西南交大大学物理作业参考答案NO.1

合集下载

大学物理(西南交大)作业参考答案1

大学物理(西南交大)作业参考答案1

NO.1 质点运动学和牛顿定律班级 姓名 学号 成绩一、选择1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ] (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动.2.一质点作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V,平均速率为V ,它门之间的关系为:[ D ](A )∣V ∣=V ,∣V ∣=V ; (B )∣V ∣≠V ,∣V∣=V ; (C )∣V ∣≠V ,∣V ∣≠V ; (D )∣V ∣=V ,∣V∣≠V .3.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ](1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ=v .(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C) 只有(2)是对的. (D) 只有(1)、(3)是对的.(备注:经过讨论认为(1)是对的)4.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是 [ C ](A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 5.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ D ](A) t d d v .(B) 2v R . (C) R t 2d d vv +.(D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .6.质点沿x 方向运动,其加速度随位置的变化关系为:a=31+3x 2. 如在x=0处,速度v 0=5m.s -1,则在x=3m处的速度为:[ A ](A )9 m.s -1; (B )8 m.s -1; (C )7.8 m.s -1; (D )7.2 m.s -1 .7.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?[ E ](A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.8.物体作圆周运动时,正确的说法是:[ C ] (A )加速度的方向一定指向圆心;(B )匀速率圆周运动的速度和加速度都恒定不变; (C )必定有加速度,且法向分量一定不为零;(D )速度方向一定在轨道的切线方向,法向分速度为零,所以法向加速度一定为零;9.以下五种运动形式,a保持不变的运动是 [ E ]A(A )单摆的运动;(B )匀速圆周运动;(C )圆锥摆运动;(D )行星的椭圆轨道运动;(E )抛体运动; 二、填空1.已知一质点在Oxy 平面内运动,其运动学方程为22(192)r ti t j =++;r的单位为m ,t 的单位为s ,则位矢的大小rv = 24i t j + ,加速度a =4(/)j m s 。

大学物理作业学生新版答案

大学物理作业学生新版答案
《大学物理》作业No.1运动的描述
班级________学号_________姓名_________成绩_______
一、选择题
1.一质点在平面上作一般曲线运动,其瞬时速度为 ,瞬时速率为 ,某一段时间内的平均速度为 ,平均速率为 ,它们之间的关系有
[](A) (B)
(C) (D)
2.某物体的运动规律为 ,式中的k为大于零的常数。当t=0时,初速为 ,则速度v与t的函数关系是
(C)顶点a、c处是正电荷,b、d处是负电荷.
(D)顶点a、b、c、d处都是负电荷.
6、下面说法正确的是:
[](A)等势面上,各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
(C)场强大处,电势一定高;
(D)场强的方向总是从电势高处指向电势低处。
7、两个薄金属同心球壳,半径各为 和 ( ),分别带有电荷 和 ,两者电势分别为 和 (设无穷远处为电势零点),将两球壳用导线连起来,则它们的电势为:
[ ](A) (B)
(C) (D)
3.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距离分别为r1和r2,如图所示。则在电荷移动过程中电场力做的功为
[](A) ;(B) ;
(C) ;(D) 。
4.某电场的电力线分布情况如图所示,一负电荷从M点移到N点。有人根据这个图得出下列几点结论,其中哪点是正确的?
(A)1>2,S=q/0.
(B)1q/0.
(D)1<2,S=q/0
4、关于高斯定理的理解有下面几种说法,其中正确的是()
(A)如果高斯面上 处处为零,则该面内必无电荷;
(B)如果高斯面内无电荷,则高斯面上 处处为零;

大物参考答案

大物参考答案

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动一、 判断题:(用“T ”表示正确和“F ”表示错误) [ F ] 1.只有受弹性力作用的物体才能做简谐振动。

解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。

[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。

解:根据简谐振子频率mk=ω,可知角频率由系统本身性质决定,与初始条件无关。

[ F ] 3.单摆的运动就是简谐振动。

解:单摆小角度的摆动才可看做是简谐振动。

[ T ] 4.孤立简谐振动系统的动能与势能反相变化。

解:孤立的谐振系统机械能守恒,动能势能反相变化。

[ F ] 5.两个简谐振动的合成振动一定是简谐振动。

解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。

二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。

解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为: ()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m ,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。

