四年级奥数行程问题(一)
四年级奥数:行程问题(一)
四年级奥数:行程问题(一)东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米.乙车每小时行多少千米?【解析】历届各杯赛中,行程问题是最大的难点之一,在填空题及动手动脑题中都会出现,学习者而言,相对比较难以掌握.在解决行程问题时,要关注几个要素:时间、地点、方向、移动物体的个数和路线,学好行程问题不仅能培养学生分析解决问题的能力,也能提高思维能力.名师点题例1知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:① 路程和=速度和×相遇时间② 速度和=路程和÷相遇时间③相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:①路程差=速度差×追及时间②速度差=路程差÷追及时间③追及时间=路程差÷速度差从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间.解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,_______秒两马相距70米?【解析】相距70米时,乙马在前,甲马在后,追及距离为(50+70)米因此:(50+70)÷(12-10)=60(秒)兄妹二人同时从家里出发到学校去,家与学校相距1400米.哥哥骑自行车每分钟行200米,妹妹每分钟走80米.哥哥刚到学校就立即返回来在途中与妹妹相遇.从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?【解析】从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍.因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了.解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米.例3例2【巩固拓展】1、甲车每小时行40千米,乙车每小时行60千米.两车分别从A,B两地同时出发,相向而行,相遇后3小时,甲车到达B地.求A,B两地的距离.【解析】先画示意图如下:图中C点为相遇地点.因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米).这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是(40+60)×2=200(千米).2、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇.有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?【解析】因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分).3、甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?【解析】由两人同一地点出发背向而行,经过2分钟相遇知两人每分钟共行400÷2=200(米)由两人从同一地点出发同向而行,经过20分钟相遇知甲每分钟比乙多走400÷20=20(米)根据和差问题的解法可知甲的速度是每分钟(200+20)÷2=110(米)乙的速度为每分钟110-20=90(米).如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行.他们在离A 点100米的C点第一次相遇.亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇.整个过程中,两人各自的速度都保持不变.求A、B间的距离.【解析】第一次相遇,两人共走了1个全程,其中亮亮走了100米;从开始到第二次相遇,两人共走了3个全程,则亮亮走了100×3=300(米),亮亮共走的路程是一个全程多80米,所以A、B间的距离是:300-80=220(米)【巩固拓展】甲乙两车分别从A、B 两地同时出发,匀速相向而行,第一次相遇时离A地150千米.两车继续各自前行,分别到达B、A 两地后立刻返回,不作停留,在离A地70千米处第二次相遇.A、B 两地间的距离为_________千米.【解析】从开始到第一次相遇,两人共走了1个全程;从开始到第二次相遇,两人共走了3个全程.(150×3+70)÷2=260(千米)答:A、B 两地间的距离为260千米.小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒.已知火车全长342米,求火车的速度.【解析】例2例1在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点.由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒).【巩固拓展】铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶.这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒.求火车的全长.【解析】与例3类似,只不过由相向而行的相遇问题变成了同向而行的追及问题.由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程.用米作长度单位,用秒作时间单位,求得火车车长为速度差×追及时间= [(56000-20000)÷3600]×37= 370(米).