 4.在一块长16m ,宽12m 的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x ,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg ,方案在2007年产粮到达36.3万kg ,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x ,那么可列方程为〔 〕.A .95=15〔1+x 〕2B .15〔1+x 〕3=95C .15〔1+x 〕+15〔1+x 〕2=95D .15+15〔1+x 〕+15〔1+x 〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔 〕.A .9%B .9.5%C .8.5%D .10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm 长的铁丝:〔1〕能不能折成一个面积为48cm 2的矩形?〔2〕•能不能折成面积是32cm 2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。

人教版八年级数学上册课时练 第十四章 整式的乘法与因式分解 14.2.2 完全平方公式

人教版八年级数学上册课时练 第十四章 整式的乘法与因式分解 14.2.2 完全平方公式

人教版八年级数学上册课时练 第十四章 整式的乘法与因式分解 14.2.2 完全平方公式一、选择题1.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( ) A .4B .8C .12D .162.已知a 2﹣2a﹣1﹣0,则a 4﹣2a 3﹣2a+1等于﹣ ﹣ A .0B .1C .2D .33.已知2210x x +-=,则4252x x x -+的值为( ) A .0B .1-C .2D .14.三种不同类型的长方形地砖长宽如图所示,现有A 类1块,B 类4块,C 类5块.小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是( )A .m+nB .2m+2nC .2m+nD .m+2n5.已知18221n ++是一个有理数的平方,则n 不能为( ) A .20-B .10C .34D .366.设2017a x =-,2019b x =-,2018c x =-.若2234a b +=,则2c 的值是( ) A .16B .12C .8D .47.用如图所示的正方形和长方形卡片若干张,拼成一个边长为2+a b 的正方形,需要B 类卡片的张数为( )A .6B .2C .3D .48.下列运算中,结果正确的是( ) A .235a b ab += B .()2a a b a b -+=-C .()222a b a b +=+ D .236a a a ⋅=9.设2020x y z ++=,且201920202021x y z ==,则3333x y z xyz ++-=( ) A .673 B .20203 C .20213D .67410.若229x kxy y -+是一个完全平方式,则常数k 的值为( ) A .6 B .6- C .6±D .无法确定二、填空题11.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =____________12.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1﹣1(a b)a b +=+,它有两项,系数分别为1﹣1,系数和为2﹣222(a b)a 2ab b +=++,它有三项,系数分别为1﹣2﹣1,系数和为4﹣33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1﹣3﹣3﹣1,系数和为8﹣⋯﹣则n(a b)+的展开式共有______项,系数和为______﹣13.用4张长为a 、宽为b ()a b >的长方形纸片,按如图的方式拼成一个边长为()a b +的正方形,图中空白部分的面积为1S ,阴影部分的面积为2S .若122S S =,则a b 、之间存在的数量关系是__________.14.若241x mx +-是完全平方式,则m 的值是________________.15.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题16.若x 满足(7﹣x )(x ﹣4)=2,求(x ﹣7)2+(4﹣x )2的值:解:设7﹣x =a ,x ﹣4=b ,则(7﹣x )(x ﹣4)=ab =2,a +b =(7﹣x )+(x ﹣4)=3 所以(x ﹣7)2+(4﹣x )2=(7﹣x )2+(x ﹣4)2=a 2+b 2=(a +b )2﹣2ab =32﹣2×2=5 请仿照上面的方法求解下面的问题(1)若x 满足(8﹣x )(x ﹣3)=3,求(8﹣x )2+(x ﹣3)2的值;(2)已知正方形ABCD 的边长为x ,E ,F 分别是AD ,DC 上的点,且AE =2,CF =5,长方形EMFD 的面积是28,分别以MF 、DF 为边作正方形,求阴影部分的面积.17.