3. 水平弹簧振子,动能和势能相等的位置在:[ C ] (A)4A x =(B) 2A x = (C) 2A x = (D)3Ax =解:对于孤立的谐振系统,机械能守恒,动能势能反相变化。

那么动能势能相等时,有:221412122Ax kx kA E E E p k =⇒====,所以选C 。

西南交通大学大学物理下作业答案

西南交通大学大学物理下作业答案

No.1机械振动一、判断题[T ]1.解:根据简谐振动的判据3。

[F ]2.解:根据振子的角频率mk=ω,可知角频率由系统决定的。

[T ]3.解:由简谐振动判据2:0d d 222=+x tx ω可知叙述正确。

[T]4.解:孤立的谐振系统机械能守恒,动能势能反相变化。

[T ]5.解:同向不同频率的简谐振动的合成结果就不一定是简谐振动。

二、选择题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T 。

若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期2T 等于[D ](A )12T (B )1T (C)21T (D)21T (E)41T 解:根据kmT π2=,因为弹簧截去一半的长度后,k k 22=,m m 212=,代入周期公式后可知:1222212T k m T ==π,所以选D 解:如图画出已知所对应矢量A,可知A 与x 轴正向的夹角为60=θ,则根据简谐运动与旋转矢量的对应关系可得2/3sin max v A v ==θω解:m T k m T m k T ∝⇒=⇒⎭⎪⎬⎫==/2/2πωωπ解:对于孤立的谐振系统,机械能守恒,动能势能反相变化。

那么动能势能相等时,有:221412122Ax kx kA E E E p k =⇒====,所以选C。

π21(A)π23)(B π)(C 0(D)解:两个谐振动x 1和x 2反相,且212A A =,由矢量图可知合振动初相与x 1初相一致,即πϕ=。

三、填空题1.描述简谐振动的运动方程是)cos(ϕω+=t A x ,其中,振幅A 由初始条件决定;角频率ω由振动系统本身性质决定;初相ϕ由初始条件决定;2.一简谐振动的表达式为)sin(ϕπ+=t A x ,已知0=t 时的初位移为0.04m,初速度为0.09m ⋅s -1,则振幅A =0.05m ,初相位ϕ=54.38︒解:根据已知条件:09.0cos ,04.0sin 00====ϕπϕA v A x ,由此两式,消去初相可求得振幅为0.05m 。

西南交大峨眉校区《大学物理》机械振动作业-答案

西南交大峨眉校区《大学物理》机械振动作业-答案

西南交大峨眉校区《大学物理》(机械振动)作业1一 选择题1. 把一弹簧振子的小球从平衡位置向位移正方向拉开,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该弹簧振子振动的初相为 (A) 0. (B) π/2. (C) π. (D) 3π/2.[ A ][参考解答] 开始计时时,位移达到最大值。

2. 一质点在x 轴上作简谐振动,振幅A=4cm,周期T=2s ,其平衡位置取作坐标原点,若t=0s 时刻质点正通过x=-2cm 处,且向x 轴负方向运动,则质点下一次通过x=-2cm 处的时刻为: (A )1s (B )2s/3 (C )4s/3 (D )2s[ B ]3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A )7/16 (B )9/16(C )11/16 (D )13/16 (E )15/16[ E ][参考解答] 4/)cos(A t A x =+=ϕω,16/15)(sin ,4/1)cos(2=+=+ϕωϕωt t 即,1615)(sin max2max k k k E t E E =+=ϕω4.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为: (A )2π(B )π (C )23π (D )0[ B ][参考解答] t=0时刻的旋转矢量图:OA/2-AA 合cm )1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π.[参考解答] 受力分析如右图,以平衡位置为原点,向下为x 轴正方向,有:22/22)/(dtX d mkX k mg x k mg kx dtx d m kmg x X =-=--=+-=-=令对坐标X ,其运动为简谐运动, 其角频率满足:,mk =2ωg x T /2/20πωπ==2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2325cos(2cm t x π+=.[参考解答] s rad cm A A v m /5.2,2,=∴==ωωt =0时,质点通过平衡位置向正方向运动,初相为:230πϕ=3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。

西南交大大学物理练习题(附参考解答)

西南交大大学物理练习题(附参考解答)