例3在周长为400米的环形跑道的起跑线上,甲、乙两辆自行车同时同地出发背向而行,甲车6米/秒,乙车4米/秒,几秒后第一次相遇?两车出发6分钟后,相遇了多少次?【解析】此题实际上是一个环形跑道的相遇问题.同时同地出发背向而行,当第一次相遇时,两人行的总路程恰好是一个周长的长度.以后每一次都增加一个周长的长度.400÷(6+4)=40(秒),6×60÷40=9(次).答:40秒后第一次相遇;两车出发6分钟后,相遇了9次.【巩固拓展】某小学有一条200米长的环形跑道,小巧和小亚同时从起跑钱起跑,小巧每秒跑6米,小亚每秒跑4米.问小巧第一次追上小亚时,两人各跑了多少米?第二次追上小亚时两人各跑了多少米?【解析】这是一道封闭路线的追及问题.小亚和小巧两人同时同地同向起跑,因此当小巧第一次追上小亚时,她比小亚多跑的路程正好是跑道的一圈,即路程差是200米.第二次追上时,她比小亚多跑的路程正好是跑道的两圈.巳知两人的速度,可以根据基本数量关系求出追及时间以及他们各自所跑的路程.200÷(6-4) =100(秒),6×100=600(米),4×100=400(米)600×2= 1200(米),400×=800(米).第一次追上时,小巧跑了600米,小亚跑了400米.第二次追上时,小巧跑了1 200米,小亚跑了800米.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米.求甲乙两站相距多少千米?【解析】例4如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离.解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)【巩固拓展】甲城、乙城相距90千米,小张与小王分别从甲、乙两城同时出发,在两城之间往返行走(到达另一城城后马上返回).在出发后2小时两人第一次相遇.小王到达甲城后返回,在离甲城30千米的地方两人第二次相遇.小张每小时走多少千米?小王每小时走多少千米?【解析】2小时第一次相遇,所以速度和:90÷2=45,第二次相遇共行了3个路程也就是3×90=270,所用时间为6小时,离甲30千米,说明小张离行2个全程差了30千米,故而小张行了2×90-30=150千米, 小张的速度:150÷6=35千米小王的速度:45-35=10千米例1有一座桥长600米,小亮和小军两人分别从桥的两头同时出发,相向而行.小亮每分钟行70米,小军每分钟行80米.小亮随身带有一只狗,每分钟行400米,狗与小亮同时出发,狗遇到小军后就折回;狗再遇到小亮后,又掉头向小军跑……如此不断往返直到小亮、小军相遇,狗总共跑了多少米?【解析】抓住小狗跑的时间与小亮和小军从出发到相遇的时间相同,最后得到求解.600÷(70+80)=4(分钟),400×4=1600(米),狗跑了1600米.小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车.问:甲、乙两地相距多远?【解析】如下图所示,面包车与小轿车在A点相遇,此时大客车到达B点,大客车与面包车行BA 这段路程共需30分钟.由大客车与面包车的相遇问题知BA=(48+42)×(30÷60)=45(千米);小轿车比大客车多行BA(45千米)需要的时间,由追及问题得到45÷(60-42)=2.5(时);在这2.5时中,小轿车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地相距(60+48)×2.5=270(千米).(第13届中环杯决赛)一支队伍以每分钟100米的速度进行,此时接到上级命令,要改变目的地,传令员以30千米/小时的速度从队伍的前端到队伍的尾端传达命令后又立即回到队伍的前端,供用时三分钟,那么这支队伍总长()米.【解析】化单位后传令员的速度:500米/分钟,速度差为400,速度和为600,路程是队伍长.也就是追及时间是相遇时间的600÷400=1.5倍所以相遇时间用时3÷(1.5+1)=1.2分钟,队伍长600×1.2=720米例3例2(第七届希望杯四年级复赛)甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇.求丙车的速度.【解析】解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度.再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度.解:(1)卡车的速度:(60×6-48×7)÷(7-6)=24÷1=24(千米)(2)AB两地之间的距离:(60+24)×6=504(千米)(3)丙车与卡车的速度和:504÷8=64(千米)(4)丙车的速度:64-24=40(千米/小时)(第9届中环杯决赛)在一条公路的沿线有相距100千米的A、B两个城镇.甲,乙两车分别从两城同时开出,已知甲车每小时行70千米,乙车每小时行30千米,且两车出发后不改变行进方向,几小时后两车相距200例4例5千米?【解析】同向(甲在前,乙在后):(200-100)÷(70-30)=2.5(小时)同向(甲在后,乙在前):(200+100)÷(70-30)=7.5(小时)相向:(200+100)÷(70+30)=3(小时)反向:(200-100)÷(70+30)=1(小时)猎狗追赶前方30米处的野兔.猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步.猎狗至少跑出多远才能追上野兔?【解析】这道题条件比较隐蔽,时间、速度都不明显.为了弄清兔子与猎狗的速度的关系,我们将条件都变换到猎狗跑12步的情形(想想为什么这样变换):(1)猎狗跑12步的路程等于兔子跑21步的路程;(2)猎狗跑12步的时间等于兔子跑16步的时间.