煤液化生产技术
煤的液化技术
市场发展前景
1 2 3
替代石油资源
随着石油资源的日益枯竭,煤液化技术作为一种 替代石油的能源资源,具有广阔的市场前景。
满足环保要求
煤液化技术能够降低煤炭燃烧过程中的污染物排 放,符合环保要求,有助于推动清洁能源市场的 发展。
对煤液化技术企业给予税收优惠政策,降低企业税负,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
出口潜力
煤液化产品如柴油、汽油等可作为燃料或化工原 料,具有较大的出口潜力,有助于提升我国能源 产业的国际竞争力。
政策支持与推动
产业政策引导
政府通过制定产业政策,鼓励和支持煤液化技术的研发和应用, 推动产业健康发展。
资金扶持
政府提供资金扶持,支持企业进行技术研发和产业化推广,减轻 企业负担。
税收优惠
润滑油
煤液化过程中产生的润滑油具有 优良的润滑性能和稳定性,可用 于机械设备的润滑。
民用燃料
燃气
通过煤液化技术得到的液化石油气可作为居民生活和商业用 途的燃气。
供暖
煤液化燃料可用于集中供暖和家庭采暖,提高居民生活质量 。
化工原料
乙烯
煤液化技术可以生产乙烯等化工原料 ,进一步用于生产塑料、合成纤维等 高分子材料。
该技术最早由南非开发,主要 产品是柴油和航空煤油等。
间接液化技术的优点是工艺流 程相对简单,对原料煤的适应 性较强,但转化效率较低,且 催化剂消耗较大。
合成气液化
合成气液化是指将合成气在一定 条件下转化为液体燃料的过程。
该技术通常采用费托合成工艺, 将合成气在催化剂作用下转化为
《煤间接液化》课件
04
煤间接液化的环境保护与经济效益
环境保护措施
减少污染物排放
采用先进的煤液化技术,降低生产过程中的污染物排放,减轻对 环境的压力。
总结词
合成气净化是确保费托合成高效稳定运行的关键环节,对于提高 产品纯度和延长催化剂寿命具有重要作用。
详细描述
合成气净化技术主要包括湿法脱硫、干法脱硫、脱硝和除尘等工 艺,根据不同需求进行选择和组合。
费托合成技术
费托合成技术
将净化后的合成气转化为烃类燃料和化学品。
总结词
费托合成是煤间接液化的核心环节,其技术水平和操作条件直接影 响产品的产量和质量。
政策支持和市场引
导
积极争取政府政策支持和市场引 导,推动煤间接液化产业的可持 续发展。
应对政策和环境变化
关注政策动态
及时了解和掌握国内外政策动态,调整产业发展战略 。
环保合规性
确保生产过程符合国家和国际环保法规要求,降低环 境影响。
资源循环利用
加强废弃物资源化利用,降低碳排放,实现绿色可持 续发展。
煤干燥
使用干燥机将煤干燥至一 定水分含量,提高煤气化 效率。
煤粉制备
将破碎后的煤粉制备成适 合煤气化的煤浆。
煤气化
气化剂
使用氧气、水蒸气等作为气化剂,与煤反应生成 气体。
气化反应
在高温、高压条件下,煤与气化剂发生化学反应 ,生成气体。
灰渣排出
气化过程中产生的灰反应
详细描述
费托合成技术主要采用铁基或钴基催化剂,在高温高压条件下将合成 气转化为烃类燃料和化学品,产物通过分馏和精制得到不同的产品。
煤炭液化技术
煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。
根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
煤炭液化技术
煤炭液化技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII煤炭液化技术[编辑本段]煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
煤间接液化与直接液化技术的比较及缺点
煤间接液化与直接液化技术的比较及缺点一.煤间接液化介绍煤的间接液化技术是先将煤全部气化成合成气,然后以合成气为原料,在一定温度、压力和催化剂存在下,通过F-T合成为烃类燃料油及化工原料和产品的工艺。
包括煤气化制取合成气、催化合成烃类产品以及产品分离和改制加工等过程。
煤炭间接液化技术主要有南非的萨索尔(Sasol)费托合成法、美国的Mobil(甲醇制汽油法)和荷兰SHELL的中质馏分合成(SMDS)间接液化工艺。
F-T合成的特点是:合成条件较温和,无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0-3.0MPa;转化率高,如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上,循环比为2.0时,总转化率即达90%左右。
