人教版七年级数学上册第一章有理数测试题
人教版数学七年级上册第一章有理数综合测试(含答案)
人教版数学七年级上学期 第一章有理数测试一、选择题(每小题3分,共30分)1.若a+b <0,ab <0,则( ) A. a >0,b >0 B. a <0,b <0C. a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 2.a,b,c 在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>03.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( ) A. 0.1636×B. 1.636×C. 16.36×D. 163.6×104.-23+(-2×3)的结果是( ) A. 0B. -12C. -14D. -25.的相反数是( ) AB. 2C.12D. 12-6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃7.下列说法正确的是( ) A. 零是正数不是负数 B. 零既不是正数也不是负数 C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数 8.既是分数又是正数的是( ) A. 2+B. 143- C.D. 2.39.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188二、填空题10. 若x=4,则|x﹣5|=_________.11.设a是最小正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c等于____________.12.一组按规律排列数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).13.数轴上到原点的距离等于4的数是.14.绝对值不大于2的所有整数为__________.15.-3倒数是,-3的绝对值是.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条18. 某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)星期一二三四五(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?20.在求1+2+22+23+24+25+26值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.答案与解析一、选择题(每小题3分,共30分)1.若a+b<0,ab<0,则( )A a>0,b>0B. a<0,b<0C. a,b两数一正一负,且正数的绝对值大于负数的绝对值D. a,b两数一正一负,且负数的绝对值大于正数的绝对值【答案】D【解析】【详解】解:∵ab<0,∴a、b必定是异号,∵a+b<0,∴a,b两数一正一负,且负数的绝对值大于正数的绝对值.故选D.2.a,b,c在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>0【答案】C【解析】【分析】由图可知a<c<0<b,据此可判断【详解】解:由图可知a<c<0<b,则abc>0,A错误;ab-ac=a(b-c)<0,B错误;(a-b)c>0,C正确;(a-c)b<0,D 错误;故选择C.【点睛】本题考查了数轴的概念,熟记数轴上右边的数大于左边的数是关键.3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A. 0.1636×B. 1.636×C. 16.36×D. 163.6×10【答案】B【解析】试题分析:科学计数法是指a×,且,n为原数的整数位数减一.考点:科学计数法4.-23+(-2×3)的结果是( )A. 0B. -12C. -14D. -2 【答案】C【解析】【分析】按照有理数的运算法则计算即可.【详解】解:原式=-8-6=-14,故选择C.【点睛】本题考查了有理数的混合运算.5.的相反数是( )A. B. 2 C. 12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃【答案】B【解析】【详解】12-2=10℃.故选B.7.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.8.既是分数又是正数的是()A. 2+B.143- C. D. 2.3【答案】D【解析】本题考查的是有理数的分类大于0的数是正数.小数是分数的一种形式,所以既是分数、又是正数的数是,故选D.9.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188【答案】C【解析】分析:由图中看出,从2开始,每相邻3个数的和等于第4个数,那么所求的数是26+48+88=162.详解:26+48+88=162.故选C.点睛:解决本题的关键的根据所给的数得到四个数之间的规律(从2开始,每相邻3个数的和等于第4个数).二、填空题10. 若x=4,则|x﹣5|=_________.【答案】1.【解析】试题分析:∵x=4,∴x ﹣5=﹣1<0,故|x ﹣5|=|﹣1|=1. 考点:绝对值.11.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于____________. 【答案】0 【解析】 【分析】根据a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,得出a ,b ,c 的值,代入即可得出结论. 【详解】依题意得:a =1,b =﹣1,c =0,∴a +b +c =1+(﹣1)+0=0. 故答案为0.【点睛】本题考查了正整数、负整数的概念和绝对值的性质.熟练掌握有关概念是解答本题的关键. 12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).【答案】8,11(1)(1)2n n ++-+【解析】试题分析:观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是11(1)(1)2n n ++-+. 考点:规律型:数字的变化类13.数轴上到原点的距离等于4的数是 . 【答案】±4. 【解析】试题分析:数轴上到原点的距离等于4的数有两个,是±4. 考点:1.相反数;2.绝对值.14.绝对值不大于2的所有整数为__________. 【答案】0,±1,±2 【解析】试题分析:绝对值等于2的整数是2,-2;在数轴上位于2和-2之间的整数有1,0,-1三个,它们都符合要求,所以绝对值不大于2的所有的整数是-2,-1,0,1,2. 考点:绝对值.15.-3的倒数是 ,-3的绝对值是 .【答案】-13,3.【解析】试题分析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.试题解析:-3的倒数是-13,-3的绝对值是3.考点:1.倒数;2.绝对值.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?【答案】225 625 1 225 2 025(1)发现后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2) 7 225, 9 025.【解析】试题分析:(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)根据(1)发现的规律可求出结果.试题解析:152=225;252=625;352=1225;452=2025(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)852=7225,952=9025.17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条?【答案】第七次捏合后可拉出128根面条.【解析】【分析】第一次捏合后得到2根面条,第二次捏合后得到4根,第三次捏合后得到8根,据此寻找规律即可.【详解】第一次……2根面条;第二次……22根面条;第三次……23根面条;…第x次……2x根面条.于是由2x=128=27,得x=7.答:第七次捏合后可拉出128根面条.【点睛】本题考查了规律的探索.18.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【答案】(1)9.9元;(2)亏了497.5元.【解析】试题分析:(1)用上周买入股票每股的金额加上本周股票五天的涨跌额,即可得本周星期五收盘时每股股票的金额;(2)用本周五卖出股票金额减去上周买入股票金额,减去买入成交额的手续费,减去卖出成交额的手续费,再减去卖出成交额的交易费可得收益情况.试题解析:解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5%﹣1000×9.9×1.5%﹣1000×9.9×1%=9900﹣150﹣148.5﹣99﹣10000=﹣497.5(元).答:该股民的收益情况是亏了497.5元.