完全平方公式及答案

合集下载

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)=a+2ab+b(ab)=a2ab+b两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a+2ab+b=(a+b)a2ab+b=(ab)2、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)或 (ab)或 (ab)或 (a+b)②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a+2ab+b或a2ab+ba2abb或 a+2abb专项练习:1.(a+2b)22.(3a-5)23..(-2m-3n)24. (a2-1)2-(a2+1)23.(-2a+5b)26.(-ab2-c)27.(x-2y)(x2-4y2)(x+2y)8.(2a+3)2+(3a-2)29.(a-2b+3c-1)(a+2b-3c-1);10.(s-2t)(-s-2t)-(s-2t)2;11.(t-3)2(t+3)2(t2+9)2.12. 972;13. 2;14. 992-98×100;15. 49×51-2499.3、(x-2y)(x+2y)-(x+2y)17.(a+b+c)(a+b-c)18.(2a+1)-(1-2a)19.(3x-y)-(2x+y)+5x(y-x)20.先化简。

再求值:(x+2y)(x-2y)(x-4y),其中x=2,y=-1.21.解关于x的方程:(x+)-(x-)(x+)=.22.已知x-y=9,x·y=5,求x+y的值.23.已知a(a-1)+(b-a)=-7,求-ab的值.24.已知a+b=7,ab=10,求a2+b2,(a-b)2的值.25.已知2a-b=5,ab=,求4a2+b2-1的值.26.已知(a+b)2=9,(a-b)2=5,求a2+b2,ab的值.27.已知求与的值。

28.已知求与的值。

29.已知求与的值。

30.已知求的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完整平方公式专项演习常识点:完整平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.1.完整平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、可否应用完整平方法的剖断①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号雷同. 即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项演习:1.(a +2b )22.(3a -5)2 3..(-2m -3n )24. (a 2-1)2-(a 2+1)23.(-2a +5b )2 6.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.3、(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简.再求值:(x +2y )(x -2y )(x 2-4y 2),个中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.a +b =7,ab =10,求a 2+b 2,(a -b )2的值.2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值. ()5,3a b ab -==求2()a b +与223()a b +的值.6,4a b a b +=-=求ab 与22a b +的值.224,4a b a b +=+=求22a b 的值.6,4a b ab +==,求22223a b a b ab ++的值.32. 已知222450x y x y +--+=,求21(1)2x xy --的值.16x x -=,求221x x +的值. 34.试解释不管x,y 取何值,代数式226415x y x y ++-+的值老是正数.2+n 2-6m+10n+34=0,求m+n 的值 0136422=+-++y x y x ,y x 、都是有理数,求y x 的值.37.已知 2()16,4,a b ab +==求a 2+b 2的值.38.要使x 2-6x +a 成为形如(x -b )2的完整平方法,则a,b 的值为若干?39.假如x +x 1=8,且x>x 1,求x -x1 的值. 40. 已知m 2+21m =14 求(m +m 1)2的值. (a+b+c+d)242.证实:(m-9)2-(m+5)2是28的倍数,个中m 为整数.(提醒:只要将原式化简后各项均能被28整除)(1-x ²)(1-y ²)-4xy44.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除. 45.试证代数式 (2x+3)(3x+2)-6x(x+3)+5x+16的值与x 的值无关.46.(x+2)2-(x+1)(x-1),47.[]x y y x y x y x 25)3)(()2(22÷--+-+,个中21,2=-=y x 48.)2)(2(2))(2()2(2b a b a b a b a b a +--+--+,个中2,21-==b a .49. (2a -3b)(3b +2a)-(a -2b )2,个中:a=-2,b=350.有如许一道题,盘算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,个中x=2006,y=2007;某同窗把“y=2007”错抄成“y=2070”但他的盘算成果是准确的,请答复这是怎么回事?试解释来由.51.已知三角形 ABC 的三边长分离为a,b,c 且a,b,c 知足等式22223()()a b c a b c ++=++,请解释该三角形是什么三角形?。

完全平方公式专项练习题有答案

完全平方公式专项练习题有答案

完全平方公式专项练习 知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

(完整版)完全平方公式专项练习50题(有答案)