二.煤直接液化介绍煤的直接液化是煤在适当的温度和压力下,催化加氢裂化生成液体烃类及少量气体烃,脱除煤中氮、氧和硫等杂原子的转化过程。
煤化工监理目前国内外的主要工艺有:1.美国HTI工艺该工艺是在两段催化液化法和H-COAL工艺基础上发展起来的,采用近十年来开发的悬浮床反应器和HTI拥有专利的铁基催化剂(GelCatTM)。
反应温度420~450℃,反应压力17MPa;采用特殊的液体循环沸腾床反应器,达到全返混反应器模式;催化剂是采用HTI 专利技术制备的铁系胶状高活性催化剂。
在高温分离器后面串联一台加氢固定床反应器,对液化油进行在线加氢精制。
2.日本NEDOL工艺该工艺由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等4个主要单元组成。
反应压力17M~19MPa,反应温度为430~465℃;催化剂采用合成硫化铁或天然硫铁矿。
离线加氢方式3.德国煤液化新工艺(IGOR工艺)1981年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200吨的半工业试验装置,操作压力由原来的70MPa降至30MPa,反应温度450~480℃,固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。
一种煤炭直接液化的方法
一种煤炭直接液化的方法引言煤炭作为一种主要的能源资源,在人类的生产和生活中起着重要的作用。
然而,由于煤炭的固体性质,其利用率相对较低,同时也会带来环境污染问题。
为了充分利用煤炭资源,并减少对环境的影响,科学家们不断探索煤炭直接液化技术。
本文将介绍一种新的煤炭直接液化方法,旨在提高煤炭的利用效率和降低对环境的负面影响。
方法1. 煤炭破碎首先,将原先的煤炭进行破碎处理。
通过采用高效的破碎设备,使煤炭颗粒的尺寸控制在一定范围内,以提高煤炭的可反应性。
同时,通过筛分,去除煤炭中的杂质,提高反应物的纯度。
2. 催化剂选择接下来,需要选择适合的催化剂。
催化剂在煤炭液化反应中起到重要作用,可以提高反应速率和产率。
优秀的催化剂应具有高活性、良好的稳定性和选择性。
3. 煤炭直接液化反应在反应器中,将破碎后的煤炭与催化剂加入。
反应过程中需要控制温度、压力和反应时间等参数。
合适的温度和压力可以提高反应的效果,并减少不良产物的生成。
此外,适当的反应时间可以保证反应的充分进行。
4. 产品分离反应结束后,需要对产物进行分离。
由于液化过程中产生了大量的混合气体和液状物质,需要采用先进的分离技术对其进行处理。
典型的分离技术包括蒸馏、萃取和凝结等。
5. 产品处理分离后得到的液体产物需要进行进一步的处理。
其中包括去除杂质、提高产品纯度、调整组分比例等。
这样可以得到高质量的液体燃料或化工产品,提高煤炭资源的综合利用价值。
优势和挑战这种煤炭直接液化方法相对于传统的加氢裂解、焦化和气化等方法具有以下优势:1. 可以充分利用煤炭资源,提高利用效率。
2. 产出的液体燃料或化工产品具有较高的能量密度和稳定性。
3. 可以减少自然气和石油等传统能源的依赖。
4. 通过去除杂质等后处理工艺,可以减少对环境的污染。
然而,该方法也面临一些挑战:1. 催化剂的选择和煤炭直接液化反应条件的调控需要深入研究和优化。
2. 分离和后处理过程需要先进的设备和技术支持。
煤炭间接液化技术讲
应用先进的自动化和智能化控制技术,对生产过程进行实时监控 和优化调整,降低能耗和排放。
05
经济性分析与发展前景展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
投资成本估算方法介绍
静态投资成本估算
基于历史数据和市场价格,对煤炭间接液化 项目的设备、建设、人力等成本进行初步估 算。
ERA
定义与原理
定义
煤炭间接液化技术是指将煤炭首 先转化为合成气(主要由一氧化 碳和氢气组成),再进一步合成 液体燃料的过程。
原理
该技术基于费托合成反应,即一 氧化碳和氢气在催化剂作用下反 应生成烃类化合物,进而生产汽 油、柴油等液体燃料。
发展历程及现状
早期探索
工业应用
20世纪初,德国科学家开始研究从合成气 生产液体燃料的方法。