认真阅读以下材料,然后解答问题.我们学习了多项式的运算法则,类似地,我们可以计算出多项式的展开式.如:1222323223(),()2,()()()33,a b a b a b a ab b a b a b a b a a b ab b +=++=+++=++=+++.我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成以下形式:1()a b + 1 1 2()a b + 1 2 13()a b + 1 3 3 14()a b + 1 4 6 4 15()a b + 1 5 10 10 5 1 6()a b + 1 6 15 20 15 6 1……上面的多项式展开系数表称为“杨辉三角”,仔细观察“杨辉三角”,用你发现的规律回答下列问题: (1)多项式()n a b +(n 取正整数)的展开式是一个几次几项式?并预测第三项的系数.(2)结合上述材料,推断出多项式()n a b +(n 取正整数)的展开式的各项系数之和.(结果用含字母n 的代数式表示) 18.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题: 已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF .若这两个正方形的边长满足a+b =10,ab =20,请求出阴影部分的面积.19.先化简,再求值:已知代数式2(3)(24)ax x x b -+--化简后,不含有x 2项和常数项. (1)求a﹣b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值. 20.先阅读材料,再解答问题:例:已知x =123456789×123456786,y =123456788×123456787,试比较x 、y 的大小. 解:设123456788=a ,则x =(a +1)(a -2)=22a a --,y =a(a -1)=2-a a ,∵x -y =()()222a a a a ----=-2, ∴x <y .问题:已知x =20182018×20182022-20182019×20182021,y =20182019×20182023-20182020×20182022,试比较x 、y 的大小.21.在求234561222222++++++的值时,小明发现:从第二个加数起每一个加数都是前一个数的2倍,于是他设:234561222222S =++++++①,然后在①式的两边都乘以2,得:23456722222222S =++++++②;②-①得7221S S -=-(1)求234561333333++++++的值; (2)求12310012222----+++++的值;(3)求232019a a a a -----(0a ≠且1a ≠)的值.22.先化简,再求值:3(2x ﹣y )2+(2x +y )(2x ﹣y )+(﹣3x )(4x ﹣3y ),其中x =﹣1,y =1. 23.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值”解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=, 所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=. 解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值.(2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值.(3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值). 【参考答案】1.D 2.C 3.A 4.D 5.D 6.A 7.D 8.B 9.B 10.C 11.5或-712.n 1+ n 2 13.a =2b 14.4± 15.15或22.5 16.(1)19;(2)33. 17.(1)n 次1n +项式,(1)2n n -;(2)2n . 18.(1)(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac ;(2)45;(3)20. 19.(1)1;122a b ==-;(2)-620.x y =21.(1)()71312-;(2)10022--;(3)20201a a a --22.9.23.(1)940;(2)2018;(3)2900。