NO.1 质点运动学班级 姓名 学号 成绩一、选择1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ](A) 切向加速度必不为零.(反例:匀速圆周运动) (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(反例:匀速圆周运动)(D) 若物体作匀速率运动,其总加速度必为零.(反例:匀速圆周运动) (E) 若物体的加速度a为恒矢量,它一定作匀变速率运动.2.一质点作一般曲线运动,其瞬时速度为V,瞬时速率为V ,某一段时间内的平均速度为V,平均速率为,它们之间的关系为:[ D ](A )∣V∣=V ,∣V∣=V;(B )∣V∣≠V ,∣V∣=V ;(C )∣V∣≠V ,∣V∣≠V ; (D )∣V∣=V ,∣V∣≠V .解:dr dsV V dt dt=⇒=,r sV V t t∆∆≠⇒≠∆∆.3.质点作曲线运动,r表示位置矢量,v表示速度,a表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ](1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ=v . (A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C) 只有(2)是对的. (D) 只有(1)、(3)是对的.解:d /d t a τ=v ,v=t S d /d , at v=d /d4.质点作半径为R 的变速圆周运动时的加速度大小为 (v 表示任一时刻质点的速率) [ D ](A) t d d v .(B) 2v R . (C) R t 2d d vv +.(D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .解:a==5.一质点在平面上运动,已知质点位置矢量的表示式为jbtiatr22+=(其中a、b为常量), 则该质点作[ B](A) 匀速直线运动.(B) 变速直线运动.(C) 抛物线运动.(D)一般曲线运动.解:可以算出by xa=,同时2xa a=、2ya b=,所以严格地讲:匀变速直线运动。

2015年西南交通大学《大学物理 AI》作业 No.01 运动的描述

2015年西南交通大学《大学物理 AI》作业 No.01 运动的描述

K v
=
v。
平均速度
K v
=
∆rK
,平均速率 v
dt = ∆s
,而一般情况下
dt ∆rK

∆s
,所以
K v

v
。故选 A
∆t
∆t
6.在相对地面静止的坐标系内,A、B 二船都以 2 m ⋅ s−1 的速率匀速行使,A K船沿K x 轴正向,B 船沿 y 轴正 向。今在 A 船上设置与静止坐标系方向相同的坐标系(x、y 方向单位矢量用 i 、j 表示),那么在 A 船上的
2.一物体悬挂在弹簧上作竖直振动,其加速度为 a = −k y ,式中 k 为常数, y 是以平衡位置为原点所测
得的坐标,假定振动的物体在坐标 y0 处的速度为 v0 ,试求:速度 v 与坐标 y 的函数关系式。
解:加速度 a = dv = dv ⋅ dy = v ⋅ dv = −ky ,分离变量积分得 dt dy dt dy
时,车上乘客发现雨滴下落方向偏向车尾,偏角为 45°.假设雨滴相对于地的速度保持不变,试计算雨滴 相对地的速度大小.
批改时请注意:第一个式子的矢量符号!
解:由相对速度公式:
K v雨→地
=
K v雨→车
+
K v车→地
矢量图如图所示,在 x、y 方向投影式为
K
v 车→地
x
v雨→地 sin 30D + v雨→车 sin 45D = v车→地 = 35
K v雨→车 45D 30D
v雨→地 cos 30D = v雨→车 cos 45D + 0
K
联立以上两式,解得
y
v雨→地
v雨→地
=
cos 30D

西南交大大学物理版NO参考答案

西南交大大学物理版NO参考答案

1π 2
−0−
2π λ
( 21 λ 4
− 3λ ) =
−4π
Δϕ = 4π
5.一简谐波沿 Ox 轴负方向传播,图中所示为该波 t 时刻的波形图,欲沿 Ox 轴形成驻波, 且使坐标原点 O 处出现波节,在另一图上画出另一简谐波 t 时刻的波形图。
y
u
A
O
x
四、计算题:
1. 一列横波在绳索上传播,其表达式为
式为:
[
] (A) y2 = 2.0 ×10−2 cos [ 2π (t / 0.02 + x / 20) +π / 3 ] (SI)
(B) y2 = 2.0×10−2 cos [ 2π (t / 0.02 + x / 20) + 2π / 3 ] (SI)
(C) y2 = 2.0 ×10−2 cos [ 2π (t / 0.02 + x / 20) + 4π / 3 ] (SI)
2πx λ
cos(ω
t
+
π
2
)
λ 将 P 点坐标 OP
=
6 4
代入上式,得 P 点振动方程
y = −2Acos(ω t + π ) = 2Acos⎜⎛ωt − π ⎟⎞
2
⎝ 2⎠
方法二:
入射波在 P 点引起的振动为:
y = Acos(ω t − 2π ⋅ 6 λ + π ) = Acos(ω t − 5π ) = Acos(ω t − π )