反应器类型及操作条件
反应器类型
固定床反应器、流化床反 应器、浆态床反应器等。
反应温度与压力
根据所选工艺和反应器类 型,确定合适的反应温度 和压力。
催化剂选择与装填
选用高效、稳定的催化剂, 并按要求进行装填。
产品分离与精制方法
产物分离
废气、废水处理
通过蒸馏、萃取等方法将产物从反应 混合物中分离出来。
THANKS
感谢观看
二战期间,德国为应对石油短缺,大力发 展煤炭间接液化技术并实现工业化。
现代发展
现状
随着环保要求的提高和技术的进步,煤炭 间接液化技术不断得到优化和改进。
目前,该技术已在全球多个国家得到应用 ,尤其在煤炭资源丰富而石油资源相对匮 乏的地区,如中国、南非等。
技术优势与局限性
原料来源广泛
可利用丰富的煤炭资源作为原料。
煤的直接液化
4、操作条件 温度和压力是影响煤直接液化反应进行的 两个因素,也是直接液化工艺两个最重要 的操作条件。 煤的液化反应是在一定温度下进行的,不 同工艺的所采用的温度大体相同,一般为 440~460º C。当温度超过450º C时,煤转化 率和油产率增加较少,而气产率增多,因 此会增加氢气的消耗量,不利于液化。
2、直接液化的溶剂 在煤液化过程中,溶剂起着溶解煤、溶 解气相氢向煤或催化剂表面扩散、供氢或 传递氢、防止煤热解的自由基碎片缩聚等 作用。 煤的直接液化必须有溶剂存在,这也是 与加氢热解的根本区别。 通常认为在煤的直接液化过程中,溶 剂能起到如下作用:
a)将煤与溶剂制成浆液的形式便于工艺过程 的输送。同时溶剂可以有效地分散煤粒、 催化剂和液化反应生成的热产物,有利于 改善多相催化液化反应体系的动力学过程。 b)依靠溶剂能力使煤颗粒发生溶胀和软化, 使其有机质中的键发生断裂。 c) 溶解部分氢气,作为反应体系中活性氢的 传递介质;或者通过供氢溶剂的脱氢反应 过程,可以提供煤液化需要的活性氢原子。
d)在有催化剂时,促使催化剂分散和萃取出 在催化剂表面上强吸附的毒物。 在煤液化工艺中,通常采用煤直接液化后 的重质油作为溶剂,且循环使用,因此又 称为循环溶剂。
3、催化剂 选用合适的催化剂对煤的直接液化至关重要, 一直是技术开发的热点之一,也是控制工艺成 本的重要因素。 催化剂的作用机理,有两种观点:(1)催化剂 的作用是吸附气体中的氢分子,并将其活化成 为易被煤的自由基团接受的活性氢;(2)催化 剂是使煤中的桥键断裂和芳环加氢的活性提高, 或是使溶剂加氢生成可向煤转移氢的供氢体等。
对压力而言,理论上压力越高对反应越有 利,但这样会增加系统的技术难度和危 险性,降低生产的经济性,因此,新的 生产工艺都在努力降低压力条件。 早期液化反应(如德国工艺)压力 高达 30~70MPa ,目前常用的反应压力 已经降到了 17~25MPa ,大大减少了设 备投资和操作费用。
现代化煤直接液化技术进展(三篇)
现代化煤直接液化技术进展我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。
近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。
面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重视和青睐。
“煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。
煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。
所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。
根据加工路线的不同,通常把煤液化分为直接液化和间接液化两大类[4]。
一、煤化工产业科技发展现状(一)煤化工概述煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程。
从煤的加工过程分,主要包括:干馏(含炼焦和低温干馏),气化,液化和合成化学品等。
煤化工利用生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分。
煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。
煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。
