概率论连续型随机变量及其概率密度
概率论-2-3连续型随机变量及其概率密度
x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)
《概率论》第2章§4连续型随机变量及其密度函数
密度函数是描述连续型随机变量取值 规律的工具,通常用大写字母f(x)表示 ,f(x)在x处的函数值表示随机变量在x 点附近取值的“概率密度”。
性质与定理
非负性
密度函数f(x)在整个实数范围 内都是非负的,即f(x)≥0。
正态分布
又称高斯分布,是一种连续概率分布。正态分布 是自然界中最常见的分布之一,许多自然现象和 社会现象都服从或近似服从正态分布。其密度函 数呈钟形曲线,关于均值对称。
指数分布
常用于描述某些随机事件发生之间的时间间隔, 如无线电通信中的信号到达间隔等,其密度函数 呈指数形式衰减。
其他分布
除了上述三种分布外,还有许多其他类型的连续 型随机变量分布,如t分布、F分布、贝塔分布等 。这些分布在实际问题中也有广泛的应用。
03 概率计算与应用
概率计算公式及方法
概率密度函数
常用的概率分布
对于连续型随机变量,其概率通过概率 密度函数进行描述,该函数表示随机变 量在某个取值点附近的概率分布情况。
ቤተ መጻሕፍቲ ባይዱ
如正态分布、均匀分布、指数分布等,这些 分布具有特定的概率密度函数和累积分布函 数形式,可用于描述不同类型的随机现象。
累积分布函数
性质
多维随机变量具有一维随机变量的一些基本性质,如分布函数性质、独立性等。此外, 多维随机变量还具有一些特殊的性质,如多维随机变量的每一个分量都是一维随机变量。
联合密度函数概念及性质
要点一
概念
对于多维连续型随机变量(X1, X2, ..., Xn),如果存在非负可积 函数f(x1, x2, ..., xn),使得对Rn中的任意区域D,有P{(X1, X2, ..., Xn) ∈ D} = ∫∫...∫f(x1, x2, ..., xn)dx1dx2...dxn,则 称f(x1, x2, ..., xn)为(X1, X2, ..., Xn)的联合密度函数。
概率论连续型随机变量
概率论连续型随机变量概率论是数学的一个分支,主要研究随机现象的概率规律和统计规律。
在概率论中,随机变量是一种可以随机取不同值的变量。
连续型随机变量是指取值范围为连续的变量,其概率分布函数可以用密度函数来描述。
连续型随机变量的概率密度函数(Probability Density Function,简称PDF)是描述随机变量取值概率的函数。
对于一个连续型随机变量X,其概率密度函数f(x)满足以下两个条件:1)f(x)≥0,对于所有的x;2)∫f(x)dx=1,即概率密度函数在整个取值范围上的积分等于1。
概率密度函数的性质决定了连续型随机变量的一些特点。
首先,连续型随机变量的概率是通过对其概率密度函数进行积分得到的。
例如,对于一个连续型随机变量X,其取值在[a,b]之间的概率可以表示为P(a≤X≤b)=∫f(x)dx。
其次,连续型随机变量的概率密度函数可以用来计算随机变量落在某个区间的概率。
例如,对于一个连续型随机变量X,可以计算P(X≥a)=∫f(x)dx。
对于连续型随机变量,我们也可以计算其期望值和方差。
连续型随机变量X的期望值E(X)表示随机变量的平均取值,可以通过对X乘以其概率密度函数f(x)后积分得到。
方差Var(X)表示随机变量取值的离散程度,可以通过计算E((X-E(X))^2)得到。
连续型随机变量常见的概率分布有正态分布、指数分布、均匀分布等。
其中,正态分布是最重要的连续型概率分布之一。
正态分布的概率密度函数是一个钟形曲线,其均值和标准差决定了曲线的位置和形状。
正态分布在自然界和社会科学中都有广泛的应用,如身高、体重、考试成绩等。
指数分布是描述事件发生时间间隔的概率分布。
指数分布的概率密度函数是单峰递减的曲线,其形状由参数λ决定。
指数分布在可靠性工程、排队论、风险分析等领域有广泛应用。
均匀分布是描述随机变量在一个区间内取值的概率分布。
均匀分布的概率密度函数是一个常数,区间内所有取值的概率相等。
概率密度计算公式