2020年人教版八年级数学上册14.3.2《公式法-完全平方公式》随堂练习(含答案)

2020年人教版八年级数学上册14.3.2《公式法-完全平方公式》随堂练习(含答案)

2020年人教版八年级数学上册14.3.2《公式法-完全平方公式》随堂练习知识点1完全平方公式1.下列式子为完全平方式的是( )A.a2+ab+b2 B.a2+2a+2C.a2-2b+b2 D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k= ;(2)若x2+kx+4是完全平方式,则k= ;(3)若x2+2xy+m是完全平方式,则m= .知识点2直接运用完全平方公式因式分解3.把多项式x2-6x+9分解因式,结果正确的是( )A.(x-3)2 B.(x-9)2C.(x+3)(x-3) D.(x+9)(x-9)4.4(a-b)2-4(b-a)+1分解因式的结果是( )A.(2a-2b+1)2 B.(2a+2b+1)2C.(2a-2b-1)2 D.(2a-2b+1)(2a-2b-1)5.把8a3-8a2+2a进行因式分解,结果正确的是( )A.2a(4a2-4a+1) B.8a2(a-1)C.2a(2a-1)2 D.2a(2a+1)26.分解因式:(1)4x2+y2-4xy; (2)9-12a+4a2;(3)(m+n)2-6(m+n)+9.7.如图是一个正方形,分成四部分,面积分别是a2,ab,ab,b2,则原正方形边长是( )A.a2+b2 B.a+b C.a-b D.a2-b28.(1)若x2-14x+m2是完全平方式,则m= ;(2)若9x2+6xy+m是完全平方式,则m= .9.多项式x2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是.(任写一个符合条件的即可)10.若m=2n+1,则m2-4mn+4n2的值是.11.利用因式分解计算:992+198+1.12.已知长方形的长为a,宽为b,周长为16,两边的平方和为14.(1)求此长方形的面积;(2)求ab3+2a2b2+a3b的值.参考答案知识点1 完全平方公式1.下列式子为完全平方式的是(D)A .a 2+ab +b 2B .a 2+2a +2C .a 2-2b +b 2D .a 2+2a +12.(1)若x 2-6x +k 是完全平方式,则k=9;(2)若x 2+kx +4是完全平方式,则k=±4;(3)若x 2+2xy +m 是完全平方式,则m=y 2.知识点2 直接运用完全平方公式因式分解3.(长春中考)把多项式x 2-6x +9分解因式,结果正确的是(A)A .(x -3)2B .(x -9)2C .(x +3)(x -3)D .(x +9)(x -9)4.4(a -b)2-4(b -a)+1分解因式的结果是(A)A .(2a -2b +1)2B .(2a +2b +1)2C .(2a -2b -1)2D .(2a -2b +1)(2a -2b -1)5.(聊城中考)把8a 3-8a 2+2a 进行因式分解,结果正确的是(C)A .2a(4a 2-4a +1)B .8a 2(a -1)C .2a(2a -1)2D .2a(2a +1)26.分解因式:(1)4x 2+y 2-4xy ;解:原式=(2x)2+y 2-2×2x ·y=(2x -y)2.(2)9-12a +4a 2;解:原式=32-2×3×2a +(2a)2=(3-2a)2.(3)(m +n)2-6(m +n)+9.解:原式=(m +n -3)2.7.如图是一个正方形,分成四部分,其面积分别是a 2,ab ,ab ,b 2,则原正方形的边长是(B)8.(1)若x 2-14x +m 2是完全平方式,则m=±7;(2)若9x 2+6xy +m 是完全平方式,则m=y 2.9.答案不唯一,如14x 4或2x 或-2x .(任写一个符合条件的即可) 10.若m=2n +1,则m 2-4mn +4n 2的值是1.11.利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10 000.12.已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.(1)求此长方形的面积;(2)求ab 3+2a 2b 2+a 3b 的值.解:(1)∵a +b=16÷2=8,∴(a +b)2=a 2+2ab +b 2=64.∵a 2+b 2=14,∴ab=25.答:长方形的面积为25.(2)ab 3+2a 2b 2+a 3b=ab(a 2+2ab +b 2)=ab(a +b)2=25×82=1 600.。