(完整版)完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式(含答案)

完全平方公式(含答案)

第2课时 完全平方公式知识点 1 完全平方公式1.填空:(1)(x +2)2=x 2+2·________·________+________2=__________; (2)(2a -3b )2=________2+________+________2=__________. 2.下列计算正确的有( )①(a +b )2=a 2+b 2; ②(a -b )2=a 2-b 2; ③(a +2b )2=a 2+2ab +2b 2; ④(-2m -3n )2=(2m +3n )2. A .1个 B .2个 C .3个 D .4个3.若x 2+16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .644.计算:(1)(2x +y )2=______________; (2)⎝ ⎛⎭⎪⎫12x -2y 2=______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2=______________.5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2;(3)(x +y -3)2.知识点 2 完全平方公式的几何意义6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( )图8-5-3A .(a -b )2+4ab =(a +b )2B .(a -b )(a +b )=a 2-b 2C .(a +b )2=a 2+2ab +b 2D .(a -b )2=a 2-2ab +b 2知识点 3 利用完全平方公式进行简便计算7.计算:3012=________.8.用简便方法计算:20182-4036×2019+20192.知识点 4 与完全平方公式有关的化简求值问题9.(1)[2018·宁波]先化简,再求值:(x -1)2+x (3-x ),其中x =-12.(2)已知代数式(x -2y )2-(x -y )(x +y )-2y 2.①当x =1,y =3时,求代数式的值;②当4x =3y 时求代数式的值.10.若x 2+kx +64是某个整式的平方,则k 的值是( )A .8B .-8C .±8D .±1611.若等式x 2+ax +19=(x -5)2-b 成立,则a +b 的值为( )A .16B .-16C .4D .-412.如图8-5-4,从边长为(a +4)cm 的正方形纸中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )图8-5-4A .(2a 2+5a )cm 2B .(3a +15)cm 2C .(6a +9)cm 2D .(6a +15)cm 213.若xy =12,(x -3y )2=25,则(x +3y )2的值为( )A .196B .169C .156D .14414.已知(x -1)2=ax 2+bx +c ,则a +b +c 的值为________.15.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________. 16.用两种方法计算:(12x -2y )2-(12x +2y )2.17.阅读下列材料并解答后面的问题:利用完全平方公式(a ±b )2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b )2-2ab 或a 2+b 2=(a -b )2+2ab .从而使某些问题得到解决.例:已知a +b =5,ab =3,求a 2+b 2的值.解:a 2+b 2=(a +b )2-2ab =52-2×3=19. 解决问题:(1)已知a +1a =6,则a 2+1a2=________;(2)已知a -b =2,ab =3,分别求a 2+b 2,a 4+b 4的值.18.如图8-5-5所示,已知AB =a ,P 是线段AB 上一点,分别以AP ,BP 为边作正方形. (1)设AP =x ,求两个正方形的面积之和S ; (2)当AP 分别为13a 和12a 时,比较S 的大小.图8-5-5完全平方公式答案【详解详析】1.(1)x 2 2 x 2+4x +4(2)(2a ) (-2·2a ·3b ) (3b ) 4a 2-12ab +9b 22.A3.D [解析] x 2+16x +m =x 2+2×8x +m .∵x 2+16x +m 是完全平方式,∴m =82=64.4.(1)4x 2+4xy +y 2(2)14x 2-2xy +4y 2(3)4x 2-12xy +9y 2(4)4m 2+20mn +25n 25.解:(1)原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.(2)原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4 =4a -5.(3)(x +y -3)2=(x +y )2-2(x +y )×3+32=x 2+2xy +y 2-6x -6y +9.6.A [解析] ∵大正方形的边长为(a +b ),∴大正方形的面积为(a +b )2.1个小正方形的面积加上4个长方形的面积和为(a -b )2+4ab ,∴(a -b )2+4ab =(a +b )2.7.90601 [解析] 3012=(300+1)2=3002+2×300+1=90601.8.解: 原式=20182-2×2018×2019+20192=(2018-2019)2=1.9.解:(1)原式=x 2-2x +1+3x -x 2=x +1.当x =-12时,原式=-12+1=12.(2)原式=x 2-4xy +4y 2-(x 2-y 2)-2y 2=x 2-4xy +4y 2-x 2+y 2-2y 2=-4xy +3y 2.①当x =1,y =3时,原式=-4×1×3+3×32=-12+27=15; ②当4x =3y 时,原式=-y (4x -3y )=0.10.D [解析] 由完全平方公式的特点可知,当k =±16时,x 2+kx +64是某个整式的平方.故选D.11.D [解析] 由已知,得x 2+ax +19=(x -5)2-b =x 2-10x +25-b ,可得a =-10,b =6,则a +b =-10+6=-4.故选D.12.D13.B [解析] (x +3y )2=(x -3y )2+12xy =25+12×12=169.故选B.14.0 [解析] 将x =1代入(x -1)2=ax 2+bx +c ,得(1-1)2=a +b +c ,则a +b +c =0.15.2 [解析] 依题意,得(x +1)2-(1-x )2=(x 2+2x +1)-(1-2x +x 2)=4x =8, ∴x =2.16.解:方法一:原式=(14x 2+4y 2-2xy )-(14x 2+4y 2+2xy )=-4xy .方法二:原式=(12x -2y +12x +2y )(12x -2y -12x -2y )=x ·(-4y )=-4xy .17.解:(1)a 2+1a 2=(a +1a )2-2·a ·1a=62-2=34.(2)a 2+b 2=(a -b )2+2ab =22+2×3=10;a 4+b 4=(a 2+b 2)2-2a 2b 2=102-2×32=100-18=82.18.解:(1)S =AP 2+BP 2=x 2+(a -x )2=x 2+a 2-2ax +x 2=2x 2-2ax +a 2.(2)当AP =13a 时,S =⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫23a 2=19a 2+49a 2=59a 2;当AP =12a 时,S =⎝ ⎛⎭⎪⎫12a 2+⎝ ⎛⎭⎪⎫12a 2=12a 2.因为59a 2>12a 2,所以当AP =12a 时,S 更小.。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习之勘阻及广创作知识点:完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)2 3..(-2m -3n )24. (a 2-1)2-(a 2+1)23.(-2a +5b )2 6.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.3、(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.a +b =7,ab =10,求a 2+b 2,(a -b )2的值.2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