概率密度计算公式概率密度函数(Probability Density Function,简称PDF)是概率论和统计学中的一种函数形式,用于描述随机变量在各个取值上的概率密度。
概率密度函数表示了随机变量落在某个区间内的概率。
概率密度函数的计算公式如下:1. 连续型随机变量的概率密度函数计算公式:对于连续型随机变量X,其概率密度函数f(x)满足以下条件:1)f(x)大于等于0,对于所有的x;2)在整个定义域上的积分等于1,即∫f(x)dx=1。
概率密度函数f(x)计算公式一般为:f(x) = F'(x)其中,F(x)是随机变量X的累积分布函数(Cumulative Distribution Function,简称CDF),F'(x)表示对CDF求导。
通过概率密度函数,我们可以计算随机变量落在某个区间内的概率。
对于连续型随机变量X,落在区间[a, b]内的概率可以通过计算概率密度函数在区间[a, b]上的积分得到:P(a ≤ X ≤ b) = ∫[a, b] f(x)dx2. 离散型随机变量的概率密度函数计算公式:对于离散型随机变量X,其概率密度函数f(x)满足以下条件:1)f(x)大于等于0,对于所有的x;2)在整个定义域上的概率之和等于1,即∑f(x) = 1。
离散型随机变量X的概率密度函数计算公式为:f(x) = P(X = x)其中,P(X = x)表示随机变量X取值为x的概率。
通过概率密度函数,我们可以计算离散型随机变量取某个特定值的概率。
对于离散型随机变量X,取值为x的概率可以通过计算概率密度函数f(x)得到。
概率密度函数是概率论和统计学中重要的概念之一,它可以描述随机变量的分布情况。
通过计算概率密度函数,我们可以得到随机变量在各个取值上的概率密度,进而计算出随机变量在某个区间内的概率。
概率密度函数的计算是概率论和统计学研究的基础,广泛应用于各个领域。
总结起来,概率密度函数是用来描述随机变量在各个取值上的概率密度的函数形式。
概率论 7连续型随机变量
作业
• 习题2 10,11,12,13,15
随机变量 X 的分布函数为 x0 0 2 F ( x) x 0 x 1 1 x 1
(1)求 P (0.3 X 0.7)
(2)X的密度函数
2 2
(1) P (0.3 X 0.7) F (0.7) F (0.3) 0.7 0.3 0.4
P{ a X b}= P{ a X b} P{ a X b} = P{ a X b}= f ( x ) dx
a b
例1:已知密度函数求概率
随机变量 X 的概率密度为 a cos x f ( x) 0
x
求 P (0 X
P ( A ) P{10 X 15 } P ( 25 X 45 } P{55 X 60 }
5 20 5 60 1 2
2、 指数分布(exponential distribution)
e ,x 0 若 X ~ f ( x )= 0, x 0
(2)已知该电子元件已使用了1.5年,求它还能使用两 年的概率为多少? 解
3e 3 x f ( x) 0
x0 x 0,
6
(1) p{ X 2}
3e
2
3 x
dx e
( 2 ) p{ X 3 .5 | X 1 .5}
p{ X 3 .5, X 1 .5} { X 1 .5}
密度函数的几何意义为
P ( a X b )= f ( u ) du
a
b
X在某区间的概率等于密度函数在此区间的定积分
2. 密度函数的性质
概率论 2.3(连续型随机变量)
x
a
[ x由概率密度求分布函数]
5.F ( x) f ( x)(x为f ( x)的连续点 ).[由分布函数求概率密度]
由性质5在f(x)的连续点x 处有
F ( x Δ x) F ( x) f ( x) lim Δ x 0 Δx P( x X x Δ x) lim . Δ x 0 Δx
2.3.2 常用连续分布
【补充例】 (等待时间)公共汽车每10分钟按时
通过一车站,一乘客随机到达车站.求他等车时
间不超过3分钟的概率. 解 设X表示他等车时间(以分计),则X是 一个随机变量,且 X ~ U (0,10). X的概率密度为
1 , 0 x 10, f ( x ) 10 其 它. 0,
这两条性质是判定一 个函数 f(x)是否为某 个随机变量 X的概率 牛顿-莱布 尼兹公式 密度函数的充要条件 .