由此知,在猎狗跑12步的这段时间里,猎狗能跑12步,相当于兔子跑21步,而兔子这段时间只跑了16步,假设兔子每步跑1米,那么跑21步就是21米,所以跑12步的时间里,狗跑21米,兔子跑16米,也就是狗每跑21米.就能追上兔子21-16=5米那么要追30米,需要跑21×(30÷5)=126米1、有两列同方向行驶的火车,快车每秒行31米,慢车每秒行22米,如果从两车头对齐开始算,23秒后快车超过慢车;如果从两车尾对齐开始算,26秒后快车超过慢车.快车长_______米,慢车长__________米.例6【解析】从两车头对齐开始算,快车超过慢车,追及路程就是快车的车长;同样,从两车尾对齐开始算,快车超过慢车,追及路程就是慢车的车长.最后,快车长23×(31-22)=207米,慢车长26×(31-22)=234(米).2、甲乙两车分别从A、B两地相对开出,甲车每小时行54千米,先行了1小时后,乙车才从B地开出每小时58千米,乙车开出3小时后两车相遇,求两地相距多少千米?【解析】解法1:54×(1+3)+58×3=390(千米)解法2:54+(54+58)×3=390(千米)答:两地相距390千米.3、一列火车子下午1时30分从甲站向乙站开出,每小时行60千米.1小时后,另一列火车以同样的速度从乙站向甲站开出,当天下午6时两车相遇.甲、乙两站相距多少千米?【解析】用第一列火车前1小时行的路程加上后来两列火车同时行的路程就可算出甲、乙两站相距多少千米.也可以用第一列火车行的路程加上第二列火车行的路程,得出甲、乙两站相距多少千米.解法一:60+60×2×(6—1.5—1)=60+420=480(千米)解法二:60×(6—1.5)+60×(6一1.5—1)=270+210=480(千米)答:甲、乙两站相距480千米.4、甲、乙两车同时从A,B两地相向而行,在距A地40千米处两车相遇.相遇后两车继续前进,分别到达对方出发地后立即返回,返回途中两车又在距A地84千米处第二次相遇.求A,B两地相距多少千米?【解析】两车行的总路程和上题相仿.因此只要考虑在第一次相遇时,也就是在一倍的总路程里,甲车行了40千米,那么在随后的两倍的总路程里,应该又行了80千米.因此甲车从A到B再掉头到第二次相遇的地点一共行了120千米.(40×3+84)÷2=102(干米)答:A,B两地相距102千米.5、亮亮骑着自行车,以每分钟400米的速度,从46路汽车的始发站,沿46路车的线路前进,当他骑出1400米时,一辆46路车从始发站开出,已知这辆车每分钟行600米,每4分钟到达一站并停车1分钟,那么汽车开出()分钟后能追上亮亮.【解析】以5分钟为1个周期:在这段时间内,亮亮骑了400×5=2000(米),46路车行驶了600×4=2400(米),两者的距离减少了2400-2000=400(米).两个周期后,两者的距离是1400-400×2=600(米),600÷(600-400)=3(分钟),所以,在第三个周期内,汽车追上了亮亮,共用时5×2+3=13(分钟).6、(第10届中环杯初赛)甲、乙两人分别从A、B两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇.A、B两地相距()千米.【解析】两人速度变慢以后,3小时少走了3×(1+0.5)=4.5千米;此时的速度和4.5÷(4—3)=4.5千米/时,那么原来的速度和为4.5+1+0.5=6,路成为6×3=18千米.。
四年级奥数一行程问题一课件
例3、甲每小时行7千米, 乙每小时行5千米,两人 于相隔18千米的两地同时 相背而行,几小时后两人 相隔54千米?
9
分析 :
这是一道相背问题。所谓相背问题是指两个 运动的物体作背向运动的问题。在相背问题 中,相遇问题的基本数量关系仍然成立,根 据题意,甲乙两人共行的路程应该是 54- 18=36千米, 而两人每小时共行7+5=12千米。 要求几小时能行完36千米,就是求36千米里 面有几个12千米。所以, 36÷12=3小时。
现在甲在乙后面250米,乙追上甲需要多少分
钟? 17
谋篇布局特点(技巧)、构思技巧 1、基本(总体)写作方式(记叙顺序、结构方式) : 记叙顺序------顺叙、倒叙、插叙 结构方式-----总分、分总、总分总 2、特殊形式
18
谋篇布局特点(技巧)、构思技巧---特殊形式
名称 1.开门
见山
2.卒章 显志
2000÷(110+90)=10分钟。
所以狗共行了:500×10=5000米。
7
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个 同学骑自行车以每小时15千米的速度在两队之间不停地往返联 络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时, 骑自行车的同学共行多少千米? 2,A、B两地相距400千米,甲、乙两车同时从两地相对开出, 甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小 时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回 向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能 相遇? 3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队 每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每 小时行80千米的速度在两车队中间往返联络,问两车队相遇时, 摩托车行驶了多少千米?