8.3平方差公式与完全平方公式讲解与例题

8.3平方差公式与完全平方公式讲解与例题

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x+2y)2=x2+2·x·2y+(2y)2=x2+4xy+4y2;(2)(2a-5)2=(2a)2-2·2a·5+52=4a2-20a+25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,S Ⅰ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a -b )2=a 2-2ab +b 2几何意义的阐释.正方形Ⅰ的面积可以表示为(a -b )2,也可以表示为S Ⅰ=S 大-S Ⅱ-S Ⅳ+S Ⅲ,又S 大,S Ⅱ,S Ⅲ,S Ⅳ分别等于a 2,ab ,b 2,ab ,所以SⅠ=a 2-ab -ab +b 2=a 2-2ab +b 2.从而验证了完全平方公式(a -b )2=a 2-2ab +b 2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a +b )2-4ab ,空白正方形的面积也等于它的边长的平方,即(a-b )2,根据面积相等有(a +b )2-4ab =(a -b )2.答案:(a +b )2-4ab =(a -b )22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b 的正方形得到的,所以它的面积等于a 2-b 2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12(b+a )(a -b ),所以梯形的面积和是(a +b )(a -b ),根据阴影部分的面积不变,得(a +b )(a-b )=a 2-b 2.因此验证的一个乘法公式是(a +b )(a -b )=a 2-b 2.答案:(a +b )(a -b )=a 2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204. 4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15.解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65.5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b+a)(-b+a)=a2-b2.②符号变化:(-a+b)(-a-b)=(-a)2-b2=a2-b2.③系数变化:(0.5a+3b)(0.5a-3b)=(0.5a)2-(3b)2.④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用 在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm ,根据题意和正方形的面积公式可列出方程(x +3)2=x 2+39,求解即可.解:设原正方形的边长为x cm ,则(x +3)2=x 2+39,即x 2+6x +9=x 2+39,解得x =5(cm). 故这个正方形的边长是5 cm. 7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式: ①a 2+b 2=(a +b )2-2ab ; ②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +ba -b的值即可.答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a +b =2,所以(a +b )2=22,即a 2+2ab +b 2=4.把ab =1代入,得a 2+2×1+b 2=4,于是可得a 2+b 2=4-2=2.。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