[确定待定参数]
b
3.P{a X b} 1 f ( x)dx F (b) F (a); [求概率]
4.F ( x)
f ( x)
f (t )odt( x );
解: (1) 由
f ( x ) d x 1, 得
3 2 3 3 0
1
f ( x )dx C (9 x )dx 2C (9 x 2 )dx
x3 3 2C (9 x ) |0 36 C 3
2.3.1 连续型随机变量及其概率密度
即 有C 1
3 0
所求概率为 P{ X 3}
3 f ( x )dx , 10
2.3.2 常用连续分布
【例2.12】设随机变量 X在(2,5)上服从均匀分布,
概率论连续型随机变量
概率论连续型随机变量概率论是数学的一个分支,研究随机现象的数学模型和计算方法。
其中,连续型随机变量是概率论中重要的概念之一。
本文将介绍连续型随机变量的基本概念、特征以及相关的概率分布。
一、连续型随机变量的概念在概率论中,随机变量是指对随机现象结果的数值化描述。
连续型随机变量是指取值在某个区间内的随机变量。
与之相对的是离散型随机变量,其取值是有限个或可数个的。
连续型随机变量与离散型随机变量的主要区别在于其取值的特点。
连续型随机变量的取值可以是任意的实数,在某个区间内可以取无穷多个不同的值。
二、连续型随机变量的特征连续型随机变量的特征可以通过其概率密度函数(Probability Density Function,简称PDF)来描述。
PDF是描述连续型随机变量概率分布的函数,可以用来计算随机变量落在某个区间内的概率。
连续型随机变量的概率密度函数具有以下两个性质:1. 非负性:对于任意的实数x,概率密度函数f(x)大于等于0。
2. 归一性:连续型随机变量的概率密度函数在整个取值范围上的积分等于1。
三、连续型随机变量的概率分布连续型随机变量的概率分布可以通过其概率密度函数来确定。
常见的连续型随机变量概率分布包括均匀分布、正态分布、指数分布等。
1. 均匀分布:均匀分布是最简单的连续型随机变量概率分布之一。
在均匀分布中,随机变量在某个区间内的取值是等可能的。
均匀分布的概率密度函数是一个常数,表示在某个区间内的概率是相等的。
2. 正态分布:正态分布是最重要的连续型随机变量概率分布之一。
许多自然现象和实际问题都服从正态分布。
正态分布的概率密度函数呈钟形曲线,具有对称性。
其均值和标准差决定了曲线的位置和形状。
3. 指数分布:指数分布是描述随机事件发生时间间隔的连续型随机变量概率分布。
指数分布的概率密度函数是一个指数函数,表示事件发生的概率随时间的推移而逐渐减小。
四、连续型随机变量的期望和方差连续型随机变量的期望和方差是衡量随机变量分布的重要指标。
2.4连续型随机变量及其概率密度函数
-?