人教版初中八年级数学上册专题平方差公式和完全平方公式讲义及答案

人教版初中八年级数学上册专题平方差公式和完全平方公式讲义及答案

平方差公式和完全平方公式(讲义)➢课前预习1.(1)对于多项式(x-4)和多项式(x+4),完全相同的项是________,只有符号不同的项是________;(2)对于多项式(-x-4)和多项式(x-4),完全相同的项是________,只有符号不同的项是________;(3)对于多项式(a+b-c)和多项式(-a+b-c),完全相同的项是_________,只有符号不同的项是__________.2.利用幂的运算法则证明(-a-b)2=(a+b)2.证明过程如下:(-a-b)2=[-(a+b)]2=(___)2⋅(____)2=__________即(-a-b)2=(a+b)2请你参照上面的方法证明(-a+b)2=(a-b)2.3.计算:①(a+b)(a-b);②(a+b)2;③(a-b)2.➢知识点睛1.平方差公式:___________________________.④ - x - 2 y ⎪⎭⎝ 4 x - 2 y ⎪ =_______-_______=___________;① (ab + 8)(ab - 8) ;② 2a - b ⎪ - b - 2a ⎪ ; ② m - ⎪ = () 2 - 2()( ) + ( ) 2 = ___________;2. 完全平方公式:_________________________;_________________________.口诀:首平方、尾平方,二倍乘积放中央.精讲精练1. 填空:① ( x - 4)( x + 4) = () 2 - () 2 = _________;② (3a + 2b )(3a - 2b ) = ( ) 2 - () 2 = __________; ③ (-m - n )(m - n ) = () 2 - () 2 = _____________;⎛ 1 ⎫⎛ 1 ⎫ ⎝ 4 ⎭ ⑤ (a n + b )(a n - b ) = _______-_______=__________;⑥ (3a + b + 3)(3a + b - 3) = ( ) 2 - ( ) 2 ; ⑦ (3a - b + 3)(3a + b - 3) = ( ) 2 - () 2 ;⑧(m +n )(m -n )(m 2+n 2)=( )(m 2+n 2)=()2-()2=_______;⑨ (2 x + 3 y )() = 4 x 2 - 9 y 2 ;⑩ ( x + 3 y )( ) = 9 y 2 - x 2 .2. 计算:⎛ 1 ⎫⎛ 1 ⎫ ⎝ 3 ⎭⎝ 3 ⎭③ (2a - b )(2a + b )(4a 2 + b 2 ) ;④103⨯ 97 ;⑤ 2 0152 - 2 014 ⨯ 2 016 .3. ① (2 x + 5 y )2 = () 2 + 2( )( ) + ( ) 2 = _______________;⎛ 1 1 ⎫2⎝ 32 ⎭③ mn-n⎪=_____________________=______________;⑦ -4x-y⎪=()2=______________________;C. -a-b⎪=4a2+ab+b2D.(-x-y)(x+y)=x2-y2⎛1⎫2⎝2⎭④(-x+y)2=()2=________________;⑤(-m-n)2=()2=________________;⑥(-3x+4y)2=()2=______________________;⎛⎝1⎫2 2⎭⑧x2+4y2+_________=(x-2y)2.4.下列各式一定成立的是()A.(2a-b)2=4a2-2ab+b2B.(x+y)2=x2+y2⎛1⎫2⎝2⎭15.计算:①(-2t-1)2;②(m+2n)2-4n2;③(a-b-c)2;④1022.6.运用乘法公式计算:①(2x-y)2-4(x+y)(x-y);②(a-b)(-a+b)-(a-b)(-a-b);③(x+2y-3)(x-2y+3);④(-a+b-c)(a-b-c);⑤(a+b)3;⑥(-a+b-c)(a-b+c);⑦1022-982;⑧(n2+1)2-(n2-1)2.7.若(3x-y)2=ax2+bxy+y2,则a=______,b=_________.8.若(2x-y)2=a2x2-4x y+y2,则a=______.9.若(ax+y)2=9x2-6x y+y2,则a=______.10.若(x-ky)2=x2+8xy+16y2,则k=______.11.若x2+axy+9y2是完全平方式,则a=______.12.若4x2-4x y+my2是完全平方式,则m=______.【参考答案】课前预习1.(1)x;4,-4;(2)-4;x,-x;(3)b-c;a,-a2.略3.①a2-b2②a2+2ab+b2③a2-2ab+b2④(-2y), x⎪,4y2-12.①a2b2-64②b2-4a2②m,m,,,m2-m+③(mn)2-2⋅mn⋅n+(n)2;m2n2-mn2+n2⑦4x+1y;16x2+4x y+y2➢知识点睛1.(a+b)(a-b)=a2-b22.(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2➢精讲精练1.①x,4,x2-16②3a,2b,9a2-4b2③-n,m,n2-m22⎛1⎫2⎝4⎭16x2⑤(a n)2,b2,a2n-b2⑥3a+b,3⑦3a,b-3⑧m2-n2,m2,n2,m4-n4⑨2x-3y⑩3y-x19③16a4-b4④9991⑤13.①2x,2x,5y,5y,4x2+20x y+25y211111113322934111224④x-y,x2-2x y+y2⑤m+n,m2+2mn+n2⑥3x-4y,9x2-24x y+16y2124⑧(-4x y)4.C5.①4t2+4t+1②m2+4mn③a2+b2+c2-2ab-2ac+2bc④104046.①-4xy+5y2②2ab-2b2③x2-4y2+12y-9④c2-a2+2ab-b2⑤a3+b3+3a2b+3ab2⑥-a2+2ab-b2-2ac+2bc-c2⑦800⑧4n27.9;-68.±29.-310.-411.±612.1。