(1)完全平方公式

(1)完全平方公式

(1)完全平方公式(1)完全平方公式:222()2a b a ab b ±=±+.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式1. 下列运算正确的是( ) A .326a a a ⋅= B .3226()ab a b =C .222()a b a b -=-D .532a a -=答案:B2. 已知2()8m n -=,2()2m n +=,则22m n +=( ) A .10 B .6C .5D .3答案:C3. 当3a =,2b =时,222a ab b ++的值是( ) A .5 B .13C .21D .25答案:D4. 若实数x 、y 、z 满足2()4()()0x z x y y z ----=,则下列式子一定成立的是( ) A .0x y z ++= B .20x y z +-=C .20y z x +-=D .20z x y +-=答案:D5. 若a 、b 是正数,1a b -=,2ab =,则a b +=( )A .3-B .3C .3±D .9答案:B6. 下列运算正确的是( ) A .22232x x x -= B .22(2)2a a -=-C .222()a b a b +=+D .2(1)21a a --=--答案:A7. 若a 满足22(38383)38383a -=-⨯,则a 值为( ) A .83 B .383C .683D .766答案:C8. 下列各式中,与2(1)x -相等的是( ) A .21x - B .221x x -+C .221x x --D .21x +答案:B9. 下列计算正确的是( )A.23325x x x += B.222()a b a b -=- C.326()x x -= D.2363412x x x ⋅=答案:C10. 若3a b +=,则222426a ab b ++-的值是( ) A .12 B .6C .3D .0答案:A11. 已知2225x y +=,7x y +=,且x y >,那么x y -的值等于( ) A .1± B .7±C .1D .1-答案:C12. 小明做题一向粗心,下面计算,他只做对了一题,此题是( ) A .336a a a +=B .257a a a ⋅=C .326(2)2a a =D .222()a b a ab b -=-+答案:B13. 某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b ,都有a b +≥成立.某同学在做一个面积为36002cm ,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备x cm .则x 的值是( )A .B .C .120D .60答案:C14. 当2x =-时,代数式221x x -+-的值等于( ) A .9 B .9-C .1D .1-答案:B15. 已知3a b +=,339a b +=,则ab 等于( ) A .1 B .2C .3D .4答案:B16. 设22(53)(53)a b a b A +=-+,则A =( ) A .30ab B .15abC .60abD .12ab答案:C17. 若7m n +=,12mn =,则22m mn n -+的值是( ) A .11 B .13C .37D .61答案:B18. 运算结果为222mn m n --的是( ) A .2()m n - B .2()m n --C .2()m n -+D .2()m n +答案:B19. 已知2()8a b +=,2()12a b -=,则ab 的值为( ) A .1B .1-C .4D .4-答案:B20. 已知7x y +=,8xy =-,下列各式计算结果正确的是( ) A .2()91x y -= B .2265x y += C .22511x y += D .22567x y -=答案:B21. 不论x 、y 为什么实数,代数式22247x y x y ++-+的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数答案:A22. 若156x =,144y =,则 221122x xy y ++的值是( ) A .150 B .45000 C .450 D .90000答案:B23. 不论m ,n 为何有理数,22248m n m n +--+的值总是( ) A .负数 B .0 C .正数 D .非负数答案:C24. 已知代数式2221a a -+-,无论a 取任何值,它的值一定是( ) A .正数 B .非正数 C .非负数 D .负数答案:D25. 已知实数x 满足13x x +=,则221x x+的值为____________。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习之老阳三干创作知识点:完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)2 3..(-2m -3n )24. (a 2-1)2-(a 2+1)23.(-2a +5b )2 6.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.3、(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.a +b =7,ab =10,求a 2+b 2,(a -b )2的值.2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