a b- a
连续型随机变量及概率密度函数
注
蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3
连续型随机变量与概率密度函数
连续型随机变量与概率密度函数随机变量是概率论中的重要概念之一,它描述了在一次试验中可能发生的不确定事件的数值结果。
随机变量分为离散型和连续型两种。
在本文中,我们将重点介绍连续型随机变量以及与之相关的概率密度函数。
连续型随机变量是指在一定区间内可能取任意实数值的随机变量,其结果可以是无限多的。
与离散型随机变量相比,连续型随机变量通常与测量、计量有关,例如时间、长度、重量等。
为了描述这种连续型随机变量的概率分布,我们引入了概率密度函数的概念。
概率密度函数是用来描述连续型随机变量的概率分布的函数。
它在某个取值点上的值并不代表概率,而是表示这个点附近的概率密度。
具体来说,对于概率密度函数f(x)而言,它满足以下两个条件:1. f(x) ≥ 0,即概率密度函数的取值非负;2. 在概率密度函数的取值范围内,其面积等于1,即∫f(x)dx = 1。
概率密度函数与概率的关系可以通过累积分布函数来进行描述。
累积分布函数F(x)定义为概率密度函数f(x)在某一取值点x及其左侧区间上的积分,即:F(x) = ∫[a,x]f(t)dt其中a表示概率密度函数f(x)的定义域起点。
连续型随机变量的期望值和方差也可以通过概率密度函数来计算。
对于一个随机变量X,其期望值E(X)定义为:E(X) = ∫xf(x)dx方差Var(X)定义为:Var(X) = ∫(x - E(X))^2f(x)dx通过概率密度函数的求积分运算,我们可以计算出连续型随机变量的期望值和方差,从而更好地理解和描述随机变量的特征。
在实际应用中,连续型随机变量与概率密度函数经常用于模型建立、数据分析和统计推断等领域。
例如,在物理学中,速度、温度、能量等变量通常是连续型随机变量,通过概率密度函数的分析,可以研究其分布规律以及相应的统计特性。
在金融学中,股票价格的变化、利率的波动等也可以视为连续型随机变量,利用概率密度函数可以预测未来风险并制定相应的投资策略。
总结起来,连续型随机变量与概率密度函数的概念和应用在概率论和统计学中至关重要。
连续型随机变量及其概率密度
是一个随机变量, 且X ~ N (d , 0.52 ).
(1) 若d 90, 求 X 小于 89 的概率.
(2) 若要求保持液体的温度至少为 80oC 的概率不
低于 0.99,问d 至少为多少? 解 (1) 所求概率为
P{ X
89}
89 90 0.5
(2)
1
(2)
三、小结
1. 连续型随机变量
x
F(x) f (t)dt
分布函数 概率密度
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)
指数分布
3. 正态分布是概率论中最重要的分布 正态分布有极其广泛的实际背景, 例如测量
误差, 人的生理特征尺寸如身高、体重等 ,正常 情况下生产的产品尺寸:直径、长度、重量高度, 炮弹的弹落点的分布等, 都服从或近似服从正态 分布.可以说,正态分布是自然界和社会现象中最 为常见的一种分布, 一个变量如果受到大量微小 的、独立的随机因素的影响, 那么这个变量一般 是一个正态随机变量.
F(x)
1
1x
e 2000
,
0,
x 0, x 0.
(1) P{X 1000} 1 P{X 1000} 1 F (1000)
1
e 2 0.607.
(2) P{ X 2000 X 1000} P{ X 2000, X 1000} P{ X 1000} P{ X 2000} P{ X 1000}
1
e
(
x μ 2σ2
)2
d
x
概率2-3连续型随机变量及其概率密度-2
x
e
dt , x
概率论
( x)
( x )
概率论
7. 标准正态分布与一般正态分布的关系 定理1
X 若 X ~ N , , 则 Z ~ N 0 , 1 .
2
标准正态分布的重要性在于,任何一个一 般的正态分布都可以通过线性变换转化为标准 正态分布.
概率论
例2 在一公共汽车站有甲、乙、丙 3人,分别等1、2、3路公交车,设 每人等车时间(分钟)都服从[0,5] 上的均匀分布,求3人中至少有2人 等车时间不超过2分钟的概率。
概率论
(II)指数分布 1. 含义:随机变量X描述对某一事件发生的 等待时间,各种不会变老的物品寿命。 2. 密度函数:若 r .v. X具有概率密度
x 2
2
Φ(x)
概率论
作业
58页,24,25,26,27,29,30
概率论
3σ准则
由标准正态分布的查表计算可以求得,
当X~N(0,1)时, P{|X| ≤ 1}=2 Φ(1)-1=0.6826 P{|X| ≤ 2}=2 Φ(2)-1=0.9544 P{|X| ≤ 3}=2 Φ(3)-1=0.9974 这说明,X的取值几乎全部集中在[-3,3]区间
内,超出这个范围的可能性仅占不到0.3%.