π 3
=
π
,所以
ϕ2

+
π 3
=
4π 3
y2
=

大学物理答案

大学物理答案

《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。

西南交大 大学物理 英文 试题 答案No.A1-1.11348894

西南交大 大学物理 英文 试题 答案No.A1-1.11348894
x m 1
⎧ 2t (0s < t < 2s) ⎪ (a) x(t ) = ⎨ 4 ( 2s ≤ t ≤ 3s) ⎪10 − 2t (3s < t < 4s) ⎩
x m 4
H L
H L
t s 3 -1 2 -2 1 1 2 3 4
H L
t s 1 2 3 4
H L H L
-3 -4
1 2 (c) x(t ) = −2t + t 2
dv x (t ) . dt
ax(m/s2) 2 1 0 -1 -2
1 2 3 4
t(s)
1 2 3 4
t(s)
1 2 3 4
t(s)
(a)
(b)
(c)
ax(m/s2) 2 1 0 -1 -2
ax(m/s) 2 1 0 -1 -2
1 2 3 4
t(s)
1 2 3 4
t(s)
(d)
(e)
(ii) The x-component of the position vector versus time. In all cases assume x=0m when t=0s.
dx < 0. dt
(B)
dx > 0. dt
(C)
d( x 2 ) < 0. dt
d( x 2 ) > 0. dt
Solution: If the object is moving toward O, the velocity and the position vector of the object must be in different direction. That means xv = x ⋅

2013-2014学年西南交通大学大物CI作业第一章答案

2013-2014学年西南交通大学大物CI作业第一章答案

第 3 题:
第 4 题:
第 5 题(以下三道题可做在背面)
第 6 题
第 7 题
No.1 质点运动学
一. 思考题
v 1. 图 1 给出了一个质点沿 x 轴运动的速度随时间变化曲线。 (1) 质 点初始运动方向向什么方向?(2)质点最终的运动方向向哪个 方向?(3)该质点是否会瞬时静止?(4)质点加速度是正的还 t 是负的?(5)质点是做匀加速运动还是变加速运动? 答: (1)x 轴负向; (2)x 轴正向; (3)会; (4)加速度为正; (5) 质点作匀加速运动。 2. 回答下列问题: (1)位移和路程有什么区别与联系?(2)平均速度与平均速率有什么区别 与联系?(3)瞬时速度和瞬时速率有什么区别与联系? 答:为一时矢量,路程是标量。在直线直进运动或t 趋于零时,位移的大小与路程相等, 一般情况下有s> (2)平均速度是矢量,平均速率是标量,一般情况下而针对数值不 r ;
三. 选择题
1.[ C ]一质点沿 x 轴作直线运动,其 v ~ t 曲线如图所示。若 t =0 时质点位于坐标原点,则 t=4.5 s 时,质点在 x 轴上的位置为 (A) 0 (B) 5 m (C) 2 m (D) -2 m (E) -5 m
v(m s 1 )
2.5
2 2
a、b、c、d 四个时刻对应的法向加速度由大到小排序。 答: (1)c>a>b=d; (2)b>a=c>d
二. 填空题
1. 参考系与坐标系的区别与联系是坐标系是参考系的抽象, 带有坐标标尺, 固结于参考系上 。 2. 瞬时速度的大小即是瞬时 速率 。 3. 一只袋鼠沿 x 轴跑, (a) 若袋鼠沿 x 轴正向跑, 速率增加, 则其加速度的方向沿 x 轴正 方 向; (b)若袋鼠沿 x 轴正向跑,速率减小,则其加速度的方向沿 x 轴负 方向; (c)若袋 鼠沿 x 轴负向跑,速率增加,则其加速度的方向沿 x 轴负 方向; (d)若袋鼠沿 x 轴负 向跑,速率减小,则其加速度的方向沿 x 轴正 方向。 4. 在变速率圆周运动中切向加速度的物理意义是 质点速率的时间变化率 ;法 相加速度的物理意义是 速度方向的时间变化率 。 5. 忽略空气阻力,地面附近物体斜抛运动中,物体的切向加速度与法向加速度的矢量和之大 小为 g 。

