山东大学_分子生物学,期末考试,非基地班剖析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学

第二章核酸的结构与功能(4学时)

基本要求:了解核苷酸的结构。熟悉核苷酸的命名。掌握核苷酸的化学组成。

二、核酸的一级结构

基本要点:

1.DNA和RNA的一级结构四种核苷酸或脱氧核苷酸按照一定的排列顺序以3’,5’磷酸二酯键(phosphodiester linkage)相连形成的多聚核苷酸链或脱氧核苷酸(polydeoxynucleotides), 称为核苷酸序列(也称为碱基序列)。脱氧核苷酸或核苷酸的连接具有严格的方向性,是前一核苷酸的3’-OH与下一位核苷酸的5’-位磷酸间形成3’,5’磷酸二酯键,构成一个没有分支的线性大分子。DNA的书写应从5'到3'。

2.RNA与DNA的差别戊糖成分是核糖不是脱氧核糖; 嘧啶为胞嘧啶和尿嘧啶而不含有胸腺嘧啶, U代替了DNA的T。DNA和RNA对遗传信息的携带和传递是依靠核苷酸中的碱基排列顺序变化而实现的。

基本概念:核酸的一级结构。

基本要求:熟悉DNA与RNA的区别。

掌握核酸的一级结构。

三、DNA的空间结构与功能

基本要点:

1.DNA的二级结构——双螺旋结构模型

DNA的双螺旋结构的研究背景Chargaff规则:①腺嘌呤与胸腺嘧啶的摩尔数总是相等(A=T),鸟嘌呤的含量总是与胞嘧啶相等(G=C);②不同生物种属的DNA碱基组成不同,③同一个体不同器官、不同组织的DNA具有相同的碱基组成。

DNA双螺旋结构模型的要点

①DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧、而碱基位于内侧,两条链的碱基互补配对,A---T形成两个氢键,G---C形成三个氢键。堆积的疏水性碱基平面与线性分子结构的长轴相垂直。两条链呈反平行走向,一条链5’→3’,另一条链是3’→5’。)。

②DNA是右手螺旋结构DNA线性长分子在小小的细胞核中折叠形成了一个右手螺旋式结构(图3-7)。螺旋直径为2nm。螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为36°。螺距为3.4nm;碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟(major groove)和一个小沟(minor groove),目前认为这些沟状结构与蛋白质和DNA间的识别有关。

③DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以碱基堆积力更为重要。

2.DNA结构的多样性B-DNA(Watson-Crick模型结构)Z-DNA A-DNA

3.DNA的超螺旋结构DNA在双链螺旋式结构基础上,进一步折叠成为超级螺旋结构,在蛋白质的参与下构成核小体(nucleosome),再进一步折叠将DNA紧密压缩于染色体中。DNA的超螺旋-

原核生物DNA的高级结构绝大部分原核生物的DNA都是共价封闭的环状双螺旋分子。这种双螺旋分子还需再次螺旋化形成超螺旋结构以保证其可以较致密的形式存在于细胞内(图3-9)。4.DNA在真核生物细胞核内的组装染色体的基本单位核小体。核小体由DNA和组蛋白共同构成。组蛋白分子共有五种,分别称为H1,H2A,H2B,H3和H4共同构成了核小体的核心,称为组蛋白八聚体(又称核心组蛋白)。DNA双螺旋分子缠绕在这一核心上构成了核小体的核心颗粒(core particle)。核小体的核心颗粒之间再由DNA (约60个碱基对,bp)和组蛋白H1构成的连接区连接起来形成串珠样的结构(图3-10)。在此基础上,核小体又进一步旋转折叠,形成纤维状结构及襟状结构、最后形成棒状的染色体,将近l m长的DNA分子容纳于直径只有数微米的细胞核中。

DNA双螺旋分子→组蛋白八聚体→DNA双螺旋分子缠绕(核心颗粒)→串珠样的结构→维状结构及襟状结构→棒状的染色体

5.DNA的功能基因(gene)就是DNA分子中的某一区段,经过复制可以遗传给子代,经过转录和翻译

四、RNA的空间结构与功能

基本要点:

1.信使RNA的结构与功能细胞核内合成的mRNA 初级产物比成熟的mRNA大得多,这种初级的RNA被称为不均一核RNA (Hetergeneou nuclear RNA,hnRNA),它们在细胞核内存在时间极短,经过剪接成为成熟的mRNA并移位到细胞质(见十二章)。成熟的mRNA由编码区和非编码区构成,它的结构特点(图3-11)如下:

①大多数的真核mRNA转录后在5'-端加一个7-甲基鸟苷,同时第一个核苷酸的C'2也是甲基化的,这种m7G ppp N m结构被称为帽子结构(cap sequence)。帽子结构具有促进核蛋白体与mRNA的结合、加速翻译起始速度的作用,同时可以增强mRNA的稳定性。

②在真核mRNA的3'末端,有一多聚腺苷酸(poly A)结构,通常称为多聚A尾。一般由数十个至一百几十个腺苷酸连接而成。poly A是RNA生成后加上去的。poly A与mRNA从核内向胞质的转位及mRNA的稳定性有关。

各种mRNA的长短差别很大, mRNA分子的长短,决定翻译的蛋白质分子量的大小。各种RNA 分子中, mRNA的半衰期最短,由几分钟到数小时不等,是细胞内蛋白质合成速度的调控点之一。

mRNA的功能是把核内DNA的碱基顺序(遗传信息),按照碱基互补的原则,抄录并转送至胞质,

在蛋白质合成中用以翻译成蛋白质中氨基酸的排列顺序。mRNA分子上每3个核苷酸为一组,三联体密码(triplet code)。

2.转运RNA的结构与功能转运RNA (transfer RNA,tRNA)是细胞内分子量最小的一类核酸, 100多种tRNA都由70至90个核苷酸构成。tRNA的功能是在细胞蛋白质合成过程中作为各种氨基酸的载体并将其转呈给mRNA。tRNA的结构特点:

①分子中含10%~20%的稀有碱基(rare bases)。稀有碱基是指除A、G、C、U外的一些碱基,包括双氢尿嘧啶(DHU)、假尿嘧啶(ψ,pseudouridine)和甲基化的嘌呤(m G,m A)等(图3-12)。一般的嘧啶核苷以杂环上N-1与糖环的C-1’连成糖苷键,假尿嘧啶核苷则用杂环上的C-5与糖环的C-1’相连。

②tRNA核苷酸中存在局部互补配对的区域,可以形成局部双链,进而形成一种茎-环样(stem-loop)结构或发夹结构。中间不能配对的部分则膨出形成环状或襻状。tRNA形成三叶草形(cloverleaf pattern)二级结构。分别称为DHU环和Tψ环,以及反密码环。

反密码子(anticoden)与mRNA相应的三联体密码子碱基互补。例如负责转运酪氨酸的

tRNA(tRNA Tyr)的反密码子5'-GUA-3'与mRNA上相应的三联体密码子5'-UAC-3'(编码酪氨酸)呈反向互补。

不同的tRNA依照其转运的氨基酸的差别,有不同的反密码子。

X射线衍射结构分析发现tRNA的共同三级结构是倒L型(图3-13b)。倒L形三级结构中Tψ环与DHU环相距很近。

3.核蛋白体RNA的结构与功能核蛋白体RNA(ribosomal RNA,rRNA)约占RNA总量的80%以上。rRNA与核蛋白体蛋白共同构成核蛋白体或称为核糖体(ribosome),原核生物和真核生物的核蛋白体均由易于解聚的大、小两个亚基组成。

真核生物的核蛋白体小亚基由18S rRNA及30余种蛋白质构成;大亚基则由5S、5.8S、及28S 三种rRNA加上近50种蛋白质构成(表3-3)。真核生物的18S rRNA的二级结构呈花状(图3-14),形似40S小亚基,其中多个茎环结构为核蛋白体蛋白的结合和组装提供了结构基础。

DNA复性变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的

相关文档
最新文档