人教版初中八年级上册数学完全平方公式同步练习含答案

人教版初中八年级上册数学完全平方公式同步练习含答案

14.2.2完全平方公式第1课时完全平方公式课前预习要点感知(a±b)2=________.即两个数的和(或差)的平方,等于它们的________加上(或减去)________________.预习练习1-1计算:(2a+1)2=(________)2+2×________×________+(________)2=________.1-2填空:(1)(a+b)2=____________;(2)(a-b)2=____________;(3)(5+3p)2=____________;(4)(2x-7y)2=____________.当堂训练知识点1完全平方公式的几何意义1.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+b)2=(a-b)2+4ab2.下列四个图形中,图1是长方形,图2、3、4是正方形.把图1、2、3三个图形拼在一起(不重合),其面积为S,则S=____________;图4的面积P=________;则P________S.图1图2图3图4知识点2运用完全平方公式计算3.下列计算结果为2ab-a2-b2的是( )A.(a-b)2B.(-a-b)2C.-(a+b)2D.-(a-b)24.若关于x的多项式x2-8x+m是(x-4)2的展开式,则m的值为( ) A.4 B.16C.±4 D.±165.计算(a-3)2的结果为________.6.化简代数式(x+1)2-2x,所得的结果是________.7.直接运用公式计算:(1)(3+5p)2;(2)(7x-2)2;(3)(-2a-5)2;(4)(-2x+3y)2.8.运用完全平方公式计算:(1)2012;(2)99.82.课后作业9.下列运算中,正确的运算有( )①(x+2y)2=x2+4y2;②(a-2b)2=a2-4ab+4b2;③(x+y)2=x2-2xy+y2;④(x-14)2=x2-12x+116.A.1个B.2个C.3个D.4个10.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.311.(包头中考)计算:(x+1)2-(x+2)(x-2)=________.12.若(x-1)2=2,则代数式x2-2x+5的值为________.13.由完全平方公式可知:32+2×3×5+52=(3+5)2=64,运用这一方法计算:4.321 02+8.642×0.679 0+0.679 02=________.14.计算:(1)(-2m-3n)2;(2)(a-b)2(a+b)2;(3)(x +y)(-x +y)(x 2-y 2);(4)(a +3b)2-2(a +3b)(a -3b)+(a -3b)2.15.先化简,再求值:2b 2+(a +b)(a -b)-(a -b)2,其中a =-3,b =12.挑战自我16.(铜仁中考)请看杨辉三角(1),并观察下列等式(2):(1)(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab2+b4;…(2)根据前面各式的规律,则(a+b)6=________________________________________________.参考答案要点感知a2±2ab+b2平方和它们的积的2倍预习练习1-12a2a114a2+4a+11-2(1)a2+2ab+b2(2)a2-2ab+b2(3)25+30p +9p2(4)4x2-28xy+49y2当堂训练1.D 2.a2+b2+2ab(a+b)2= 3.D 4.B 5.a2-6a+9 6.x2+17.(1)原式=9+30p+25p2.(2)原式=49x2-28x+4.(3)原式=4a2+20a+25.(4)原式=4x2-12xy+9y2.8.(1)原式=(200+1)2=2002+2×200×1+12=40 000+400+1=40 401.(2)原式=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.课后作业9.B10.C11.2x+512.613.2514.(1)原式=(2m+3n)2=(2m)2+2×2m×3n+(3n)2=4m2+12mn+9n2.(2)原式=[(a-b)(a+b)]2=(a2-b2)2=a4-2a2b2+b4.(3)原式=-(x2-y2)2=-x4+2x2y2-y4.(4)原式=a2+6ab+9b2-2a2+18b2+a2-6ab+9b2=36b2.15.原式=2ab.当a=-3,b=12时,原式=2×(-3)×12=-3.16.a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6作者留言:非常感谢!您浏览到此文档。