西南交大大学物理版NO详细解答

西南交大大学物理版NO详细解答

解:双缝干涉中,光程差满足 Δ = kλ (k = 0, 1, 2,L)为明纹,k=0 为中央明纹,k=1 为
第一级明纹,…。故对第三级明纹有 k=3,光程差为 Δ = 3λ 。将整个装置放入透明液
体中, 3λ = 4 λ → n = 4 = 1.33 。
n
3
2.两束光在界面发生反射和折射,如图所示。a 和 b 在界
O
A
解:(1)明环半径为 r =
2k −1 Rλ , 2
k = 1, 2, 3L
( ) 所以入射光波长
λ
=
2r 2
(2k −1)R
=
2 × 0.30 ×10−2
(2 ×5 −1)× 4
2
= 5×10−7 (m)
(2)由明环半径公式, 2r 2 = (2k −1)Rλ
k
=
r2 Rλ
+
1 2
=
(10−2 )2 4 × 5 ×10−7
两表面反射光线①和②的光程差应为 Δ = 2n2e
故选 A
4.如图,用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直
单色光
向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹
[
] (A) 向右平移
(B) 向中心收缩
空气
(C) 静止不动
(D) 向外扩张
(E) 向左平移向外扩张
解:当平凸透镜垂直向上缓慢平移而远离平面玻璃时,空气膜的中心区域厚度将增加,
[ C ] (A) 凸起,且高度为λ / 4
(B) 凸起,且高度为λ / 2
(C) 凹陷,且深度为λ / 2
空气劈尖
(D) 凹陷,且深度为λ / 4
平玻璃 工件
解:劈尖干涉条纹向相邻低级次弯曲,说明低级次处有膜厚增加的情况(凹陷),而由劈

NO1机械振动答案

NO1机械振动答案

N O1机械振动答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《大学物理AII 》作业 机械振动一、选择题:1.假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ) 。

若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F 。

则此单摆在该电梯室内作小角度摆动的周期为:[ C ] (A) Fm l π2 (B) Flmπ2(C) Fmlπ2 (D) mlF π2 解: 2.图(a)、(b)、(c)为三个不同的简谐振动系统。

组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同。

(a)、(b)、(c)三个振动系统的2(为固有角频率)值之比为[ B ] (A) 2∶1∶21(B)1∶2∶4(C) 2∶2∶1 (D) 1∶1∶2解:由弹簧的串、并联特征有三个简谐振动系统的等效弹性系数分别为:2k,k ,k 2 则由m k=2ω可得三个振动系统的2(为固有角频率)值之比为:m k 2 :m k :m k2,即1∶2∶4 故选B 3.两个同周期简谐振动曲线如图所示。

则x 1的相位比x 2的相位 [ A ] (A) 超前/2 (B) 落后 (C) 落后 解:由振动曲线画出旋转矢量图可知x 1的相位比x 2的相位超前k m m mk k k k (b) (c) t x O x 1 x 2x 2A1A ω4.一物体作简谐振动,振动方程为)21cos(π+=t A x ω。

则该物体在t = T /8(T 为振动周期)时刻的动能与t = 0时刻的动能之比为: [ B ] (A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1解:由简谐振动系统的动能公式:)21(sin 2122πω+=t kA E k有t = 0时刻的动能为:22221)2102(sin 21kA T kA =+⋅ππt = T /8时刻的动能为:22241)2182(sin 21kA T T kA =+⋅ππ,则在t = T /8时刻的动能与t = 0时刻的动能之比为:1:2二、填空题:1.用40N 的力拉一轻弹簧,可使其伸长10cm 。

大学物理西南交大作业参考答案

大学物理西南交大作业参考答案

大学物理西南交大作业参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩: 一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qrq +πε; (C )rQq 04πε+; (D ))(041R qQ rq -+πε;参考:电势叠加原理。

[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ--πε; (D ))(4120r r qQ --πε。

参考:电场力做功=势能的减小量。

A=W a -W b =q(U a -U b ) 。

[ C ]3点,有人(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。

r 2 (-br 1B a(q[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。

外表面无电荷(可分析)。

虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。

[ D ]※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Q πε4+,外r Q 04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。

西南交大大物试卷答案01A

西南交大大物试卷答案01A

《大学物理》作业No.1 运动的描述一、选择题1. 一小球沿斜面向上运动,其运动方程为245t t s -+=(SI),则小球运动到最高点的时刻是[ B ] (A) s 4=t ; (B) s 2=t ; (C) s 8=t ; (D) s 5=t 。