在石油短缺时,煤的液化产品将替代目前的天然石油。
(二)新型煤化工技术1.三种新型煤化工技术路线技术之一:煤化工产业发展最重要的单元技术--煤气化技术。
以鲁奇、德士古、壳牌等炉型最为常用,我国先后引进了上述炉型用于生产合成气和化工产品。
采用多组分催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚,这是一条很值得重视的由天然气和煤为原料制取高辛烷值添加剂的技术路线。
煤的直接液化
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。
煤直接液化工艺流程
煤直接液化工艺流程
《煤直接液化工艺流程》
煤直接液化是一种将煤直接转化成液体燃料的技术,被广泛应用于煤炭资源的高效利用和清洁能源的生产。
其工艺流程是一个复杂的化工过程,需要多种设备和技术的配合,下面将对其工艺流程进行说明。
首先,煤炭的预处理是整个工艺流程的第一步。
煤炭首先经过破碎、磨矿和筛分等步骤,使得煤炭颗粒的大小和形状更适合后续的反应和转化过程。
然后,煤质的选煤是非常关键的一步,通过密度分离、气浮和湿选等技术,将煤中的灰分和硫分等杂质进行分离,提高煤质的纯度。
接下来是煤的干馏。
将经过预处理的煤炭送入干馏炉中,利用高温和缺氧环境进行反应,将煤转化成气体和液体产物。
在此过程中,煤中的碳、氢、氧、氮等元素都将发生化学变化,产生气化气体和焦油等产品。
然后,气化气体进一步处理。
气化气体中含有一定量的一氧化碳和氢气,在进一步利用前,需要经过净化和变换等步骤,去除其中的杂质并转化成合成气,以便后续的加氢和合成反应。
最后是合成。
通过控制合成气的压力和温度,利用催化剂将合成气经过合成反应,生成液体燃料和化工产品。
整个煤直接液化工艺流程中,合成反应是决定产物品质的关键步骤。
总的来说,煤直接液化是一个复杂而又高效的技术,通过一系列工艺流程将煤炭转化成清洁高效的液体燃料。
随着技术的不断进步和设备的不断完善,相信煤直接液化技术将会在未来发挥更加重要的作用。
煤制油
煤制油煤制油包括直接液化和间接液化两种工艺技术路线。
1.煤炭直接液化技术煤在高压和一定温度下直接与氢气反应生成液体燃料油的工艺技术称为直接液化。
煤炭直接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG(液化石油气),另外还可以提取BTX(苯、甲苯、二甲苯),副产品有硫磺、氨或尿素等。
直接液化工艺的产品中,柴油的比例在60~70%,汽油和LPG占40~30%左右。
直接液化的工艺主要有Exxon供氢溶剂法(EDS)。
氢-煤法等。
EDS法是煤浆在循环的供氢溶剂中与氢混合,溶剂首先通过催化器,拾取氢原子,然后通过液化反应器,释放出氢原子,使煤分解。
氢-煤法是采用沸腾床反应器,直接加氢将煤转化成液体燃料。
直接液化过程流程现代煤炭直接液化技术提高了产品质量,特别是通过液化后的提质加工工艺,使液化油通过加氢精制、重整、加氢裂化,可得到合格的汽油、柴油或航空煤油。
尤其是柴油的凝点很低,可以在高寒地区使用,所得航空煤油的比重较大,同样容积的油箱可使飞机的续航距离增加。
2. 煤炭间接液化技术间接液化是把煤炭先气化再合成,煤在高温下与氧气和水蒸气反应生成合成反应气(CO+H2),合成反应气再经F-T合成催化反应合成液体燃料及其化学品。
煤炭间接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG、以及乙烯、丙稀等重要化工原料,副产品有α烯烃、硬蜡、氨、醇、酮、焦油、硫磺、煤气等。
间接液化的产品品种是可以变通的,即可以生产油品,又可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。
对中国的石油产品市场而言,以优质石脑油和高质量柴油、烯烃、LPG 和石蜡等产品为好。
另外烯烃的价值较高,LPG也是市场紧俏物资。
此外我国石蜡生产和销售市场上,高熔点微晶蜡缺口较大,高品位润滑油也是国内比较紧缺的。
因此,汽油、柴油与高附加值的润滑油、微晶蜡等市场紧缺的产品并举,可以作为合成油产品的主攻方向。
间接液化在可控制的条件下进行合成,获得的柴油的十六烷值达70,且低硫、无芳烃,既可直接供给环保要求高的地区使用,也可作为优质油与其它油品调配。
煤炭的转化过程有哪些技术?