概率论
(2) X ~ N ( , 2 ), 求区间概率
X 若 X ~ N ( , ), 则 Y ~N(0,1)
2
P{ a X
a b Y } b} P{
b a ( ) ( )
概率论
例3 若 r. v. X~N(10,4),求 P{10<X<13}, P{│X-10│<2}. 例4 若 r. v. X~N(μ,σ2), P{X ≤ -1.6}=0.036, P{X ≤ 5.9}=0.758,求 P{X> 0}
推导连续随机变量的分布函数与概率密度函数
推导连续随机变量的分布函数与概率密度函数连续随机变量是概率论中的重要概念之一,通过分布函数和概率密度函数可以描述和推导连续随机变量的性质。
本文将就连续随机变量的分布函数和概率密度函数进行详细推导和说明。
一、连续随机变量的分布函数对于一个连续随机变量X,定义其分布函数为F(x),即:F(x) = P(X ≤ x),其中x为任意实数。
分布函数F(x)具有以下性质:1. F(x)是单调增加的函数;2. 0 ≤ F(x) ≤ 1,对于任意实数x;3. 当x → -∞时,F(x) → 0;4. 当x → +∞时,F(x) → 1。
接下来,我们通过对分布函数求导,可以得到连续随机变量的概率密度函数。
二、连续随机变量的概率密度函数定义连续随机变量X的分布函数为F(x),则连续随机变量X的概率密度函数f(x)可以通过以下公式得到:f(x) = dF(x)/dx根据导数的定义,f(x)表示分布函数F(x)关于x的导数。
概率密度函数f(x)具有以下性质:1. f(x) ≥ 0,对于任意实数x;2. ∫[a,b] f(x)dx = P(a ≤ X ≤ b),其中[a,b]表示区间[a,b]上的积分。
通过概率密度函数,我们可以计算出连续随机变量在某一区间内的概率。
三、假设X是一个连续随机变量,通过以下步骤可以推导得到其分布函数和概率密度函数:1. 确定X的分布函数F(x);2. 对分布函数F(x)求导,得到概率密度函数f(x)。
需要注意的是,不同类型的连续随机变量拥有不同的分布函数和概率密度函数。
常见的连续随机变量包括均匀分布、正态分布、指数分布等。
以正态分布为例,其分布函数和概率密度函数分别为:分布函数:F(x) = (1/2)[1 + erf((x-μ)/(σ√2))]概率密度函数:f(x) = (1/σ√(2π)) * exp(-(x-μ)²/(2σ²))其中,μ为均值,σ为标准差,erf为误差函数。
连续随机变量及其概率密度函数
连续随机变量及其概率密度函数在概率论与数理统计中,随机变量是指在一个概率空间中取值的变量。
其中,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。
连续随机变量的概率密度函数(Probability Density Function,简称PDF)是描述连续随机变量概率分布的函数。
1. 连续随机变量的定义连续随机变量通常用大写字母表示,如X。
与离散随机变量不同的是,连续随机变量的取值范围通常是无穷多个实数值。
例如,一个连续随机变量可以表示一个人的身高,其取值可以是任意的实数。
2. 连续随机变量的概率密度函数对于连续随机变量X,其概率密度函数f(x)定义了在X取值等于x时的概率密度,即X落在x附近的概率。
概率密度函数需要满足以下两个条件:- f(x) ≥ 0,对于任意的x∈R;- ∫f(x)dx = 1,即概率密度函数的积分等于1。
3. 连续随机变量的性质连续随机变量的概率可以通过求取积分来计算。
具体而言,如果要求X在区间[a, b]的概率,即P(a ≤ X ≤ b),可以使用概率密度函数进行计算:- P(a ≤ X ≤ b) = ∫[a, b]f(x)dx。
4. 连续随机变量的期望和方差连续随机变量的期望和方差的计算方式与离散随机变量有所不同。