四年级奥数-一行程问题(一)ppt课件
例3、甲每小时行7千米, 乙每小时行5千米,两人 于相隔18千米的两地同时 相背而行,几小时后两人 相隔54千米?
.
分析 :
这是一道相背问题。所谓相背问题是指两个 运动的物体作背向运动的问题。在相背问题 中,相遇问题的基本数量关系仍然成立,根 据题意,甲乙两人共行的路程应该是 54-18=36千米, 而两人每小时共行7+5=12千米。 要求几小时能行完36千米,就是求36千米里 面有几个12千米。所以, 36÷12=3小时。
行程问题(一)
主讲:刘文峰
.
专题简析:
研究路程、速度、时间这三者之间关系的问 题称为行程问题。行程问题主要包括相遇问 题、相背问题和追及问题。这一周我们来学 习一些常用的、基本的行程问题。 解答行程问题时,要理清路程、速度和时间 之间的关系,紧扣基本数关系
“路程=速度×时间”来思考,对具体问
题要作仔细分析,弄清出发地点、时间和运 动结果。
.
分析 :
这是一道封闭线路上的追及问题。甲 和乙同时同地起跑,方向一致。因此, 当甲第一次追上乙时,比乙多跑了一 圈,也就是甲与乙的路程差是400米。 根据“路程差÷速度差=追及时间” 即可求出甲追上乙所需的时间: 400÷(290-270)=20分钟。
.
练习五
1,一条环形跑道长400米,小强每分钟跑300 米,小星每分钟跑250米,两人同时同地同向 出发,经过多长时间小强第一次追上小星? 2,光明小学有一条长200米的环形跑道,亮 亮和晶晶同时从起跑线起跑。亮亮每秒跑6米, 晶晶每秒跑4米,问:亮亮第一次追上晶晶时 两人各跑了多少米? 3,甲、乙两人绕周长1000米的环形广场竞走, 已知甲每分钟走125米,乙的速度是甲的2倍。 现在甲在乙后面250米,乙追上甲需要多少分 钟?
小学奥数经典多人行程问题【三篇】
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是⽆忧考为⼤家整理的《⼩学奥数经典多⼈⾏程问题【三篇】》供您查阅。
【第⼀篇】 1.甲⼄丙三个⼩分队都从A地到B地进⾏野外训练,上午6时,甲⼄两个⼩队⼀起从A地出发,甲队每⼩时⾛5千⽶,⼄队每⼩时⾛4千⽶,丙队上午8时才从A地出发,傍晚6时,甲丙两队同时到达B地,那么丙队追上⼄队的时间是上午()时. 分析:从上午6时到下午6时共经过12⼩时,则A、B两地的距离为5×12=60千⽶,丙上午8时出发,则全程⽐甲少⽤8时-6时=2⼩时,所以丙的速度为每⼩时60÷(12-2)=6千⽶.由于丙出发时,⼄已⾏了4×2=8千⽶,两⼈的速度差为每⼩时6-4=2千⽶,则丙追上⼄需要8÷2=4⼩时,所以丙追上⼄的时间是8时+4⼩时=12时. 解答:解:6时+6时=12时,8时-6时=2时; 5×12÷(12-2) =60÷10, =6(千⽶); 2×4÷(6-4) =8÷2, =4(⼩时). 8时+4⼩时=12时. 即丙在上午12时追上⼄. 故答案为:12.【第⼆篇】 ⾏程问题是⼩学奥数中变化最多的⼀个专题,不论在奥数竞赛中还是在“⼩升初”的升学考试中,都拥有⾮常重要的地位。
⾏程问题中包括:⽕车过桥、流⽔⾏船、沿途数车、猎狗追兔、环形⾏程、多⼈⾏程,等等。
每⼀类问题都有⾃⼰的特点,解决⽅法也有所不同,但是,⾏程问题⽆论怎么变化,都离不开“三个量,三个关系”: 这三个量是:路程(s)、速度(v)、时间(t) 三个关系:1. 简单⾏程:路程 = 速度 × 时间 2. 相遇问题:路程和 = 速度和 × 时间 3. 追击问题:路程差 = 速度差 × 时间 牢牢把握住这三个量以及它们之间的三种关系,就会发现解决⾏程问题还是有很多⽅法可循的。
奥数:四年级数学下册——行程问题
行程问题(一)例1:甲、乙两人同时从相距20千米的两地相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?练习1:甲乙两艘轮船分别从AB两地同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇,两地间的水路长多少千米?练习2:甲乙两车分别从相距480千米的AB两城同时出发相向而行,已知甲车从A城到B城需要6小时,乙车从B城到A城需要12小时,两车出发后多少小时相遇?例2:甲乙两车分别从AB两地相向而行,甲车每小时80千米,乙车每小时68千米,辆车相遇时,距全程的中点30千米,AB两地相距多少千米?练习1、客货两车同时从甲乙两地相向而行,,客车每小时70千米,货车每小时62千米,相遇时两车距两地中点20米,甲乙两地相距多少千米?