(完整版)完全平方公式专项练习题有答案

(完整版)完全平方公式专项练习题有答案

完全平方公式专项练习 知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式及答案

完全平方公式及答案

完全平方公式(一)2知识点:1.完全平方公式:(a b)2. ______________________________ 特点:左边:右边:(3)若x 23x k 是完全平方式,则42变式:1、多项式x mx 4是一个完全平方式,求 m 的值;2、若25x 2 -ax y 81y 2是一个完全平方式,求a 的值;例 1:( 1) (x -2y)2 (2) (2a -3b)2 变式:1、判断正误:对的画 (1)(a+b)2=a 2+b 2;( 2 2(3)(a+b) =(-a-b);( 列等式能成立的是( 2 2 9 A.(a-b)2= s i -ab+b 2 2 2 2 C.(a+b) = a +2ab+b F 列计算正确的是( 1 2(3)(—a b)(4)2错的画“X” .⑵(a-b)2=a 2-b 2;( 2 2 (4) (a-b) =(b-a).( (3x _2y)(2y _3x)2、 3、). 2 2 2 B.(a+3b)2= a 2+9b 2 2 D.(x+9)(x-9) = x 2-92 2 (2x-3) =4x -12x-9C 、 4、 A.8(a (_a _b)(a -b) a 2 -b 2 (a+3b)2-(3a+b)2计算的结果是( (a-b)2 cB 、 (2x 工)2 二 4x 2 2xy 2 4C 、 (-x-2y)2 二 x 2 -4xy 4y 2 ' 2 B.8(a+b) 1 2 5、( 1) (x y) 2 (3) (-2a !)2 2例 2: (1)(3a+2b)2-(3a-2b)2 变式:(1) (x 2y)(x -2y)(x 2 -4y 2)2 2 2 2 C.8b -8a D.8a -8b2 (2) (-a-3b)(4) (x-y z)2 2 2 2 ⑵(x +x+6)(x -x+6) ⑶(a+b+c+d) X 2 -4y 2) (2)(丄a -3b)2(」a 3b)2 2 2 (3) (x 1)2 -(x 2)(x -2) (x 2)2 其中 x=-2 3 (4)化简求值:(2x -1)(x2) -(x -2)2 -(x 2)2,其中 例 2;(1)如果 x 2+kx+81 是 A.9 B.-9 个完全平方式,那么k 的值是(C.9 或-9 2 ).D.18 或-18⑵x 2 mxy 16y 2是完全平方式。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式及答案精编版