煤炭的转化过程有哪些技术?一、燃烧技术燃烧技术是最常见也是最直接的煤炭转化过程。
煤炭经过燃烧可以释放出大量的热能,通常用于供暖、电力发电和工业生产等领域。
燃烧技术以燃烧反应为基础,利用煤炭中的碳、氢等元素与空气中的氧气发生氧化反应,生成二氧化碳、水蒸气等物质释放出能量。
而随着科技的进步,燃烧技术也逐渐发展出了一系列的改进方法,如煤粉燃烧、煤气化燃烧等,以提高燃烧效率和减少环境污染。
二、气化技术气化技术是将煤炭转化为可用于燃料或化工原料的气体产品的过程。
通过气化,煤炭中的碳、氢等元素与水蒸气或空气中的氧气作用产生可燃气体,如合成气、可燃气体、焦炉煤气等,常用于化工、炼铁等产业。
气化技术具有能源高效利用、减少污染排放等优势。
目前,常见的气化技术包括煤气化、水煤浆气化等,其中煤气化是将煤炭在高温下与气体反应生成气体燃料的重要方法。
三、煤炭液化技术煤炭液化技术是将固态的煤炭转化为液态燃料的过程。
通过该技术,可以将煤炭中的碳、氢等元素与氢气或氧化剂反应,生成液体燃料,如煤油、柴油等。
液化技术可以提高煤炭资源的综合利用率,减少污染排放,并且液体燃料易于储藏和运输。
煤炭液化技术的发展主要包括直接煤液化和间接煤液化两种形式,前者是直接将煤炭加热并与氢气反应生成液体燃料,后者是通过先将煤炭气化形成合成气,再进行催化反应得到液体燃料。
四、煤炭热解技术煤炭热解技术是利用高温条件下对煤炭进行热分解,生成固体炭、液态产物和气态产物的过程。
热解技术可以将煤炭中的有机物分解为固体、液体和气体三种产品,其中固体产品可用于制备炭材料,液体产品可用于制备化工原料和燃料,气体产品可用于化工、能源等领域。
煤炭热解技术具有高效能源转化、低碳排放等优势,是实现煤炭清洁利用的重要途径。
五、煤炭阳离子改性技术煤炭阳离子改性技术是利用物理、化学方法改变煤炭的表面性质和结构,使其具有更好的吸附性和催化性能的过程。
该技术可以增加煤炭的微孔结构、提高比表面积,并改善煤炭的化学性质和表面活性,从而提高煤炭的气体吸附、液体吸附和催化性能。
煤的液化和气化
煤的液化和气化煤的液化是先进的煤炭转化技术之一, 是以煤为原料制取液体烃类为主要产品的技术。
煤液化分为煤的直接液化和煤的间接液化两大类.一.煤炭直接液化是把煤直接转化成液体燃料,煤直接液化的操作条件苛刻,对煤种的依赖性强。
典型的煤直接液化技术是在400摄氏度、150个大气压左右将合适的煤催化加氢液化,产出的油品芳烃含量高,硫氮等杂质需要经过后续深度加氢精制才能达到目前石油产品的等级。
一般情况下,一吨无水无灰煤能转化成半吨以上的液化油。
煤直接液化油可生产洁净优质汽油、柴油和航空燃料。
但是适合于大吨位生产的直接液化工艺目前尚没有商业化,主要的原因是由于煤种要求特殊,反应条件较苛刻,大型化设备生产难度较大,使产品成本偏高。
煤直接液化煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。
裂化是一种使烃类分子分裂为几个较小分子的反应过程。
因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。
二.煤间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
特点在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
编辑本段煤间接液化技术的发展70 年代以后, 德国、美国、日本等主要工业发达国家, 为提高效率、降低生成成本, 相继开发了许多我国煤炭直接液化技术的开发研究为了解决我国石油短缺的问题, 寻求廉价生产人造石油的有效途径, 我国自1980 年重新开展煤炭直接液化技术研究。
在煤炭科学研究总院北京煤化学研究所建成具有先进水平的煤炭直接液化、油品提质加工、催化剂开发和分析检验实验室, 开展了基础和技术研究, 取得了一批科研成果, 培养了一支技术队伍, 为深入进行工艺开发和筹建大型煤炭直接液化生产厂奠定了基础。
煤液化技术
第一章绪论1、我国石油能源面临的形势和对策答:形势:我国石油消费不断增长,大大超过了同期原油生产的增长速度,致使石油共需缺口逐年扩大,不得不进口以补充国内资源不足对策:加大国内石油勘探开发力度,加强国际间的合作多渠道进口石油资源和增加石油的战略储备,加强对煤炭资源的利用。