考点:正负数的意义;有理数的混合运算.19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?【答案】(1)450元;(2)4830元;(3)424080元.【解析】【分析】(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;(3)原水费-现在水费=能节约的水费.【详解】(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×2 1203⎛⎫⨯⎪⎝⎭=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,所以全年共要纯净水(320+300+60)=680(桶), 故购买矿泉水费用为680×6=4 080(元),使用电费为240×10×5001000×0.5=600(元),故每班学生全年共花费为4 080+600+150=4 830(元).(3)因为一个学生节省450-=353.4(元),所以全体学生共节省353.4×24×50=424 080(元).【点睛】本题一道实际问题,考查了通过阅读来分析题目条件,进而答题.20.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【答案】(1)1093.5(2)2014a1 a1--【解析】【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【详解】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=2014a1a1--.【点睛】本题考查数字类的规律探索,有理数的混合运算,分式的运算,正确理解题意正确计算是本题的解题关键.。
人教版七年级上册数学 第一章《有理数》练习题(附答案)
1 2
,
−
3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3
,
-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2
−
3+2×
3 2
−
2
2
=
13 4
−
2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )
七年级数学上册第一章《有理数》考试卷-人教版(含答案)
七年级数学上册第一章《有理数》考试卷-人教版(含答案)班级 座号 姓名一、选择题(30分)1.若盈余60万元记作+60万元,则﹣60万元表示( ) A .盈余60万元 B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损2.下列各数:8,-0.08,0,()2.5--,7.7%,2π-,其中负数有( )个. A .1B .2C .3D .43.如图,数轴上被阴影盖住的点表示的数可能是( )A .3B .0C .-1D .-24.某种食品保存的温度是o 102C -±,以下几个温度中,不适合储存这种食品的是( ) A .o 6C -B .o 8C -C .o 10C -D .o 12C -5.下列说法错误的是( ) A .-5的相反数是5 B .3的倒数是13C .(-3)-(-5)=2D .-11,0,4这三个数中最小的数是06.308.76亿元用科学记数法表示为( ) A .30.876×109元B .3.0876×1010元C .0.30876×1011元D .3.0876×1011元7.用四舍五入法对3.14159取近似值,精确到百分位的结果是( ) A .3.1B .3.14C .3.142D .3.1418.若m 满足方程20192019m m -=+,则2020m -等于( ) A .2020m -B .2020m --C .2020m +D .2020m -+9.a 是不为2的有理数,我们把22a -称为a 的“哈利数”.如:3的“哈利数”是223-=﹣2,﹣2的“哈利数”是212(2)2=--,已知a 1=3,a 2是a 1的“哈利数”,a 3是a 2的“哈利数”,a 4是a 3的“哈利数”,…,依此类推,则a 2019=( ) A .3B .﹣2C .12D .4310.设|a |=4,|b |=2,且|a +b |=-(a +b ),则a -b 所有值的和为( ) A .-8B .-6C .-4D .-2二、填空题(18分)11.数轴上与表示-2的点距离3个长度单位的点所表示的数是_______.12.某公交车上原有10个人,经过三个站点时乘客上下车情况如下(上车为正,下车为负):(+2,﹣3),(+8,﹣5),(+1,﹣6),则此时车上的人数为_____13.规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a -b +1,请你根据新运算,计算(2☆3)☆2的值是___________14.在数轴上点A 表示数2,点B 与点A 相距3个单位长度,点B 表示的数是________.15.设m 是绝对值最小的数,n 是最大的负整数,则m n -=_________. 16.A ,B ,C ,D ,E ,F 是数轴上从左到右的六个点,并且AB =BC =CD =DE =EF .点A 所表示的数是-5,点F 所表示的数是11,那么与点C 所表示的数最接近的整数是______. 三、解答题(52分) 17.计算: (1)212525-⨯+-(2)()2127322⎛⎫---+-⨯- ⎪⎝⎭(3)2129312323⎛⎫-÷+-⨯+ ⎪⎝⎭(4)()()22212325555⎛⎫⎛⎫-⨯÷---÷÷- ⎪ ⎪⎝⎭⎝⎭18.请你画出一条数轴,并在数轴上表示下列有理数:12-,|0.5|-,0,(3)--,|2.5|-.并用“>”把这些数连接起来.19.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩需求量大幅增加,巴中市某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因,实际每天生产量与计划每天生产量相比有出入,下表是2月份某一周的生产情况(超出为正,不足为负,单位:个)、星期一二三四五六日增减+400﹣100+100﹣100﹣200+150+350(1)根据记录可知前三天共生产口罩个;产量最多的一天比产量最少的一天多生产口罩个;(2)该口罩加工厂实行计件工资制,每生产一个口罩需支付工人0.4元的工资,每个口罩的材料成本为0.6元,该工厂以每个1.5元的批发价将前5天的口罩全部售出后,为响应国家“一方有难,八方支援”的号召,决定将剩下两天的口罩全部捐出,试通过计算说明该工厂本周是赚了还是亏了?20.在今年720特大洪水自然灾害中,一辆物资配送车从仓库O出发,向东走了4千米到达学校A,又继续走了1千米到达学校B.然后向西走了9千米到达学校C,最后回到仓库O.解决下列问题:(1)以仓库O为原点,以向东为正方向,用1个单位长度表示1千米,画出数轴.并在数轴上表示A、B、C的位置;(2)结合数轴计算:学校C在学校A的什么方向,距学校A多远?(3)若该配送车每千米耗油0.1升,在这次运送物资回仓的过程中共耗油多少升?21.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之-间的距离可以表示为a b根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为________.x+可以表示数轴上有理数x与有理数________所对应的两点之间的距离;(3)代数式8x+=,则x=________.若85参考答案1.B解:∵盈余60万元记作+60万元, ∵﹣60万元表示亏损60万元. 故选:B . 2.B解:下列各数:8,-0.08,0,()2.5--,7.7%,2π-,其中负数有-0.08,2π-,共2个; 故选B . 3.A解:设被阴影盖住的点表示的数为x ,则0,x > 只有A 选项的数大于0, 故选:A. 4.A解:∵-10+2=-8,-10-2=-12, ∵这种食品保存的温度是-12∵到-8∵, A .-6∵不在这个温度范围内,符合题意; 故选: A . 5.D解:A 、-5的相反数是5,故该选项正确,不符合题意; B 、3的倒数是13,故该选项正确,不符合题意;C 、(-3)-(-5)=-3+5=2,故该选项正确,不符合题意;D 、∵-11<0<4,∵-11,0,4这三个数中最小的数是-11,故该选项错误,符合题意. 故选:D . 6.B解:308.76亿=30876000000=3.0876×1010. 故选:B . 7.B解:3.14159≈3.14(精确到百分位). 故选:B . 8.D当2019m ≥时,20192019m m -=-,不符合题意; 当0m ≤时,20192019m m -=+,符合题意;当02019m <<时,20192019m m -=-,不符合题意; 所以0m ≤20202020m m -=-+故选D 9.C ∵a 1=3, ∵a 2=223-=﹣2, a 3=212(2)2=--,a 4=213224=-,a 5=23243=-,∵该数列每4个数为1周期循环, ∵2019÷4=504…3, ∵a 2019=a 3=12.故选:C . 