- 连续随机变量X的期望值E(X)可以通过积分的方式计算:E(X)= ∫xf(x)dx。
- 连续随机变量X的方差Var(X)可以通过以下公式计算:Var(X)= E((X-E(X))^2) = ∫(x-E(X))^2f(x)dx。
5. 常见的连续分布函数在概率论与数理统计中,有许多常见的连续分布函数可用来描述实际问题中的连续随机变量。
以下是一些常见的连续分布函数: - 正态分布(Normal Distribution)- 均匀分布(Uniform Distribution)- 指数分布(Exponential Distribution)- 伽马分布(Gamma Distribution)- β分布(Beta Distribution)- 正太分布(Chi-Square Distribution)总结起来,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。
连续型随机变量的概率密度
连续型随机变量的概率密度随机变量是概率论和统计学中一个非常重要的概念。
在统计学和概率论中,随机变量分为两类:离散型随机变量和连续型随机变量。
对于离散型随机变量而言,它的取值只能取到一些离散的值,比如说正整数、0或1等,而对于连续型随机变量而言,它的取值可以是无限个,连续区间上的任一实数都可能是它的取值。
对于连续型随机变量而言,概率密度函数是描述随机变量取值概率的函数。
它是非负函数,同时也满足积分为1的条件。
概率密度函数的积分等于在该函数上方且在一定区间的曲线下方的面积,也即是该区间内该随机变量的概率。
例如,我们考虑一个连续型随机变量X取值为x的概率,可以采用以下公式来表示:P(X=x)=0而当考虑到随机变量X的值落在一个区间上时,我们就需要使用概率密度函数来描述。
具体的公式如下:P(a≤X≤b) = ∫a~b f(x) dx,其中f(x)是X的概率密度函数。
总的来说,我们可以使用概率密度函数来描述一个随机变量X 落在某一范围内的概率。
对于一个连续型随机变量的取值,可能会存在许多的概率密度函数,这些函数之间的区别在于函数的形状、曲线以及定义域范围等。
以正态分布为例,它是一种连续型随机变量的概率密度函数,通常用来描述一组实验数据的分布情况。
正态分布的概率密度函数的形状呈钟形,因此它也被称作钟形曲线。
在正态分布中,均值和标准差这两个参数决定了曲线的位置和宽度。
当均值为0且标准差为1时,我们也将这种正态分布称为标准正态分布。
对于连续型随机变量而言,概率密度函数的作用很重要。
通过概率密度函数,我们不仅可以求出随机变量的概率,而且还可以对随机变量本身进行分析。
例如,在随机变量的分析中,我们很常见地要考虑随机变量的期望和方差等指标,而这些指标的计算和概率密度函数密不可分。
此外,概率密度函数还可以帮助我们进行随机事件的确定。
根据概率密度函数,我们可以确定某事件发生的概率,从而能够进行更加准确的预测和决策。
综上所述,连续型随机变量的概率密度函数是统计学和概率论中一个基础性的概念,具有举足轻重的地位。
概率论与数理统计2_3连续型随机变量
《概率统计》
返回
下页
结束
若不计高阶无穷小,有
f ( x)
f (a)1ຫໍສະໝຸດ oP{ x X x x } f ( x )x
的概率近似等于
a
x
它表示随机变量 X 取值于 ( x, x x ]
x)) x x ff ((x
在连续型随机变量理论中所起的作用与
P X xk pk
x2 , f ( x) A, 0, 0 x 1 1 x 2 其它
求 (1)常数A; ( 2) P{0 X 3};
(3)分布函数F(x).
2
解: (1)由于f(x)是一个密度函数,
由
f ( x)dx 1, 得
2 2 1
x dx
0
1
Adx 1
《概率统计》
返回
下页
结束
例3.设随机变量X在[2,8]上服从均匀分布,求二次方程 y2+2Xy+9=0 有实根的概率.