2、简述煤炭液化的发展史答:1913年,德国人Bergius发明煤炭在高温高压下加氢能转化成液体油品;1931年,德国IG公司的煤直接液化厂投入运转,生产能力为产油10万吨/年第二次世界大战期间,德国有12家生产厂,总生产能力423万吨/年;40年代,日本、英国、美国也有试验装置。
1949年,美国矿业局建立了煤炭处理量为50~60 t/d中试装置;1952年,美国矿业局制定了煤炭液化的发展计划,规划建设2座煤直接液化厂联合碳化物公司;从1935年开始就研究煤炭直接液化技术,到五十年代初发展到300 t/d的试验规模,试图生产各种芳香烃类化学品; 1960年,成立了煤炭研究办公室(OCR)一直支持一些公司和研究机构从事以气化、液化为重点的煤炭加工利用的研究。
3、为什么说煤炭液化是我国的战略选择答:中国有丰富的可供液化的煤炭资源;中国石油资源短缺;中国政府非常重视石油资源短缺问题,地方积极性也高;是实现煤炭资源高效洁净利用的有效途径之一,提高了煤炭转换过程中的效率及控制了污染,提供了优质替代燃料,优化终端能源结构,保障能源安全。
第二章煤炭与石油的基本性质和分类1、煤的大分子是如何构成的?答:煤的大分子是由多个结构相似的“基本结构单元”通过桥键连接而成。
基本结构单元类似于聚合物的聚合单体,可分为规则部分和不规则部分。
2、什么是煤的族组成?答:在一定条件下,对煤的分子结构没有破坏的情况下,进行分子分离后得到的组成3、煤的溶剂抽提有哪几种?答:普通、特殊、抽提热解、化学抽提氢解和超临界抽提4、什么是煤的容胀?答:高聚物中的高分子键通过一定数量的化学键相交联形成三维空间结构5、发动机燃料有哪几种?答:汽油、柴油、喷气燃料6、对液体燃料有哪些要求?答:蒸发性、燃烧性、安定性、腐蚀性、低温流动性7、原油及其馏分族组成表示中,N、P、O、A 分别表示什么?答:分为链烷烃<P>、环烷烃<N>、烯烃<O>、芳香烃<A>8、什么是催化重整?原料和产物是什么?答:催化重整是指在催化剂作用下,烃类分子的结构发生重排生成所需要的新的化合物的工艺过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、世界能源组成
三、世界能源概况
据英国石油公司于2000年的统计数据显示,煤炭占世界化石能源剩 余可开采的64.1%,而石油占18.1%,天然气占17.8%,按目前化石能 源的开采量计算,石油可以开采约40年,天然气可以开采约60年,而煤炭 则可以开采200年以上。由于煤炭的资源量和储采比大大超过石油和天然气, 因此在未来50年内,煤炭仍将是世界主要能源之一,是世界经济发展的重要动力支柱。
(2)煤加氢液化催化剂种类
合成催化剂主要由Co、Fe、Ni等周期表第VIII族金属制成,为了提高催化剂的活性、 稳定性和选择性,除主成分外还要加入一些辅助成分,如金属氧化物或盐类。大部分催化 剂都需要载体,如氧化铝、二氧化硅、高岭土或硅藻土等。合成催化剂制备后只有经 CO+H2或H2还原活化后才具有活性。目前,世界上使用较成熟的间接液化催化剂主要有 铁系和钴系两大类,SASOL使用的主要是铁系催化剂。在SASOL固定床和浆态床反应器中 使用的是沉淀铁催化剂,在流化床反应器中使用的是熔铁催化剂。
一、煤间接液化的工艺路线
煤炭首先与氧气发生部分氧化 反应生成以一氧化碳和氢气为主要 组分的合成气,净化后的合成气在 催化剂的作用下在反应器中发生 “费-托”合成反应,生成合成油品, 合成油品经进一步加工后生产汽油、 柴油等车用运输燃料。
二、煤间接液化技术的特点
(1)适用煤种广泛,由于使用CO和H2合成,故可以利用 任何廉价的碳资源。 (2)可以在现有化肥厂已有气化炉的基础上实现合成油。 (3)可以独立解决某一特定地区各种油品的要求。如F-T (4)可根据油品市场的需要调整产品结构,生产灵活。 (5)工艺过程中的各单元与石油炼制工业相似,有丰富 的操作运行经验可借鉴。 (6)油收率低于直接液化,产品油成本比直接液化高。
四、我国的能源概况和国情
(1)概况
国际能源机构(IEA)预测中国石油消费量依赖进口的程度2010年为61%, 2020年为76.9%,2020年我国石油年消费量可达到5亿吨以上,进口原油将超过国 产石油量。这样大的石油消费量和进口量将对中国的经济发展和能源安全造成很大压 力,因此,以煤炭为主要能源的格局在今后一个较长的时期内不会改变。