解:小球运动速度t tsv 24d d -==。

当小球运动到最高点时0=v ,即024=-t ,t = 2(s)。

2. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任意时刻质点的速率)[ D ] (A)tvd d(B) R v 2(C)Rv t v 2d d + (D)⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛242d d R v t v 解:质点作圆周运动时,切向加速度和法向加速度分别为Rv a t v a n t 2,d d ==,所以加速度大小为:22222d d ⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=R v t v a a a n t 。

3. 一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有[ D ] (A) v v v v == , (B) v v v v =≠,(C) v v v v ≠≠ , (D) v v v v ≠= ,解:根据定义,瞬时速度为t r v d d=,瞬时速率为ts v d d =,由于s r d d = ,所以v v =。

平均速度t r v ∆∆=,平均速率ts v ∆∆=,由于一般情况下s r ∆≠∆,所以v v ≠ 。

4. 某物体的运动规律为t kv tv2d d -=,式中的k 为大于零的常数。

当t =0时,初速为0v ,则速度v 与t 的函数关系是[ C ] (A) 0221v kt v +=(B) 0221v kt v +-=(C) 02121v kt v +=(D) 02121v kt v +-= 解:将t kv tv 2d d -=分离变量积分,⎰⎰=-t v v t kt v v 02d d 0可得 02201211,2111v kt v kt v v +==-。

大学物理西南交大作业参考答案

大学物理西南交大作业参考答案

大学物理西南交大作业参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩: 一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qrq +πε; (C )rQq 04πε+; (D ))(041R qQ rq -+πε;参考:电势叠加原理。

[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ--πε; (D ))(4120r r qQ --πε。

参考:电场力做功=势能的减小量。

A=W a -W b =q(U a -U b ) 。

[ C ]3点,有人(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。

r 2 (-br 1B a(q[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。

外表面无电荷(可分析)。

虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。

[ D ]※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Q πε4+,外r Q 04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。

西南交大 大学物理 英文 试题 答案No.A1-4

西南交大 大学物理 英文 试题 答案No.A1-4

4. The magnitude of the total gravitational field at the point P in Figure 2 is 2.37×10-3 m/s2 ,the magnitude of the
acceleration experienced by a 4.00 kg salt lick at point P is 2.37×10-3 m/s2 , the magnitude of the total gravitational
a = gtotal = 2.37 ×10−3 m/s2
(c)The magnitude of the total gravitational force on the salt lick if it is placed at P is
F = ma = 4 × 2.37 = 9.48 N
III. Give the Solutions of the Following Problems
(C) F0
(D) F0/2
The magnitude of the gravitational force is
Fgrav
=
GMm r2
,
according
to
the
problem,
we
get
Fg′rav
=
4Gm2 (r / 2)2
=
16
Gm2 r2
= 16F0
2. A spherical symmetric nonrotating body has a density that varies appreciably with the radial
m
θ
x
x

大学物理答案

大学物理答案

ε-《大学物理CII 》作业 No.01 静电场I(电荷、电场强度、高斯定理)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题:1.下列几个说法中哪一个是正确的?[ ] (A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同(C) 场强可由q F E /=定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力 (D) 以上说法都不正确解:(A) 错误。

电场中某点场强的方向,应为将正点电荷放在该点所受电场力的方向(B) 错误。

在以点电荷为中心的球面上, 由该点电荷所产生的场强大小处处相同,方向不同。

(C) 正确。

(D) 错误。

故选C2.面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为[ ] (A) Sq 02ε(B) Sq 022ε(C) 2022S q ε(D) 202Sq ε解:计算两板之间的静电力时,只能视其中一板在另一板的电场中受力,该电场的场强是其中一个带电板产生的(设为+ q 板),则其值为0022qE Sσεε== 于是- q 板受+ q 板作用力大小为Sqq E q E F 022d d ε===⎰⎰, 故选B3.真空中一“无限大”均匀带正电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负)[ ] (A)(B)(C) (D) x解:均匀带正电的“无限大”平板两侧为均匀电场,场强方向垂直远离带正电平板,即x >0时,E x >0;x <0时,E x <0。

故选C4. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:[ ] (A) 曲面S 的电场强度通量不变,曲面上各点场强不变 (B) 曲面S 的电场强度通量变化,曲面上各点场强不变 (C) 曲面S 的电场强度通量变化,曲面上各点场强变化(D) 曲面S 的电场强度通量不变,曲面上各点场强变化解:根据高斯定理∑⎰=⋅0/d εq S E S,闭合曲面S 的电场强度通量只与闭合曲面内的电荷有关,与曲面外电荷无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该题也可用动能定理来解,如下:
y