完全平方公式的综合应用(知二求二)(二)(人教版)(含答案)

完全平方公式的综合应用(知二求二)(二)(人教版)(含答案)

完全平方公式的综合应用(知二求二)(二)(人教版)一、单选题(共10道,每道10分)1.若,,则的结果为( )A.7B.13C.94D.106答案:D解题思路:由题可知,相当于公式里的,相当于公式里的,与之间相差.题中给出,因此求出的值即可.故选D.试题难度:三颗星知识点:完全平方公式的应用2.若,,则的结果为( )A. B.19C. D.10答案:C解题思路:故选C.试题难度:三颗星知识点:完全平方公式的应用3.若,,则的结果为( )A.45B.39C.15D.21答案:A解题思路:故选A.试题难度:三颗星知识点:完全平方公式的应用4.若,,则的结果为( )A.20B.112C.-40D.80答案:D解题思路:故选D.试题难度:三颗星知识点:完全平方公式的应用5.若,,则的值为( )A.112B.12C.72D.176答案:A解题思路:故选A.试题难度:三颗星知识点:完全平方公式的应用6.若,则的结果为( )A.5B.11C.7D.1答案:C解题思路:故选C.试题难度:三颗星知识点:完全平方公式的应用7.若,则与的值分别为( )A.11;119B.11;123C.7;83D.7;47答案:A解题思路:故选A.试题难度:三颗星知识点:完全平方公式的应用8.若,则的值为( )A.21B.23C.25D.27答案:B解题思路:①分析:观察所求,可以化为,这是平方和的形式,若在的两边同时除以,可以得到,结合,可知这是一个知二求二问题.②解题过程:故选B.试题难度:三颗星知识点:完全平方公式的应用9.若,则的值为( )A.256B.196C.194D.322答案:C解题思路:故选C.试题难度:三颗星知识点:完全平方公式的应用10.若,则的结果为( )A.40B.5C.10D.20答案:B解题思路:可以把和分别当作一个整体,就是一个平方和的形式,相当于公式里的,相当于公式里的,与之间相差.故选B.试题难度:三颗星知识点:完全平方公式的应用学生做题后建议通过以下问题总结反思问题1:填空:问题2:已知,,求的值.思路分析:①观察题目特征,判断此类题目为“知二求二”问题;②“_______”即为公式中的a,“_________”即为公式中的b,根据他们之间的关系可得_________________________________;③将,代入求解即可.所以=__________.问题3:已知,求的值.思路分析:①观察题目特征,判断此类题目为“知二求二”问题;②“_______”即为公式中的a,“_________”即为公式中的b,根据他们之间的关系可得_____________________;③观察知x≠0,对其进行处理得____________,然后代入,得=__________.。