(3)烷烃生成反应
nCO+(2n+1)H2→CnH2n+2+nH2O 2nCO+(n+1)H2→CnH2n+2+nCO2 3nCO+(n+1)H2O→CnH2n+2+(2n+1)CO2 nCO2+(3n+1)H2→CnH2n+2+2nH2O
(4)烯烃生成反应
nCO+2nH2→CnH2n+nH2O 2nCO+nH2→CnH2n+nCO2 3nCO+nH2O→CnH2n+2nCO2 nCO2+3nH2→CnH2n+2nH2O 间接液化的主要反应就是上面的反应,由于反应条件的不同,还有甲烷生成反应, 醇类生成反应(生产甲醇就需要此反应),醛类生成反应等等。
煤液化生产技术
深加工4班 王振栋
☆本节课的研讨内容☆
• • • • • 1、了解世界能源组成以及我国能源概况和国情 2、煤的形成(★★) 3、煤液化概述(★★★) 4、煤直接液化生产技术(★★★★) 5、煤间接液化生产技术(★★★★)
(★
(注:“★”表示需要掌握的程度)
一、能源
能源亦称能量资源或能源资源,是指自然 界能为人类提供某种形式能量的物质资源。
三、煤的液化工艺有两大类
(1)、煤直接液化
已接近工业化的煤直接液化技术有:德国IGOR工艺,美国HTI工艺,日本 NEDOL工艺; (2)、煤间接液化 已商业化煤间接液化技术有:南非Sasol固定床高温工艺,浆态床低温工艺, 流化床高温工艺,壳牌公司固定床工艺。
四、煤炭液化的功能
与石油相比煤炭液化必须具备以下4大功能: (1)、将煤炭的大分子结构分解成小分子; (2)、提高煤炭的H/C原子比,以达到石油的H/C原子比水平; (3)、脱除每天中氧、氮、硫等杂原子,使液化油的质量达到石油产品的标准; (4)、脱除煤炭中无机矿物质。
一、什么是煤液化
煤液化就是指将煤通过一系列化学加工,转化为液体燃料及其他化学品的过程。 煤液化是煤炭转化的高科技产业,是一种彻底的高级洁净煤技术,是我国的能源战略 储备技术。
二、煤液化工艺开发大致经历以下3个阶段
1、第二次世界大战前及二战期间,以德国为首的,因军事上需要,开发和建设 以压力为70.0MPa的高温高压加氢液化工艺的生产装置,是煤液化首次工业化阶段。 2、1973年中东石油危机以后,以美国、德国为代表的工业发达国家重新关注煤 液化技术研究与开发,主要目标是开发新工艺,为合成石油工业补充天然石油的不足 奠定基础。 3、进入20世纪90年代中后期,以中国、日本为代表的亚洲国家,由于石油资源 严重缺乏,积极开发煤液化技术,特点是以高分散催化剂为核心,液化反应压力在 20.0MPa左右,日本完成150t/d的工业示范试验,中国完成三套不同工艺的每年百万 吨以上液化油产品的工业生产装置的可行性试验研究报告,目前100万吨油的工业生 产示范装置已初具规模。
三、煤直接液化中催化剂Leabharlann 特点及种类(1)催化剂的特点:
首先,催化剂要能够活化反应物,加速加氢反应速率,提高煤炭液化的转 化率和油收率。 其次,催化剂要能够促进溶剂的再氢化和氢源与煤之间的氢传递。 再次,催化剂要具有选择性。
(2)煤加氢液化催化剂种类
① 金属催化剂,主要为钴、钼、
镍、钨等,多用重油加氢催化剂。 ② 铁系催化剂,含氧化铁的矿物 或铁盐,也包括煤中含有的铁矿物。 ③ 金属卤化物催化剂,如SnCl2 , ZnCl2等是活性很好的加氢催化剂,但 由于回收和腐蚀方面的困难还没有正式 用于工业生产。
一、煤直接液化的工艺路线
就是把经过洗选加工的精煤磨细、干燥,制 备成干的细煤粉,干煤粉与装置自身生产的重溶 剂油制备成 可以用泵输送的油煤浆,油煤浆经泵 增压后与氢气混合经预热后在高温、高压的条件下, 在催化剂的作用下在反应器中发生加氢反应生成液 体油品的过程。
二、煤直接液化的工艺特点
(1)、液化油收率高,例如采用HTI工艺,我国神华煤的油收率可高达63%~68%。 (2)、煤消耗量小,如我国西部某直接液化项目,生产1吨液化油,需消耗原料洗精 煤2.4吨左右(包括23.3%气化制氢用原料煤,不计燃料煤)。 (3)、馏分油以汽、柴油为主,目标产品的选择性相对较高。 (4)、油煤浆进料,设备体积小,投资低,运输费用低。 (5)、制氢方法有多种选择,无需完全依靠于煤的气化。 (6)、反应条件相对较苛刻,如德国老工艺液化压力甚至高达70MPa,现代工艺如 IGOR 、HTI 、NEDOL等液化压力也达到17~30MPa,液化温度430~470℃。 (7)、出液化反应器的产物组成较复杂,液、固两相混合物由于黏度较高,分离相对 困难。 (8)、氢耗量大,一般在6%~10%,工艺过程中不仅补充大量新氢,还需要循环油 作供氧溶剂,使装置的生产能力降低。