10.A∵|a +b |=-(a +b ),∵a +b ≤0,∵|a |=4,|b |=2,∵a =±4,b =±2,∵a =-4,b =±2, 当a =-4,b =-2时,a -b =-2; 当a =-4,b =2时,a -b =-6;故a -b 所有值的和为:-2+(-6)=-8.故选A . 11.1或5- 解:由题意得, 当点在2-左侧时, 即235--=-, 当点在2-右侧时, 即231-+=, 故答案为:1或5-. 12.7解:10+2-3+8-5+1-6=7(人), 故答案为:7.13.1-解:a☆b=a-b+1,∴(2☆3)☆2231☆2=0☆2021 1.故答案为:1-14.5或-1##-1或5解:当B点在A点右边时,A表示2,则B表示2+3=5,当B点在A点左边时,A表示2,则B表示2-3=-1,故答案为:5或-1;【点睛】本题考查了数轴上两点距离=右边的数-左边的数;掌握数轴上右边的数比左边的数大是解题关键.15.1解:∵m是绝对值最小的数,n是最大的负整数,∵m=0,n=−1,∵m−n=0-(-1)=1,故答案为:1.16.1解:由A、F两点所表示的数可知AF=11﹣(﹣5)=16,∵AB=BC=CD=DE=EF,∵EF=16÷5=3.2,∵点C表示的数为:﹣5+3.2×2=1.4;∵与点C所表示的数最接近的整数是1.故答案为:1.17.(1)5(2)1(3)4(4)20(1)解:原式=4-1+2=5;(2)原式=4-7+3+1 =1; (3)原式=1231212923-+⨯-⨯+=-3+6-8+9 =4; (4)原式=()543255512⎛⎫⨯⨯--÷⨯- ⎪⎝⎭=-5+25 =20.18.1(3)|0.5|0|2.5|2-->->>->-;数轴见详解 解:|0.5|0.5-=,(3)3--=,|2.5| 2.5-=-, 在数轴上表示各数为:根据数轴得1(3)|0.5|0|2.5|2-->->>->-.19.(1)15400;600 (2)赚了7300元 (1)解:()4001001003500015400+-++⨯=(个) 故前三天共生产15400个口罩;()400200600+--=(个)故产量最多的一天比产量最少的一天多生产600个; 故答案为:15400;600; (2)()()()()40010010010020015035050007 1.50.40.6150350500020.40.6-+--+++⨯⨯---++⨯⨯+356000.5105001=⨯-⨯ 1780010500=-7300=(元)答:该工厂本周是赚了7300元 20 (1)解:根据题意得:AO =4,AB =1,BC =9,OC =4 画出数轴,如下:(2)解:4-(-4)=8千米,答:学校C 在学校A 的西边,距学校A 8千米; (3)解:(4+1+9+4)×0.1=18×0.1=1.8升,答:在这次运送物资回仓的过程中共耗油1.8升. 21.(1)5; (2)7x ; (3)-8;-3或-13; (1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5; (2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x ; (3)解:∵8x +=()8x --,∵代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离; 若85x +=,则当(x+8)>0时,x +8=5, x =-3, 当(x+8)<0时, x +8=-5, x =-13, 故答案为:-8;x =-3或-13;。
第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册
人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
人教版七年级数学上册 第一章 有理数 单元测试 【含答案】
人教版七年级数学上册 第一章 有理数 单元测试一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -B . 012C . -1 D . 14. 据统计,近十年中国累积节能万吨标准煤,这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃ B . 6 ℃C . 8 ℃ D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):星期一二三四五盈亏+220-30+215-25+225则这个周共盈利( )A .715元 B .630元C .635元 D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,B .2,1213C .5, D .-2,-23139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0 D.eq <010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.eq 的倒数是________.12. 如果+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知=5,=3,则(a +b )(a -b )=________.17. 有一组数据:,,,,,….请你根据此规律,写出第n 个数是________.254781116193235三、解答题(一)(每题6分,共18分)18.计算:(1)-14-××[2-(-3)2];13(2)(--+)÷.345671212419. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-),-.5220. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B 地在A 地的何处?(2)救灾过程中,最远处离出发点A 有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:超过或不足(克)-6-3-20+1+4+5袋数1116524(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是,14,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?12(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.答案1.D2.A2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11. 12.-1 13.29 14.-512 02215.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5××[2-9]13=-1-0.5××(-7)13=-1-×(-7)16=-1+76=16(2)原式=(--+)×243456712=-×24-×24+×243456712=-18-20+14=-2419.解:在数轴上表示各数如下:-(+6)<+<-<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8,∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为:4千米=5千米;=3千米;=4千米;=9千米;=3千米;=13千米;=8千米.∴最远处离出发点13千米;(3)这一天走的总程为:4++8++13++10+=62(千米),应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克)答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×=2.30×28 500=65 550(元).答:本厂上月生产的洗衣粉销售的总金额为65 550元.22.解:(1)(-3)×(-5)=15;(2)-5÷3=-;53(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=2423.解:(1)它的第100个数是:-100(2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022)=(-1)×2 022÷2=-1 01124.解:(1)4-3-5+300=296(斤)故答案为296.(2)21+8=29(斤)故答案为29.(3)+4-3-5+14-8+21-6=17>0故本周实际销售总量达到了计划销售量.(4)(17+100×7)×(8-3)=717×5=3 585(元)答:小明本周一共收入3 585元.25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)],解得:x =-1所以点B 表示的数为-1,(2)7÷=4(秒)4×-1=0答:丙追上甲时,甲乙相距0个单位长度.(3)设P 点表示的数x ,依题意得++=10,结合数轴得x =-,2,83∴P 点表示的数为-或2.83。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版数学七年级上册第一章《有理数》检测试试题(含答案)