练习2、甲乙两车同时从东西两地相向开出,甲车每小时60千米,乙车每小时56千米,两车在距离中点16千米处相遇,两地相距多少千米?3、兄弟两人同时从AB两地相向而行,哥哥每分钟行75米,弟弟比哥哥分钟慢行10米,两人相遇时距中点15米,AB两地相距多少米?例3.甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,以 6 米每秒的速度先从A地奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?练习1、欢欢和乐乐两人同时从相距1800米的两地同时出发,乐乐每分钟行100米,欢欢每分钟行80米,如果一只狗和乐乐同时从A地出发,每分钟行300米,狗遇到欢欢后立即返回跑向乐乐,遇到乐乐又折返,这样不断来回跑,直到两人相遇,狗共跑了多少米?练习2、AB两站相距400千米,甲乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折返,这样一直下去燕子飞了多少千米后两车才相遇?练习3、王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟比王欣慢20米,一个人骑自行车以每分钟500米的速度在两人之间往返联络,狼人相遇时,这个人一共骑了多少米?练习4:两个游泳队同时从相距2040米的AB两地相向而行,甲队从A地下水,每分钟游40米,乙队从B地下水,每分钟游45米,一艘汽艇负责两队的安全,同时从B地出发,每分钟行驶1200米,遇到甲队后就立即返回,返回遇到乙队又向甲队开去,这样不断往返下去,汽艇航行多少千米两队才相遇?例2/2:甲乙两辆汽车分别从AB两地同时相对开出,在离A地40千米处两车相遇,相遇后两车继续前进,分别到达AB两地后立即返回,途中在离B地35千米处两车再次相遇,AB两地相距多少千米?1、甲从 A 地前往 B 地,乙从 B 地前往 A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。
四年级奥数行程问题
知识框架(一)行程问题基本公式:路程=速度⨯时间;总路程=平均速度⨯总时间速度=路程÷时间;时间=路程÷速度(二)相遇问题(相向而行):速度和⨯相遇时间=相遇距离(三)追及问题(同向而行):速度差⨯追及时间=追及距离(四)列车进入隧道是指从车头进入隧道开始算起到车尾离开隧道为止;因此,这个过程中列车所走的路程等于隧道的长度加上车的长度。
(五)两车相遇,错车而过是指从两列列车的车头相遇开始算起到两列列车的车尾分开为止;这个过程实际上是以两列列车相遇点为起点的相背运动问题,这两列列车在这段时间所走的路程之和等于这两个列车的车长之和。
(六)错车时间=两列列车车长之和÷两车的速度之和。
典型例题一、相遇问题1、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。
已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。
求列车与货车从相遇到离开所用的时间。
2、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。
现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇后6分钟后,甲又与丙相遇。
那么,东、西两村之间的距离是多少米?二、立即返回问题3、甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?4、某解放车队伍长450米,以每秒1.5米的速度行进。
一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?三、提前出发问题5、学生甲和乙同事从家里出发,相向而行,学生甲每分钟走52米,学生乙每分钟走70米,两人在途中A处相遇,若甲提前4分钟出发,且速度不变,学生乙改为每分钟走90米,两人仍在A处相遇,问学生甲乙两家相距多远?四、二次相遇问题6、东、西两城相距75千米。
小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西,每小时骑行15千米。
四年级奥数行程问题
行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。
行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。
有了路程差和速度差就可以求出相遇时间了为8小时。
其他计算就容易了。
2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。
慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
行程问题,四年级奥数
行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。
行程问题主要包括相遇问题、相背问题的追及问题。
例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。
两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。
甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。
从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。
哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。
)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。
问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。
两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。
甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。
小学四年级奥数行程问题
小学四年级奥数行程问题1、甲、乙两辆车同时从两地出发,相向而行。
甲车每小时行45千米,乙车每小时行55千米。
甲、乙两车多长时间后相遇?2、两个城市之间的距离为450千米,一辆汽车以每小时65千米的速度从第一个城市驶向第二个城市。
请问这辆汽车需要多少小时到达第二个城市?3、两个人同时从两个不同的地方出发,走向彼此。
一个人每分钟走50米,另一个人每分钟走40米。
请问,他们需要多少时间才能相遇?4、一辆摩托车和一辆自行车同时从同一地点出发,沿着同一条路前往目的地。
摩托车的速度是每小时60千米,自行车的速度是每小时10千米。
请问,摩托车多长时间后能够追上自行车?5、一辆火车以每小时80千米的速度前行,一个乘客从火车上跳下去,同时一个新乘客以每小时5千米的速度上车。
请问,这两个乘客何时能够相遇?答案:1、相遇时间 = (甲速度 +乙速度)×时间设甲、乙两车x小时后相遇,根据题意可得方程:(45 + 55)x = 100x。
解得x=1,所以甲、乙两车1小时后相遇。
2、时间 =距离 /速度设这辆汽车需要x小时到达第二个城市,根据题意可得方程:450/65=x。
解得x=7.71,所以这辆汽车需要7.71小时到达第二个城市。
3、时间 =距离 / (一个人速度 +另一个人速度)设他们需要x分钟才能相遇,根据题意可得方程:50+40=90x。
解得x=1,所以他们需要1分钟才能相遇。
4、时间 =距离 / (摩托车速度 -自行车速度)设摩托车x小时后能够追上自行车,根据题意可得方程:60−10=(60−10)x。
解得x=5,所以摩托车5小时后能够追上自行车。
5、时间 =距离 / (火车速度 +新乘客速度 -老乘客速度)设这两个乘客x小时后相遇,根据题意可得方程:80+5−5=(80+5−5)x。
解得x=1,所以这两个乘客1小时后相遇。
小学四年级奥数在现今的教育体系中,奥数已成为了一种广受欢迎的数学教育方式。
特别是在小学四年级阶段,奥数的学习对于培养学生的数学思维和解决问题的能力具有重要的作用。
四年级下_行程问题(一)
华数思维训练导引四年级下行程问题(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
四年级奥数行程问题及答案【三篇】
四年级奥数行程问题及答案【三篇】
【第一篇】
甲、乙两个港口之间的水路长300千米,一只船从甲港到乙港,顺水5小时到达,从乙港返回甲港,逆水6小时到达。
求船在静水中的速度和水流速度?
解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是
(60-50)÷2=5千米/小时。
【第二篇】
某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
【分析】顺水速度是15+3=18千米/小时,从甲地到乙地的路程是18×8=144千米,从乙地返回甲地时是逆水,逆水速度是15-3=12千米/小时,行驶时间为144÷12=12
小时。
【第三篇】
A、B两港相距360千米,甲轮船往返两港需35小时,逆流航行比顺流航行多花了5
小时。
乙轮船在静水中的速度是每小时12千米,乙轮船往返两港要多少小时?