2

1 1 1 1 2 2 A Fdy mkydy mky0 mky 2 EK mv 2 mv0 y 2 2 2 2
0
整理得到: v v 0 k y 0 y
2
2

2
2

2.一张致密光盘(CD)音轨区域的内半径 R1=2.2 cm,外半径为 R 2=5.6 cm(如图) , 径向音轨密度 N =650 条/mm。在 CD 唱机内,光盘每转一圈,激光头沿径向向外移动 一条音轨,激光束相对光盘以 v=1.3 m/s 的恒定线速度运动。 (1) 这张光盘的全部放音时间是多少? R2 R1 (2) 激光束到达离盘心 r=5.0 cm 处时, 光盘转动的角速度和 角加速度各是多少? 解:(1) 以 r 表示激光束打到音轨上的点对光盘中心的矢径,则 在 d r 宽度内的音轨长度为 2 rN d r 。 激光束划过这样长的音轨所用的时间为 d t 由此得光盘的全部放音时间为

2
2
m s
2 2
2
飞轮转过 240 时的角速度为 ,由 2 0 2 , 0 0 ,得 2 此时飞轮边缘一点的法向加速度大小为
an r 2 r 2 0.3 2 0.5
240 2 1.26 360
1 1 2.5 2 1 1 2 1 2m 2 2
2
2. 在 x 轴上作变加速直线运动的质点, 已知其初速度为 v 0 , 初始位置为 x0, 加速度 a Ct (其中 C 为常量) ,则其速度与时间的关系为 v v v 0
1 3 Ct ,运动学方程为 3
x2 t2
v (m s 1 )
2 1 1
O
1
2
2.5 3 4 4.5
t s
dx , dt
x dx vdt
x1 t1
所以在 v ~ t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。横 轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。由上分析可得 t =4.5 s 时, 位移 x x

v地 人

解:根椐相对运动速度规律有 v 风 人

v 风 地 v 地 人 ,则根据
西
题意,相应矢量图如图。则由矢量运算的三角形法则知:此矢量三角 形为等边三角形(顶角为 60 度的等腰三角形) ,所以人感到风从北偏
30 v 风 人 v 风 地 v 人 O 地
m s
5. 一个人站在悬崖的边缘竖直向上扔出一个球, 以同样的初速度竖直向下扔出另一个球。 忽略空气阻力,以较大速度击中地面的是 小球。 解:二者同时击中地面。 6.某人骑自行车以速率 v 由东向西行驶,今有风以相同速率从北偏东 30°方向吹来, 试 问人感到风从哪个方向吹来? (填:向上、向下、都不是)方向扔出的
联立以上两式,解得
v雨地
v车 地 cos 30 tg45 sin 30


35 3 1 1 2 2
25.6(m s 1 )
2 2
选D
5.一艘战舰同时向敌方船只发射两颗炮弹,如果炮弹沿着如图所示抛物线轨道,则被先 击中的船是 [ C ] (A) A (B) 同时击中 (C) B (D) 需要更多信息来确定
解:设抛射角分别为
A 和 B ,那么有
v sin A gt A v sin B gt B
因为:

西 30 的方向(或南偏东 30 度)以速率 v 吹来。 ( v 风 人 的大小和方向) 。


四、计算题: 1.一物体悬挂在弹簧上作竖直振动,其加速度为 a k y ,式中 k 为常数, y 是以平
衡位置为原点所测得的坐标,假定振动的物体在坐标 y 0 处的速度为 v 0 ,试求:速度 v 与 坐标 y 的函数关系式。 解:加速度 a
dv dv dy dv v ky ,分离变量积分得 dt dy dt dy