人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
人教版数学七年级上册第一章有理数综合检测(附答案)
人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。
人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)
人教版七年级上册数学 第一章 有理数 单元检测试卷一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( ) A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( )A .14.12×108B .0.1412×1010C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( ) A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( )A .①②都正确B .①正确,②不正确C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( ) A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a 3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A.2B.–2C.1D.09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了()A.80元B.120元C.160元D.200元10.若a=-2020,则式子|a2+2019a+1|+|a2+2021a−1|的值是()A.4036B.4038C.4040D.4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算。
人教版七年级数学上册 第一章 有理数 单元测试题 (有答案)
人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。
人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)
人教版数学七年级上册第一章 有理数 综合测试卷(时间90分钟,满分120分)题号 一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分) 1. 在-3,-1,0,1这四个数中,最小的数是( ) A .-3 B .-1 C .0 D .12.-12019的相反数是( )A .2016B .-2016 C.12019 D .-120193.将161000用科学记数法表示为( )A .0.161×106B .1.61×105C .16.1×104D .161×1034.有理数a ,b 在数轴上的对应点如图所示,则下列式子中正确的是( ) ①b <0<a ;②|b|<|a|;③ab >0;④a -b >a +b. A .①② B .①④ C .②③ D .③④5.小明做了以下4道计算题:①(-1)2018=2018;②0-(-1)=1;③-12+13=-16;④12÷(-12)=-1.请你帮他检查一下,他一共做对了( ) A .1题 B .2题 C .3题 D. 4题6.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( ) A .M B .N C .P D .Q7.已知a ,b 是异号的两个有理数,且|a +b|=|a|-b ,用数轴上的点来表示a ,b ,下列正确的是( )8.定义新运算:对任意有理数a ,b ,都有a ⊕b =1a +1b ,例如:2⊕3=12+13=56,那么4⊕(-3)的值是( )A .-712B .-112C.112D.7129.已知ab >0,则|a|a +|b|b +|ab|ab 的值是( )A .-1或3B .1或3C .1或-3D .-1或-310.计算-1+(-1)2+(-1)3+(-1)4+…+(-1)2 019的值,结果正确的是( ) A .1 B .-1 C .0 D .-1或0第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在有理数中,最小的正整数是_____ __,最大的负整数是______,绝对值最小的数是__ __. 12.在0,-2,1,12这四个数中,最大数与最小数的和是__ __.13.已知(a -2)2+(b +3)2+|c -5|=0,则a -2b +c 2=____________.14.有理数a ,b 在数轴上的位置如图所示.比较a ,-a ,0,b ,-b 的大小是____________.15.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的值,则a +b +c =__ __.16.一个质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A 2跳动到OA 2的中点A 3处, …如此不断跳动下去,则第五次跳动后,该质点到原点O 的距离为__ __.17.若x ,y 互为相反数,a ,b 互为倒数,且m 的绝对值是1,则x +y +3ab -m 的值是_________.18.在一次综合与实践课上,小明和小颖正在设计一种新的运算程序,规定两种新的运算“·”和“○”:a·b =a 2+b 2;a○b =2ab ,如(2·3)(2○3)=(22+32)(2×2×3)=156,则[2·(-1)][2○(-1)]=__ __.三.解答题(共9小题,66分)19. (6分)已知|a|=1,|b|=4,且a+b<0,求a+b的值.20. (6分) 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9,-3,-5,+4,-8,+6,-3,-6,-4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营运额是多少元?21. (6分)小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值+4 -3 -5 +14 -8 +21 -6(1)根据表中的数据可知前三天共卖出__ __斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售__ __斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?22. (6分)仔细观察下列三组数第一组:1,4,9,16,25,…第二组:1,8,27,64,125,…第三组:-2,-8,-18,-32,-50,… (1)这组数各是按什么规律排列的?(2)第二组数的第100个数是第一组数的第100个数的多少倍? (3)取每组数的第20个数计算这三个数的和.23. (6分)请你先认真阅读材料: 计算(-130)÷(23-110+16-25).解:原式的倒数是(23-110+16-25)÷(-130)=(23-110+16-25)×(-30) =23×(-30)-110×(-30)+16×(-30)-25×(-30) =-20-(-3)+(-5)-(-12) =-20+3-5+12 =-10. 故原式等于-110.再根据你对所提供材料的理解,选择合适的方法计算:(-142)÷(16-314+23-27).24. (8分)计算:(1)-4×8×(-2.5)×0.1×(-1.25)×10;(2)(12+56-712)×(-36);(3)(-3)2-(112)3×29-6÷|-23|3;25. (8分)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|. (1)|AB|=__ __;(2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值.26. (10分)计算(1)(-2)2×(-1)3-3×[-1-(-2)];(2)-32×(-13)2+(34-16+38)×(-24);(3)(-32+3)×[(-1)2020-(1-0.5×13)].27. (10分)阅读下面的材料,再解决后面的问题: 因为:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17)…… 所以:11×3+13×5+15×7+…+199×101=12(1-13+13-15+15-17+…+199-1101)=12(1-1101)=50101. 求:11×3+13×5+15×7+…+12017×2019.参考答案:1-5ACBBC 6-10ACBAB11. 1,-1,012. -113. 3314. b<a<0<-a<b15. 016. 1 2514. 4或218. -2019. 解:因为|a|=1,|b|=4,所以a=±1,b=±4,因为a+b<0,所以a=1,b=-4,或a=-1,b=-4,所以a+b=-3或-520. 