解答:首先要求出水流速度,由题意可知,甲轮船逆流航行需要(35+5)÷2=20小时,顺流航行需要 20-5=15小时,由此可以求出水流速度为每小时[360÷15-
360÷20]÷2=3千米,从而进一步可以求出乙船的顺流速度是每小时 12+3=15千米,逆水速度为每小时12-3=9千米,最后求出乙轮船往返两港需要的时间是360÷15+360÷9=64
小时。
小学四年级奥数-举一反三
行程问题(一)1.甲、乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2.甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?3.东、西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?4.甲、乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?5.A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米后,两车才能相遇?6.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?7.小冬和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同一地点相背而行,小刚跑6分钟后两人第一次相遇,小冬跑一周要8分钟,小刚跑一周要几分钟?8.甲、乙两车同时从A,B两地相对开出,6小时后相遇,甲车从A地到B地要9小时,乙车从A地到B地要几小时?9.小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发相向而行,5小时后相遇。
小军从甲地到乙地要15小时,小明从乙地到甲地要几小时?10.两港相距267千米,客船以每小时45千米的速度、货船以每小时33千米的速度先后从两港开出,相向而行,相遇时客船行了135千米。
货船比客船提前几小时开出?11.小丽和小勇同时从相距2160米的两地相向而行,小丽勇每分钟走100米,小丽每分钟走80米,相遇时小丽走了960米。
四年级行程问题100道
四年级行程问题100道及答案(1)甲、乙两列火车从相距942千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。
甲车行几小时后与乙车相遇?(2)甲、乙两地相距24千米,当当骑车以6千米/时的速度从甲地到乙地,到达后立即以12千米/时的速度返回甲地,求当当全程的平均速度。
(3)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长(4)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(5)当当参加划船比赛,他提前准备了两个方案。
第一个方案是在比赛中分别以8米/秒和10米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以8米/秒和10米/秒的速度各划行比赛时间的一半。
你知道哪个方案更好吗?(6)小王和小李两人开车分别从甲、乙两地同时出发相向而行,已知小王每小时行驶40千米,两人4小时后相遇。
相遇后两人继续行驶,又过了2小时,小王就到达了乙地。
问:小李从乙地一共需要几小时可以到达甲地?(7)牛牛每小时行12千米,当当每小时行15千米,他俩同时同起点同向出发,5小时后他们之间的距离是多少千米?(8)甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?(9)甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米。
途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地。
A、B两地间的路程是多少?(10)小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。
四年级下册数学讲义奥数导引24行程问题一全国通用
一、 基本公式与常用单位1、基本量与符号说明:速度——v ;时间——t ;路程——s .2、基本公式:路程=速度×时间(s vt =);时间=路程÷速度;速度=路程÷时间.3、相遇问题:路程和=速度和×相遇时间.4、追及问题:路程差=速度差×追及时间.5、常用单位:m (米)、km (千米、公里)、s (秒)、min (分)、h (时)、/m s (米/秒)、/km h (千米/时)(注:1/ 3.6/m s km h =)二、 其它说明(1)对于a b c ×=类型的公式,当知道其中两个量时,通常要主动求出第三个量.此外,若1a 与2a 、1b 与2b 、1c 与2c 中有两组的倍数关系已知,则可求出第三组的倍数关系.(2)画图是行程问题最重要的分析手段,要做到专人专线,必要时可在图中标清时刻. (3)注意比较,包括单人在不同时段间的比较、两人在相同时段内的比较、单人在不同方案间的比较等.(4)若题中只知道速度、时间、路程中的某一种,可考虑用设数法.(5)建议在过程中多用含下标的字母(如1v 、t 甲等),单位也多用字母少写汉字.第12讲 行程问题一知识点【例1】 萱萱、小高骑车从甲地同时出发,同向而行.萱萱的速度比小高的速度每小时快4千米,因此萱萱比小高早20分钟通过途中的乙地.当小高到达乙地时,萱萱又前进了8千米.求甲、乙两地之间的距离.【例2】 甲、乙两人分别从A ,B 两地同时出发,6小时后相遇在中点.如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇.请问:甲、乙两地相距多少千米?【例3】 小高平时每天上学都是先步行10分钟后再跑步2分钟.某天他步行6分钟后就开始跑步,结果比平时早到了2分钟.请问:小高跑步的速度是步行速度的几倍?超越篇题目【例4】墨莫家离学校1000米,平时他步行25分钟后准时到校.有一天他晚出发10分钟,为避免迟到,墨莫先乘公共汽车,然后步行,结果仍然准时到校.已知公共汽车的速度是墨莫步行速度的6倍,请问:墨莫这天上学步行了多少米?【例5】甲、乙两车分别从A,B两站同时出发,相向而行.已知:甲车速度是乙车的2倍,甲、乙到达途中C站的时刻依次为5:00和17:00.问:两车是在几点相遇的?【例6】甲、乙两人分别由A,B两地同时出发.如果相向而行,1小时后两人相遇;如果同向而行,且乙先出发2小时,那么甲3小时后追上乙.请问:甲的速度是乙的几倍?【例7】 如下图所示,一条笔直的公路上有16个车站1A ,2A ,3A , ,16A ,已知相邻两站之间的距离都相等,有一天,甲、乙、丙三人都要从第1站去第16站.甲先出发,当甲到达第2站时,乙出发.当乙到达第3站时丙出发.如果丙在第4站追上乙,甲和丙同时到达第16站,那么甲的速度是乙的速度的几倍?【例8】 甲、乙两人分别从相距24千米的A ,B 两地同时出发同向而行,一段时间后甲在C 点追上乙.