解:由于X服从均匀分布,故X的概率密度为
1 , 2 x8 f ( x) 6 0, 其它
方程有实根等价于4X236≥0 , 即X≥3或X≤3. 从而, P{y2+2Xy+9=0 有实根}=P{X≥3}+P{X≤3}
1 f ( x) e 2
( x )2 2 2
f(x)
, x
其中μ,σ(σ>0)为常数,则称X服从参 数为μ,σ2的正态分布或高斯(Gauss) 分布,记作 X~ N(μ,σ2)
0
x
分布函数
F(x)
x 1 e 2 ( t )2 2 2
F ( x)
概率论课件之连续型随机变量及其概率密度PPT课件
例 某种电子元件的寿命(以小时计) X 服从指数分 布,其概率密度为
f
(
x)
1 100
e
x
100
,
x0
0,
其它.
(1) 求元件寿命至少为200小时的概率. (2) 将3只这种元件联接成为一个系统,设系统工作 的方式是至少2只元件失效时系统失效,又设3只元 件工作相互独立.求系统的寿命至少为200小时的概 率.
(4) 若f ( x )在点x 处连续,则有
F ( x) f ( x),
证明
x
F ( x) [ f (t)dt] f ( x).
例 设随机变量X
ae x , x 0;
的分布函数为
F ( x) b, 0 x 1; 1 ae x1 , x 1
求(1)a,b的值;(2)X的密度函数;(3)P(X>1\3).
解 (1)由于连续型随机变量的分布函数是连续的
lim F ( x) F (0)
x 0
又 lim F ( x) F (1) x 1
lim ae x b
x 0
b 1 a
故,a b 1 2
ab
(2)X的密度函数
1 2
e
x
,
f ( x) F ( x)
又F ( x)
1
2
,
x 0; 0 x 1;
2 πσ (3) 当 x 时, f ( x) 0; (4)曲线在 x μ σ 处有拐点;
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ, 改变 μ 的大小时, f ( x) 图形的形状不变 ,只是沿 着 x 轴作平移变换;
(7) 当固定 μ, 改变 σ 的大小时, f ( x) 图形的对称轴 不变,而形状在改变 , σ 越小,图形越高越瘦,σ越大, 图形越矮越胖 .
概率论与统计第二章第三节连续型随机变量
x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
1 dx d c
c ba
ba
例
1
5
所以
0 5 1 dx 0 1 (5 1) 1
14
4
0
x1
F
(
x)
1 4
(
x
1)
1 x5
1
1
x5
01
5
例:已知密度函数求概率
随机变量 X 的概率密度为
f
(
x)
a
cos
x
x
2
求 P(0 X )
0
其它
4
Step1: 利用密度函数的性质求出 a
f (x)dx 1
1
f (x)dx
2
a
cos
xdx
1
2
a 2
Step2: 密度函数在区间的积分得到此区间的概率
P(0 X )
4
1
cos
xdx
2
4 02
4
例:已知分布函数求密度函数
随机变量 X 的分布函数为
0 x0
F
(
x)
x
2
0 x 1
1 x 1
(1)求 P(0.3 X 0.7)
(2)X 的密度函数
x
x
F() P{X } F() P{X }
不可能事件 必然事件
F(x)在(, ) 内是左连续的,即 x0 (, )
有
F
(
x 0
)
F
(
x0
)
F (x) 1 是不是某一随机变量的分布函数? 1 x2
不是
因为 lim F(x) 0 x
1 函数 G(x) 1 x2
1
(x 0) 可作为分布函数 (x 0)
f (x)
f (x)dx 1
P{ x } 1
密度函数和分布函数的关系
积分关系
x
F(x) f (x)dx
导数关系
F(x) P{X x}
x
f (x)dx
若f (x)在x处连续,则F(x) f (x)
b
P(a X b) F (b) F (a) a f (x)dx
概率密度函数的意义 由于在f(x)的连续点处,有
b
P{a X b} a f (x)dx
则称X为连续型随机变量, f (x) 称为X 的概 率密度函数,简称概率密度或密度函数.