解:(1)9-3-5+4-8+6-3-6-4+7=-3,将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西边(2)(9+3+5+4+8+6+3+6+4+7)×2.4=132(元),故司机一下午的营运额是132元21. 解:(1)根据题意,得300+4-3-5=296(2)根据题意,得121-92=29(3)+4-3-5+14-8+21-6=17>0,故本周实际销量达到了计划销量(4)(17+100×7)×(5-1)=717×4=2 868(元).答:小明本周一共收入2 868元22. 解:(1)第一组按12,22,32,42,排列,第二组按13,23,33,43,排列,第三组按12×(-2),22×(-2),32×(-2)排列(2)1003÷1002=100(3)202+203+202×(-2)=400+8 000+(-800)=7 60023. 解:原式的倒数是:(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =-(16×42-314×42+23×42-27×42)=-(7-9+28-12) =-14. 故原式=-11424. 解:(1)原式=-(4×2.5)×(8×1.25)×(0.1×10) =-100(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(4)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2). (3)原式=9-278×29-6×278=9-34-814=9-21 =-12(4)原式=-8+(-3)×[16+2]-9÷(-2) =-8-54+92=-571225. 解:(1)5(2)当点P 在点A 左侧时,|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-5≠2; 当点P 在点B 右侧时,|PA|-|PB|=|AB|=5≠2;当点P 在A ,B 之间时,|PA|=|x -(-4)|=x +4,|PB|=|x -1|=1-x , 因为|PA|-|PB|=2,所以x +4-(1-x)=2,解得x =-12,即x 的值为-1226. 解:(1)原式=4×(-1)-3×(-1+2)=-4-3×1 =-4-3 =-7(2)原式=-9×19-34×24+16×24-38×24=-1-18+4-9 =-24(3)原式=(-9+3)×[1-(1-16)]=-6×16=-127. 解:11×3+13×5+15×7+…+12017×2019.=12(1-13+13-15+15-17+…+12017-12019) =12(1-12019) =10092019。
人教版数学七年级上册第一章有理数测试(含答案)
人教版数学七年级上学期第一章有理数测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数的是()A. -2B. 3C. -58D. -0.102.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 14.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣25.下列各对数是互为倒数的是( )A. 4和-4B. -3和13C. -2和12D. 0和06.下列说法中错误的是( )A. 0的相反数是0B. 任何有理数都有相反数C. a的相反数是-aD. 表示相反意义的量的两个数互为相反数7. 如图,数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A. —4B. —2C. 0D. 48.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×1079.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A a+b >0B. a-b=0C. a-b >0D. ab <0二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”) 12.某种零件,标明要求是φ20±0.2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件_____________(填“合格” 或“不合格”).13. 用四舍五入法取近似数,1.806≈__________(精确到0.01). 14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和,那么的值为___ .16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均正整数),则a+b=_______.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-53),- 3.14-,+31,3--4⎛⎫ ⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}. 18.计算: (1)(-24)×(12-213-38); (2)[2-5×(-12)2]÷1-4⎛⎫ ⎪⎝⎭.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?附加题(共20分,不计入总分)23.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 124.已知A,B在数轴上表示的数分别是m,n.(1)填写下表:m 5 -5 -6 -6 -10 -2.5n 3 0 4 -4 2 -2.5A、B两点间的距离(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数是()A. -2B. 3C. -58D. -0.10【答案】B【解析】试题分析:A.﹣2是负数,故本选项不符合题意;B.3是正数,不是负数,故本选项符合题意;C.58是负数,故本选项不符合题意;D.﹣0.10是负数,故本选项不符合题意;故选B.考点:正数和负数.2.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米【答案】A【解析】试题分析:收入20元与支出30元是一对具有相反意义的量.故选A.考点:相反意义的量.3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 1 【答案】D【解析】试题分析:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.考点:有理数大小比较.4.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣2 【答案】A【解析】【详解】解:1﹣(﹣1)=1+1=2. 故选:A .【点睛】本题考查有理数的减法. 5.下列各对数是互为倒数是( ) A. 4和-4 B. -3和13C. -2和12D. 0和0【答案】C 【解析】试题解析:A 、4×(-4)≠1,选项错误; B 、-3×13≠1,选项错误; C 、-2×(-12)=1,选项正确; D 、0×0≠1,选项错误. 故选C . 考点:倒数.6.下列说法中错误的是( ) A. 0的相反数是0 B. 任何有理数都有相反数C. a 的相反数是-aD. 表示相反意义的量的两个数互为相反数【答案】D 【解析】A 中,0的相反数是0本身,故A 不符合题意;B 中,任何有理数都有相反数,故B 不符合题意;C 中,a 的相反数是﹣a ,故C 不符合题意;D 中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示. 故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 7. 如图,数轴的单位长度为1,如果点A,B 表示的数的绝对值相等,那么点A 表示的数是( )A. —4B. —2C. 0D. 4【答案】B【解析】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.9.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|【答案】B【解析】【分析】根据乘方运算法则逐一计算即可判断.【详解】A. 22=4,(−2)2=4,故此选项正确;B. −22=−4,(−2)2=4,故此选项错误;C. −33=−27,(−3)3=−27,故此选项正确;D. −33=−27,−|−33|=−27,故此选项正确;故答案选:B.【点睛】本题考查了有理数的乘方运算,解题的关键是熟练的掌握有理数的乘方运算法则.10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A. a+b>0B. a-b=0C. a-b>0D. ab<0【答案】D【解析】【分析】根据图示,可得:a<-1,0<b<1,据此逐项判断即可.【详解】∵a<−1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<−1,0<b<1,∴∴a−b<0∴选项B不符合题意;∵a<−1,0<b<1,∴a-b<0,∴选项C不符合题意;∵a<−1,0<b<1,∴ab<0,∴选项D符合题意.