完全平方公式及答案精编版

完全平方公式及答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-完全平方公式(一)知识点:1.完全平方公式:=+2)(b a ;=-2)(b a 2.特点:左边:右边:例1:(1)2)2(y x - (2)2)32(b a - (3)2)21(b a +- (4))32)(23(x y y x -- 变式:1、判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a 2+b 2;( ) (2)(a-b)2=a 2-b 2;( )(3)(a+b)2=(-a-b)2;( ) (4)(a-b)2=(b-a)2.( )2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、下列计算正确的是( )A 、9124)32(22--=-x x x B 、424)22(222y xy x y x ++=+ C 、22))((b a b a b a -=--- C 、22244)2(y xy x y x +-=--4、(a+3b)2-(3a+b)2计算的结果是( ). A.8(a-b)2 B.8(a+b)2 C.8b 2-8a 2 D.8a 2-8b 25、(1)2)21(y x - (2)2)3(b a --(3)2)212(+-a (4)2)(z y x +- 例2:(1)(3a+2b)2-(3a-2b)2 (2)(x 2+x+6)(x 2-x+6) (3)(a+b+c+d)2 变式 :(1))4)(2)(2(22y x y x y x --+ (2)22)321()321(b a b a +- (3)22)2()2)(2()1(++-+-+x x x x 其中x=-2(4)化简求值:22)2()2()2)(12(+---+-x x x x ,其中23-=x 例2;(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.-9C.9或-9D.18或-18(2)2216y mxy x ++是完全平方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
完全平方公式(一)
知识点:1.完全平方公式:=+2)(b a ;
=-2)(b a 2.特点:左边:
右边:
例1:(1)2)2(y x - (2)2)32(b a - (3)2)2
1(b a +- (4))32)(23(x y y x --
变式:1、判断正误:对的画“√”,错的画“×”.
(1)(a+b)2=a 2+b 2;( ) (2)(a-b)2=a 2-b 2;( )
(3)(a+b)2=(-a-b)2;( ) (4)(a-b)2=(b-a)2.( )
2、下列等式能成立的是( ).
A.(a-b)2=a 2-ab+b 2
B.(a+3b)2=a 2+9b 2
C.(a+b)2=a 2+2ab+b 2
D.(x+9)(x-9)=x 2-9
3、下列计算正确的是( )
A 、9124)32(22--=-x x x
B 、4
24)22(2
22y xy x y x ++=+ C 、22))((b a b a b a -=--- C 、22244)2(y xy x y x +-=--
4、(a+3b)2-(3a+b)2计算的结果是( ).
(a-b)2 (a+b)2 C.8b 2-8a 2 D.8a 2-8b 2
5、(1)2)2
1(y x - (2)2)3(b a -- (3)2)2
12(+-a (4)2)(z y x +- 例2:(1)(3a+2b)2-(3a-2b)2 (2)(x 2+x+6)(x 2-x+6) (3)(a+b+c+d)2
变式 :(1))4)(2)(2(22y x y x y x --+ (2)22)32
1()321(b a b a +- (3)22)2()2)(2()1(++-+-+x x x x 其中x=-2
(4)化简求值:22)2()2()2)(12(+---+-x x x x ,其中2
3-=x 例2;(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).
B.-9
C.9或-9 或-18
(2)2216y mxy x ++是完全平方式。

则m= ;
(3)若k x x ++4
32是完全平方式,则k= 变式:1、多项式42++mx x 是一个完全平方式,求m 的值;
2、若228125y axy x +-是一个完全平方式,求a 的值;
3、若22729ky xy x +-是一个完全平方式,求k 的值;
4、1-=+b a ,ab b a 222++的值为多少?
完全平方公式(二)
知识点:1、公式的变形:-+=+2
22)(y x y x ;+-=+222)(y x y x 2、两个完全平方公式之间的关系:22)()(b a b a --+=
例1:计算(1)20012 (3)9982
例2:(1)已知322=+b a ,ab b a 则,2=-的值为
(2)已知22,2,4y x xy y x +==+则=
(3)已知=+=-=+2222,3)(,7)(b a b a b a 则 ,ab =
变式:(1)已知:4=+b a ,3-=ab ,求(1)22b a +.(2)2)(b a -.
(2)若21=+x x ,则221x
x +的值为 (3)若12,7==+ab b a ,则22b ab a +-的值为 .
例3:已知0966222=++--+y x xy y x ,求y x -的值。

变式:1、若0122)(2=++--b a b a ,则b a -=
2、已知0134622=++-+y x y x ,求x ,y 的值。

3、已知,04181022=-+-+y x y x ,求22)2()2)(2(2)2(y x y x y x y x +++---的值。

思考题:1、已知0132=+-x x ,求(1)x x 1+ (2)221x x + (3)441x x + 整式的除法(一)
知识点:单项式相除,把 , 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的 一起作为商的因式。

例1:(1)y x y x 324728÷ (2)b a c b a 435155÷- (3)
2332)3()2(abc c ab -÷-
变式:1、下列计算正确的是( )
A 、3392)3(6a a a =÷
B 、x y x y x 2)2(423-=÷-
C 、23)()()(x y x y y x -=-÷-
D 、p n m p n m a a a a +-=÷÷
2、填空:)3
1()53(2222y x y x ÷-= ;])(6[36556xy y x ÷=
3、已知2233
1248y y x y x n m =
÷,则m= ,n= . 4、例2: 变式:1、
)3(6)())((222xy y x y x y x y x -÷--+-+ 其中,x=-1,y=2 2、化简求值)]41(4)2[()]12(3)213[(22y x y y x y x y y x +-+÷-+-
,x=2,y=-1 3、)8()]161(4)214[(2222x y x y y x -÷-+-。

相关文档
最新文档