密度函数的区间上的积分 = 区间上的概率
P{x1 X x2}
x2 f (x)dx
x1
x1
x2
概率密度函数的性质 非负性
f (x) 0, x (, )
必然事件的概率
P(X=a)=0
对于连续型随机变量X,有
P(a X< b)= P(a<Xb)=P(a X b)=P(a<X<b)
b
a f (x)dx
X在某区间的概率等于密度函数在此区间的定积分
例:已知密度函数求分布函数
已知连续型随机变量X的概率密度为
f
( x)
1 4
0
1, 5
其它
求 X 的分布函数
y
x
解: 当 x<1 时 F (x) f (x)dx
x
0dx 0
0 1 2345 x
x
当1 x <5 时
x
1
x
F (x) f (x)dx f (x)dx f (x)dx
1
0 x 1 dx 1 (x 1)
14
4
x
当 x5 时 F (x) f (x)dx
1
5
x
f (x)dx f (x)dx f (x)dx
0, x 0
=00..71,,
0 x 1 1 x2
1, x 2
F(x)
1
01
2x
分布函数的性质
F(x)是单调非减函数
若 x1 x2 F (x1) F (x2 )
F (x2 ) F (x1) P{x1 X x2} 0
0≤ F(x) ≤1, 且
F() lim F(x) 0, F() lim F(x) 1
P(a≤X<b)=P(X < b)-P(X<a)= F(b)- F(a)
一般地,对离散型随机变量
X~P{X= xk}=pk, k=1, 2, …
其分布函数为
F(x) P{X x} pi
xi x
例1 设随机变量X具分布律如右表
试求出X的分布函数。
解 F(x)=P{X x}
X0 1 2 P 0.1 0.6 0.3
第二节 连续型随机变量及其概 率密度
离散型随机变量
取值是有限个或可列个,可一一列出; 变量的每一个可能取值都能计算出概率。
连续型随机变量 取值是某个区间或整个实数集; 取值不能一一列出; 对于这种变量,我们关心的是它的取值落
在某个区间的概率。
随机变量的分布函数
Distribution Function 分布函数的定义
(1) P(0.3 X 0.7) F(0.7) F(0.3) 0.72 0.32 0.4
(2)密度函数为
f
(x)
F(x)
2x 0
0 x 1 otherwise
均匀分布 Uniform Distribution
定义 若连续型随机变量X的概率密度为
1
f
(
x)
b
a
a xb
0 其它
则称X在区间 (a,b)上服从均匀分布.记为 X ~ U (a, b)
分布函数 F(x)的图形
用分布函数描述随机变量不如分布律直观, 对非离散型随机变量,是否有更直观的描述方法?
a
b
P{a X b} ?
概率密度函数
Probability density function p.d.f.
定义 设X为一随机变量,若存在非负实函数
f (x) , 使对任意实数 a < b ,有
f (x) F(x) lim F(x x) F(x) lim P(x Xx
它表明了随机变量X在区间 (x, x x]上的平均概
率,故称f(x)为密度函数。
P(x X x x) f (x)x.
用密度函数表示事件的概率
对于连续型随机变量X,它取任意指定实数值a 的概率为0,即:
分布函数
0,
F
(x)
x b
a a
,
1,
xa a xb xb
意义
0a
b
x
X“等可能”地取区间(a,b)中的值,这里的“等可
能”理解为:X落在区间(a,b)中任意等长度的子区间内
的可能性是相同的。或者说它落在子区间内的概率只依赖
于子区间的长度而与子区间的位置无关。
(
0
a
c
)
db
x
d
P{c X d} c f ( x)dx
设X为一随机变量,则对任意实数x,(X<x)是 一个随机事件,称
F(x) P(X x)
为随机变量X的分布函数
F(x)是一个普
通的函数!
定义域为 (-∞,+∞); 值域为 [0,1]。
分布函数表示事件的概率
引进分布函数F(x)后,事件的概率都可以用 F(x)的函数值来表示。
P(X<b)=F(b) P(X≥b)=1﹣ P(X<b) =1 - F(b) P(a≤X<b)=F(b) ﹣ F(a)