故答案选:D.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的知识与运用.二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”)【答案】< 【解析】两个负数比较,绝对值大的反而小,故﹣1<1 2 -12.某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).【答案】合格【解析】【分析】先求出合格直径范围,再判断即可.【详解】解:由题意得,合格直径范围为:19.8mm--20.2mm,若一个零件的直径是19.9mm,则该零件合格.故答案为:合格.【点睛】本题考查了正数和负数的知识,解答本题的关键是求出合格直径范围.13. 用四舍五入法取近似数,1.806≈__________(精确到0.01).【答案】1.90.【解析】试题分析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.把千分位上的数字6进行四舍五入即可.解::1.806≈1.90(精确到0.01).故答案为1.90.考点:近似数和有效数字.14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.【答案】五【解析】【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【详解】解:依题意,有|−0.6|<|+0.8|<|−2.5|<|−3.5|<|+5|由于“绝对值越小,距离标准越近”所以质量接近标准的是五号排球.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数的相关知识.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的3 和,那么的值为___ .【答案】5.【解析】试题解析:由数轴可知38,x -+= 解得: 5.x = 故答案 16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均为正整数),则a+b=_______.【答案】209 【解析】试题解析:根据题中规律可知33222221111n n n n n n n n n n n n -++===⋅---- ,则当14n = 时,14a = ,195b =,所以14195209a b +=+= . 故本题的答案为209.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-5.3),- 3.14-,+31,3--4⎛⎫⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}.【答案】+31,0,-(+7),2016;-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39;-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016.【解析】 【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 【详解】解:整数:{+31,0,-(+7),2016,…}; 分数:{-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39,…};非负数:{-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016,…}. 【点睛】考查了有理数的知识点,解题的关键是熟练的掌握有理数的分类与定义. 18.计算:(1)(-24)×(12-213-38);(2)[2-5×(-12)2]÷1-4⎛⎫⎪⎝⎭.【答案】(1)37;(2)-3.【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算再计算乘除运算,最后算加减运算即可得到结果. 【详解】解:(1)原式=-12+40+9=37;(2)原式=(2-54)×(-4)=-8+5= -3.【点睛】本题考查了有理数的综合运算,解决的关键在于符号的处理.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26)=6÷(﹣16)=6×(﹣6)=﹣36.【点睛】本题考查有理数的除法.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)【答案】(1) 8.96×104;(2) 1.792×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】解:(1)1 600 000×56÷1000=89 600=8.96×104(升).答:如果每个人都不关水龙头,那么全市一天早晨漱口要浪费8.96×104升水.(2)89 600×1000÷500=179 200=1.792×105(瓶).答:如果用500毫升的水瓶来装(1)中浪费的水,可以装1.792×105瓶.【点睛】本题主要考查科学记数法—表示较大的数,关键在于要确定a的值和n的值.21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【答案】(1)149985;(2)99900.【解析】【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.考点:有理数的运算.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?【答案】(1) B地在A地的东边18千米处;(2) 还需补充7升油.【解析】试题分析:(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量. 试题解析:(1)∵14﹣9+8﹣7+13﹣6+10﹣5=18>0,∴B 地在A 地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+10=23千米;14﹣9+8﹣7+13﹣6+10﹣5=18千米,∴最远处离出发点23千米;(3)∵这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+10+|﹣5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36﹣29=7(升).考点:正数和负数.附加题(共20分,不计入总分)23.已知a 为有理数,定义运算符号▽:当a >-2时,▽a=-a ;当a <-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 1 【答案】C【解析】【分析】定义运算符号▽当a>-2时, ▽a=-a;当时a<-2, ▽a=a;当a=-2时, ▽a=0,先判断a 的大小,然后按照题中的运算法则求解即可.【详解】2532,-=-<-且当a 2<-时, ▽a=a,▽(-3)=-3.4+▽(2-5)=4-3=1>-2,当a>-2时, ▽a=-a,▽[4+▽(2-5)]=▽1=-1.【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里找寻规律. 24.已知A,B 在数轴上表示的数分别是m,n.(1)填写下表:(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.【答案】(1)2,5,10,2,12,0;(2)d=|m-n|;(3)在数轴上标出略,整数点P表示的数可以是5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和0.【解析】【分析】根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.【详解】解:(1)从左到右依次填2,5,10,2,12,0.(2)d=|m-n|.(3) 5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和是0.【点睛】本题是一个新型题目,通过本题我们可掌握数轴上两点间的距离的计算方法:两点间的距离表示两个点的数的差的绝对值,熟悉掌握是关键.。
人教版初中七年级数学上册第一章《有理数》经典测试题(含答案解析)