人教版初中数学八年级上册第十四章 完全平方公式

人教版初中数学八年级上册第十四章 完全平方公式

课堂检测
基础巩固题
14.2 乘法公式/
1. 运用乘法公式计算(a–2)2的结果是( A )
A.a2–4a+4
B.a2–2a+4
C.a2–4
D.a2–4a–4
2.下列计算结果为2ab–a2–b2的是( D )
A.(a–b)2
B.(–a–b)2
C.–(a+b)2
D.–(a–b)2
课堂检测
14.2 乘法公式/
= x2–4y2+12y–9.
巩固练习
14.2 乘法公式/
计算:(1)(a–b+c)2; (2)(1–2x+y)(1+2x–y).
解:(1)原式=[(a–b)+c]2 =(a–b)2+c2+2(a–b)c =a2–2ab+b2+c2+2ac–2bc;
(2)原式=[1– (2x–y)][1+(2x–y)] =12–(2x–y)2 =1–4x2+4xy–y2.
3. 体验归纳添括号法则. 2. 灵活应用完全平方公式进行计算.
1. 理解并掌握完全平方公式的推导过程、 结构特点、几何解释.
探究新知
14.2 乘法公式/
知识点 1 完全平方公式
一块边长为a米的正方形实验田,因需要将其边 长增加 b 米.形成四块实验田,以种植不同的新品种(如 图). 用不同的形式表示实验田的总面积, 并进行比较.
(a – b)2 = a2– 2ab + b2
=y2
–y
+
1 4
.
巩固练习
14.2 乘法公式/
利用完全平方公式计算: (1)(5–a)2; (3)(–3a+b)2.
(2)(–3m–4n)2;
解:(1)(5–a)2=25–10a+a2; (2)(–3m–4n)2=9m2+24mn+16n2;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式的综合应用(习题)
➢ 例题示范
例1:已知
12x x -=,求221x x +,441x x +的值. 【思路分析】
① 观察题目特征(已知两数之差和两数之积
11x x ⋅=,所求为两数的平方和),
判断此类题目为“知二求二”问题; ② “x ”即为公式中的a ,“1
x ”即为公式中的b ,根据他们之间的关系可得:
2
221112x x x x x x ⎛⎫+=-+⋅ ⎪⎝⎭; ③ 将12x x -=,11x x ⋅=代入求解即可;
④ 同理,2
4224221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭,将所求的221x x +的值及2211x x ⋅=代入
即可求解.
【过程书写】
例2:若
2226100x x y y -+++=,则x =_______,y =________. 【思路分析】
此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.
观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根
据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=.
根据平方的非负性可知:2(1)0x -=且
2(3)0y +=,从而得到1x =,3y =-. ➢ 巩固练习
1. 若2(2)5a b -=,1ab =,则224a b +=____,
2(2)a b +=____. 2. 已知3x y +=,2xy =,求22x y +,44x y +的值.
3. 已知2310a a -+=,求221a a +,441a a +的值.
4. (1)若229x mxy y ++是完全平方式,则m =________.
(2)若22916x kxy y -+是完全平方式,则k =_______.
5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上
的单项式共有_______个,分别是__________
______________________________.
6. 若22464100a b a b +--+=,则a b -=______.
7. 当a 为何值时,2814a a -+取得最小值,最小值为多少?
8. 求
224448x y x y +-++的最值.
➢ 思考小结
1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相
等吗?若不相等,相差多少?
2. 阅读理解题:
若x 满足(210)(200)204x x --=-,试求22(210)(200)x x -+-的值.
解:设210-x =a ,x -200=b ,
则ab =-204,且(210)(200)10a b x x +=-+-=,
由222()2a b a ab b +=++得,
2222()2102(204)508a b a b ab +=+-=-⨯-=,
即22(210)(200)x x -+-的值为508.
根据以上材料,请解答下题:
若x 满足
22(2015)(2013)4032x x -+-=, 则(2015)(2013)x x --=______.
【参考答案】
➢ 例题示范
例1.解:12x x -=∵
2
14x x ⎛⎫-= ⎪⎝⎭∴
2221112426x x x x x x ⎛⎫+=-+⋅ ⎪⎝
⎭=+=∴
222136x x ⎛⎫+= ⎪⎝⎭∴
24224221112362
34x x x x x x
⎛⎫+=+-⋅ ⎪⎝⎭=-=∴
例2:1 -3
➢ 巩固练习
1. 9
13 2. 5
17 3. 7 47
4. ±6
±24 5. 5 24x - -4 8x -8x 4x
6. 8
7. 4a =时取得最小值,最小值为-2
8. 最小值为3
➢思考小结
1.不相等,相差
2 ()
4
a b
2. 2 014。

相关文档
最新文档