如果甲每小时多走1千米,而乙每小时少走1千米,则甲追上乙的时间会少用2小时,且追上的地点与C 点相距12千米.试问:如果甲、乙两人以原速分别从A ,B 两地同时出发相向而行,需要几个小时相遇?【习题1】甲、乙两车同时从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B 城市.那么,甲车在距离B 城市多少千米处追上乙车?【习题2】有一条直线上依次排列着A 、B 、C 、D 四个村庄,AB 、CD 分别长20千米与40千米.某天早上甲、乙分别从A 、B 同时开车匀速去D ,在C 地甲追上乙;如果甲、乙每小时都提速20千米,甲刚好在D 追上乙;如果甲速减少5千米/时,而乙速不变,甲也刚好在D 追上乙,求B 、C 之间的距离是多少千米?补充题目【习题3】甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C地.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇地D距C地10千米;如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇地E距C地5千米,问甲原来的速度是每小时多少千米?【习题4】材料阅读题:已知光速为300000000/m s,而光年是一个长度单位,表示光在一年中移动的距离.宇宙中有A、B两个星球,相距3光年.小王与小温分别从A、B同时出发,开飞船相向而行,速度分别为2400000/minkm.那么多长km与2100000/min 时间后两飞船相遇?(每年按365天计算,答案请选择恰当的时间单位)。
小学四年级奥数思维训练-行程问题
小学四年级奥数思维训练-行程问题行程问题(一)专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析:这是一道相遇问题。
两人每小时共走6+4=10千米(这是他们的速度和)。
求两人几小时相遇,就是求20千米里面有几个1 0千米。
因此,两人20÷(6+4)=2小时后相遇。
试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间。
相遇时间=2000÷(110+90)=10分钟狗共行:500×10=5000米。
试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析:这是一道相背问题。
解答相背问题同相遇问题一样。
甲乙两人共行54-18=36千米,每小时共行7+5=12千米。
要求几小时能行完36千米,就是求36千米里面有几个12千米。
所以,36÷12=3小时。
试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。
小学奥数行程问题之追及问题
小学奥数行程问题之追及问题奥数第七讲行程问题(一)——追及问题四年级奥数教案第七讲行程问题(一)——追及问题解决追及问题的基本关系式是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。
大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。
就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)二、新授课:【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速率差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。
【小结】提醒学生闇练掌握追及问题的三个公式。
【例2】骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?【思路阐发】这道问题,是同时动身的同向而行的追及问题,请求其中某个速率,就必须先求出速率差,按照公式:速率差=路程差÷追及时间:速度差:450÷3=150(千米)自行车的速度:150+60=210(千米)答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路阐发】按照题意可知,第一辆汽车先行2小时后,第二辆汽车才动身,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速率差。
小学四年级奥数 第二十九周 行程问题(一)
第二十九周行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十九周行程问题(一)
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?
练习一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?
2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。
经过3小时后,两人相隔60千米。
南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。
两人的速度各是多少?
例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?
练习四
1,甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米。
几小时后甲可追上乙?
2,解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。
多长时间后,通讯员能赶上队伍?
3,小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。
3分钟后两人相距多少米?
例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。
如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
练习五
1,一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?
2,光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑。
亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
3,甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。
现在甲在乙后面250米,乙追上甲需要多少分钟?
答案:
例1.2时;
练习1
1. 198千米;
2. 180千米;
3. 4时。
例2. 5000米
练习2
1.2时;
2. 250千米;
3.240千米。
例3 3时
练习3
1. 5时;
2. 48千米;
3. 4千米、8千米。
例4 3时
练习4
1. 2. 3.
例5 20分
1. 8分
2. 600米、400米
3. 6分。