1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.6.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;7.下列说法:①a④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.8.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B 解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B根据计算器的使用方法,结合各项进行判断即可.【详解】 解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 14.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.5.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.6.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.8.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 11.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.3.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13. 【分析】 (1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。
人教版七年级数学上册《第一章有理数》练习题-附有答案
人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。
人教版数学七年级上册第一章有理数综合测试题(含答案)
人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。
人教版数学七年级上册第一章有理数测试卷附答案
人教版数学七年级上册第一章有理数测试卷附答案人教版七年级上册第一章测试卷一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到公里,将用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×1052.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是() A。
B.2 C.1 D.–13.我们定义一种新运算a⊕b=,例如5⊕2=,则式子7⊕(﹣3)的值为()D.﹣4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是()B.﹣205.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()D.﹣3或﹣76.下列式子中正确的是()D.(﹣2)4=﹣167.给出下列说法:①是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()B。
2个8.12的相反数与﹣7的绝对值的和是()A.59.XXX做了以下4道计算题:①(﹣1)2010=﹣1;②﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了()D。
4题10.若|a﹣4|=|a|+|﹣4|,则a的值是()B.任意一个非负数二.填空题(共6小题)11.﹣|﹣|的相反数是1.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是1/2.13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)=2.14.如果(﹣a)2=(﹣2)2,则a=±√2.15.计算:﹣1÷(﹣3)=1/3.16.如图,有理数在数轴上对应的点分别为-3/4、-1、0、3/2,化简的结果为-1 1/4、-1、0、1 1/2.三.解答题(共6小题)17.计算:1) (2)18.已知|a|=5,|b|=2,若a<b,求ab的值.a<b,说明a和b都是负数,所以ab为正数,且|a|>|b|,即|a|×|b|=ab=10.分析】题目描述了一个点在数轴上移动的过程,要求求出最终表示的数.根据题意,该点最终停留在距离起点3个单位长度的位置上,而向右移动7个单位长度再向左移动4个单位长度,实际上就是向右移动3个单位长度,因此最终表示的数就是3.故选:C.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)
B.绝对值等于 3 的数是-3
C.若 a a ,则 a ≤0
D.绝对值不大于 2 的数是±2,±1,0
4.将 6.9108 6.6107 的计算结果用科学记数法表示为( )
A. 3108
B. 3107
C. 6.24107
D. 6.24108
5.两个有理数 a,b 在数轴上位置如图,下列四个式子中运算结果为正数的是( )
2023-2024 学年七年级上册数学人教版
第一章《有理数》单元测试题
一、单选题(共 10 小题,满分 40 分) 1.下面四个数中,最大的数是( )
A. 4
B. 1
C. 0
D. 5
2.下列计算结果是负数的是( )
A. 2
B. 23
C. 321 0
D. - (- 2)
3.下列说法正确的是( )
A.一个数的绝对值一定大于这个数的相反数
12.数轴上有 A、B 两点,点 A 表示数为 m,点 B 表示数为 n,则 A、B 两点之间的距离为: .
13.重庆市卫生健康委发布消息,截至 5 月 6 日,重庆市已累计接种新冠病毒疫苗 10210000 人次,其中数 10210000
用科学记数法表示成
.
14.一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑 1 米,
用科学记数法表示为
.
18.用“★”定义新运算:对于任意有理数 a、b,都有 a★b=ba,那么 4★(2)= .
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.某奶粉每袋的标准质量为 454 克,在质量检测中,若超出标准质量 2 克,记为 2 克,若低于标准质量 2 克,记 为 2 克;若质量低于标准质量 3 克以上的,则这袋奶粉为不合格,现在抽取10 袋样品进行质量检测,结果如下(单 位:克) 袋号 1 2 3 4 5 6 7 8 9 10
人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)
人教版数学七年级上册第一章有理数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是-1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等2.若m-2的相反数是5,那么-m的值是( )A.+7 B.-7C.+3 D.-33.在有理数|-1|,(-1)2018,-(-1),(-1)2019,-|-1|中,负数的个数是()A.0个B.1个C.2个D.3个4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()C .(+39)+(-7)D .(+39)-(+7)6.已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23 000公里,将23 000用科学记数法表示应为( ) A .2.3×104 B .23×103 C .2.3×103 D .0.23×1058. 运用加法的运算律计算(+613)+(-18)+(+423)+(-6.8)+18+(-3.2)最适当的是( )A .[(+613)+(+423)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+613)+(-6.8)+(+4)=+[(-18)+18+(-3.2)]C .[(+613)+(-18)=+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+613)+(+423)]+[(-18)+18]+[(-3.2)+(-6.8)]9.若ab≠0,则a |a|+|b|b 的值不可能是( )A .2B .0C .-2D .110.计算机是将信息转换成二进制数进行处理的.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1=13,那么将二进制(1 111)2转换成十进制形式是数( ) A .8 B .15 C .20 D .30第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作__________. 12.数轴上一个点先向左移动2个单位长度,再向右移动6个单位长度,终点所表示的数是-2,那么原来的点表示的数是_________.13. 若m ,n 互为相反数,x ,y 互为倒数.求2019m +2019n -2020xy 的值是_______________.14.若a 和b 是符号相反的两个数,在数轴上a 所对应的点和b 所对应的点相距6个单位长度,如果a =2,则b 的值为________.15.在数轴上与表示-1的点相距4个单位长度的点表示的数是___________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为_________.18.-32,(-2)3,(-13)2,(-12)3的大小顺序是________________________________.