v
v0
vdv

y
y0
ky dy
所以速度 v 与坐标 y 的函数关系式为
1 2 1 1 2 2 v v 0 ky 0 ky 2 2 2 2
2


v 2 v0 k y 0 y 2
x x x0 v0 t
1 4 Ct 。 12
v t dv Ct 2 得 dv Ct 2 dt 有 v0 0 dt
解: 本题属于运动学第二类类问题,由 a 速度与时间的关系 v v 0 再由 v
1 3 Ct 3
x t dx 1 1 v0 Ct 3 得 dx (v0 Ct 3 )dt 有 x 0 0 dt 3 3 1 4 运动学方程 x x 0 v 0 t Ct 12 2 3.一质点在 o y 平面内运动,运动方程为 x 2 t 和 y 19 2 t (SI),则在第 2 秒内
r (x) 2 (y ) 2 2 平均速度大小为 v 2 2 6 6.32(m s 1 ) t 2 1 dx dy 2 2 由 vx 2, v y 4t , v v x v y dt dt
t 2 s 时, v2 2 2 8 8.25(m s 1 )
v机地 v机空气 v空气地
2 2 2
如图所示。 又由 56 192 200 , 所以 v空气地 飞机应向正南或正北方向飞行。 选C

v机地 ,
200
v机空气
56
v空气地
192 v机地
三、填空题: 1.一质点沿 x 轴作直线运动,其 v ~ t 曲线如图所示。若 t=0 时 质 点 位 于 坐 标 原 点 , 则 t = 4.5 s 时 , 质 点 在 x 轴 上 的 位 置 为 2m 。 解:因质点沿 x 轴作直线运动,速度 v
2
4. 半径为 30cm 的飞轮,从静止开始以 0.50 rad s -2 的匀角加速度转动,则飞轮边缘上一 点在飞轮转过 240°时的切向加速度的大小 a = 0.15 m s
2
, 法向加速度的大小 a n =
1.26 m s 。
解:飞轮边缘一点的切向加速度大小为 a r 0.3 0.5 0.15
质点的平均速度大小 v =

6.32m s -1 , 2 秒末的瞬时速度大小 v
2

8.25m s -1 。
解: 在第 2 秒内,质点位移的 x、y 分量分别为本
x x2 x1 2 2 2 1 2m y y 2 y1 19 2 2 2 19 2 12 6m
©西南交大物理系_2013_02
《大学物理 AI》作业
No.01 运动的描述
班级 ________ 学号 ________ 姓名 _________ 成绩 _______
一、判断题: (用“T”和“F”表示) [ F ] 1.运动物体的加速度越大,其运动的速度也越大。
反例:如果加速度的方向和速度方向相反

dr dr [ D ] (A) (B) dt dt 2 2 dr dx d y (C) (D) dt dt dt dx dy dr 解:由速度定义 v 及其直角坐标系表示 v v x i v y j i j 可得速度大 dt dt dt dx d y 小为 v dt dt
-1
率沿水平直路行驶时,车上乘客发现雨滴下落方向偏向车尾,偏角为 45.假设雨滴相对 于地的速度保持不变,试计算雨滴相对地的速度大小. 解:由相对速度公式: v雨地 v雨车 v车地 矢量图如图所示,在 x、y 方向投影式为



v雨地 sin 30 v雨车 sin 45 v车地 35 v雨地 cos 30 v雨车 cos 45 0
(2) 所求角速度为
r
所求角加速度为

d dr 2 2 2 dt r dt r 2 rN 2 Nr 3 1.3 2 2 650 10 3 0.05 3

3.31 10 3 (rad/s 2 )
3.静止时,乘客发现雨滴下落方向偏向车头,偏角为 30°; 当火车以 v 35m s 的速
2 rN d r 。 v
T dt

R2 R1
2 rN d r

3

N 2 ( R2 R12 )
650 10 (0.056 2 0.022 2 )
3
1.3 4.16 10 s 69.4 (min)

1 .3 26 ( rad/s) 0 .05
( A)
(B)
(C )
( D)
(E)
(F )
解:同上题一样,位置时间曲线上某点切线的斜率描述的是该时刻的速度。 3. 在空气中竖直向上扔出一个球。在最高点处,这个球 [ C ] (A) 速度和加速度都等于零 (B) 速度不等于零,但加速度等于零 (C) 加速度不等于零,但速度等于零 (D) 加速度和速度都不等于零 解:对于竖直上抛运动,在最高点,速度为 0,加速度在整个运动过程中始终不变,为重 力加速度。 4.一运动质点在某瞬时位于矢径 r x , y 的端点处,其速度大小为
[ F ] 2.匀加速运动一定是直线运动。
反例:抛体运动。
[ F ] 3.在圆周运动中,加速度的方向一定指向圆心。
反例:变速率的圆周运动。
[ T ] 4.以恒定速率运动的物体,其速度仍有可能变化。
相关文档
最新文档