五、煤炭液化的基本原理
煤主要是由C、H元素所组成,如果能够创造适宜的条件,使煤的相对分子质量 变小,提高产物的H/C原子比,那么就有可能使煤转化为液体燃料油。为了将煤中的 有机质高分子化合物变成低分子化合物,就必须切断煤化学结构中的C-C化学键,切 断这些化学键久必须供给一定的热量,如热能。同时,为了提高H/C原子比,必须向 煤中加入足够的氢。
(2)国情
我国是世界上煤炭资源最丰富的国家之一,煤炭储量远大于石油、天然气储量。 我国能源特点是“富煤、少油、少气”。我国能源利用存在着“综合利用效率低;能 耗高、节能潜力大;生产效率低、成本高;环境污染较为严重”等问题。
五、发展煤液化的意义
利用我国丰富的煤炭资源,实施“以煤代油”和“以煤造油” 是优化终端能源,实现石油供应多元化和保证能源安全的重大决 策 ,符合我国国情和可持续发展的需求。因此,煤液化技术的 开发和产业化具有重要意义。包括以下几点:
四、煤间接液化的反应机理
煤预热处理→气化→合成气净化→F-T合成→粗油品加工→成品油 主要反应有:
(1)烃类生成反应
CO+2H2→(-CH2-)+H2O
(2)水气变换反应
CO+ H2O→H2+ CO2 由以上两式可得合成反应的通用式: 2CO+H2→(-CH2-)+ CO2 由以上两式可以推出烷烃和烯烃生成的通用计量式如下:
四、煤直接液化的反应机理
主要发生四类化学反应 (1)煤热裂解反应 (2)加氢反应 (3)脱O、S、N杂原子反应 (4)缩合反应
五、煤直接液化工艺
具有代表性的工艺有以下几种:
(1)溶剂精制煤工艺(SRC)(2)供氢溶剂法(EDS)(3)氢煤法(H-Coal)(4)德国IGOR工 艺 (5)俄罗斯低压加氢液体工艺 (6)日本NEDOL煤液化工艺 (7)煤催化两段液化工艺 (8)煤的HTI工艺 (9)煤共处理工艺 (10)神华煤液化工艺 (4)德国煤液化精制联合工艺-IGOR工艺。该工艺由德国鲁尔煤炭公司与VEBA石油公司和 DMT矿冶及检测技术公司合作开发。其主要特点是反应条件比较苛刻,温度470℃,压力30MPa; 催化剂使用炼铝工业的废渣(赤泥);液化反应和液化油加氢精制在一个高压系统内进行,可一次得 到杂原子含量极低的液化精制油,该液化油经过蒸馏就可以得到十六烷值大于45的柴油,汽油馏分 再经重整即可得到高辛烧值汽油;循环溶剂是加氢油,供氢性能好,煤液化转化率高。 (6)日本NEDOL工艺。该工艺由日本新能源产业技术综合开发机构(NEDO)组织十几家大公司合 作开发成功,其主要特点是反应压力较低,压力为17-19MPa,反应温度为455-465℃;催化剂采 用合成硫化铁或天然硫铁矿;固液分离采用减压蒸馏的方法;配煤浆用的循环溶剂单独加氢,以提高溶 剂的供氢能力;液化油含有较多的杂原子,还须加氧提质才能获得合格产品。 (7、8)美国两段催化煤直接液化工艺-HTI工艺。HTI工艺是在H-Coal工艺基础上发展起来的, 采用近10年来开发的悬浮床反应器和HTI拥有专利的铁基催化剂,其主要特点是反应条件比较缓和, 反应温度440-450℃,反应压力17 MPa;采用特殊的液体循环沸腾床(悬浮床)反应器,达到全返 混反应器模式;催化剂是采用HTI专利技术制备的铁系胶状催化剂,此催化剂活性高,用量少;在 高温分离器后面串联有在线加氢同定床反应器,对液化油进行加氢精制;同液分离采用|临界溶剂萃 取的方法,从液化残渣中最大限度回收重质油,从而大幅度提高了液化油收率;液化油中大于 350℃馏分还可作为催化裂化原料。 ( 10 )中国神华煤直接液化工艺。中国神华煤直接液化工艺的主要技术特点是煤浆制备全部 采用供氢性循环溶剂。由于循环溶剂预加氢,使得液化反应条件温和,系统操作稳定性提高;采用 两个强制循环悬浮床反应器,这样反应器温度分布较为均匀,产品性质也很稳定;采用减压蒸馏的 方法进行液化油和固体物的分离,残渣中含油量少,产品收率较高。