三.解答题(共9小题,66分)19. (6分)已知|x|=5,|y|=3,且x>y.求x +y 的值.20. (6分) 有一根长为64米的钢筋,第一次截去一半,第二次截去剩下的一半,如此下去,截去第六次后剩下的钢筋长多少米?21. (6分)武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) -6 -2 0 1 3 4 袋数143453(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5 g ,求该食品的抽样检测的合格率.22. (6分)在社会实践活动中,环保小组甲、乙、丙三位同学一起连续5天调查高峰时段10分钟内通过解放路的车流情况(向东为正,向西为负).作了如下记录:(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如车流量不超过60辆时,空气质量为良,车流量超过60辆时,空气质量为差,请你对这五天的空气质量作一个评价.23. (6分)阅读第①小题的计算方法,再计算第②小题. ①-556+(-923)+1734+(-312)解:原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-114)=-114. 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便. ②仿照上面的方法计算:(-2 01923)+(-2 02056)+4 038+(-12).24. (8分)计算: (1)-191718×6;(2)-370×(-14)+0.25×24.5+512×25%.(3)(-1)3-14×[2-(-3)2];(4)-|-9|÷(-3)+(12-23)×12-(-3)2;25. (8分)小华在电脑上设计了一个有理数运算程序:输入a ,加*键,再输入b ,且a≠b ,得到运算a*b =ab÷(a -b).(1)求2*(-3)和(-3)*2的值;(2)猜想a*b 与b*a 的关系(不必说明理由);(3)若|x +4|=m*n ,|y -8|=n*m ,且m≠n ,求yx -xy 的值.26. (10分)计算 (1)-223+52-45-52-13;(2)(-76+34+1112-1324)×3÷(-112);(3)(-3)2-(-12)×(13-56)+(-22)÷(-23).第1个等式:a1=11×3=12×(1-13);第2个等式:a2=13×5=12×(13-15);第3个等式:a3=15×7=12×(15-17);第4个等式:a4=17×9=12×(17-19);……请解答下列问题:(1)按以上规律列出第5个等式:a5=_______=_____________;(2)求a1+a2+a3+a4+…+a100的值.参考答案:11. -3分 12. -6 13. -2020 14. -4 15. 3或-5 16. 3或13 17. 718. (-13)2>(-12)3>(-2)3>-3219. 解:因为|x|=5,所以x =±5. 因为|y|=3,所以y =±3. 由题意,可知x >y , 所以x =5,y =±3. x +y =5±3=8或220. 解:由题意可得64×(12)6=64×164=1(米),答:截去第六次后剩下的钢筋长1米21. 解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3 =9000-6-8+4+15+12 =9017(克) (2)1920=95% 22. 解:(1)25+40=65(辆), 20+20=40(辆),30+20=50(辆), 35+50=85(辆),35+20=55(辆). 因为40<50<55<65<85,所以第四天的污染指数最高,第二天的污染指数最低 (2)因为65>60,40<60,50<60,85>60,55<60,所以第二天、第三天、第五天空气质量为良,第一天、第四天空气质量为差 23. 解:原式=(-2 019-23)+(-2 020-56)+4 038+(-12)=(-2 019-2 020+4 038)+(-23-56-12)=(-1)+(-23-56-12)24. 解:(1)原式=(-20+118)×6=-20×6+118×6=-120+13=-11923(2)原式=370×14+14×2412+512×14=14×(370+2412+512) =14×400 =100(3)原式=-1-14×[2-9]=-1-14×[-7]=-1+74=34(4)原式=-9÷(-3)+(- 16)×12-9=3-2-9 =-825. 解:(1)2*(-3)=2×(-3)÷[2-(-3)]=-65,(-3)*2=(-3)×2÷[(-3)-2]=65(2)a*b 与b*a 互为相反数(3)因为m*n 与n*m 互为相反数,所以|x +4|+|y -8|=0, x +4=0,y -8=0,解得x =-4,y =8, 所以yx -xy =-2+32=3026. 解:(1)-223+52-45-52-13=(-223-13)+(52-52)-45=-3+0-45=-345;(2)(-7+3+11-13)×3÷(-1)=-76×(-36)+34×(-36)+1112×(-36)-1324×(-36)=42-27-33+392=32; (3)(-3)2-(-12)×(13-56)+(-22)÷(-23)=9+12×13-12×56+(-4)×(-32)=9+4-10+6 =9. 27. 解:(1)19×11,12×(19-111) (2)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+…+12×(1199-1201)=12×(1-13+13-15+…+1199-1201) =12×(1-1201) =100201。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012—2013学年上期七年级数学上册有理数单元测试题
一、选择题(每题2分,共30分,每题只有一个正确答案)。
1. 下列说法中正确的个数有 ( )
①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的 A 1 B 2 C 3 D 4
2.
a 、
b 是有理数,它们在数轴上的对应点的位置如下图所示:
把a 、-a 、b 、-b 按照从小到大的顺序排列正确的是 ( ) A -b <-a <a <b B -a <-b <a <b C -b <a <-a <b D -b <b <-a <a
3. 下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 A ①② B ①③ C ①②③ D ①②③④
4. 下列运算正确的是 ( )
A .5252
()17777
-
+=-+=- B -7-2×5=-9×5=-45
C.54331345
÷⨯=÷= D ()239--=- 5. 若a +b <0,a b <0,则 ( )
A a >0,b >0
B a <0,b <0
C a 、b 两数一正一负,且正数的绝对值大于负数的绝对值
D a 、b 两数一正一负,且负数的绝对值大于正数的绝对值
6.
5
61()(2)2
-
⨯-的值是( ) A . 12
- B.12
C. -2
D. 2
7.
1110
(2)(2)-+-的值是( )
A .-2 B.(-2)21 C .0 D -210
8. 一个数和它的倒数相等,则这个数是( )
A . 1 B.-1 C.-1和1 D. -1 、0和1
9.
6(5)-表示的意义是( )
A . 6个—5的积 B.-5乘以6的积 C.5个—6的积 D.6个—5的和
10. 下列说法中正确的是( )
A .-a 一定是负数
B .-|a |一定是负数
C .|-a |一定不是负数
D .-a 2一定是负数
11. 长城总长约为6700010米,用科学计数法表示为(保留两位有效数字)( )
A .×105米
B .×106米
C .×107米
D .×108米
12. 两个非零有理数的和为0,则它们的商是( )
A .0
B .-1
C .+1
D . 不能确定
13. 把1
2
-与-6作和、差、积、商的运算结果中,为正数的有 ( )
A 、4个
B 、3个
C 、2个
D 、1个
14. 数轴上的两点A 、B 分别表示-6和-3,那么A 、B 两点间的距离是 ( )
A 、-6+(-3)
B 、-6-(-3)
C 、|-6+(-3)|
D 、|-3-(-6)|
15. 现规定一种新运算“※”:a ※b =b
a ,如3※2=2
3=9,则(-2)※3等于( )
A 、-6
B 、6
C 、-8
D 、8 二、填空题(20题4分,其余每题2分,共30分)。
16. 在数+,-4,-,0,90,-|-24|中,__________是正数,____________不是整数。
17. 比132-大而比1
23
小的所有整数的和为__________ 。
18. 5
3
-的倒数的绝对值是 。
19. 若0<a <1,则a ,2
a ,
1
a
的大小关系是 。
20. 用“>”、“<”、“=”填空(每空1分)。
①- 1 ② 4
5-____34
- ③-(34
-)____ -[+(-)] ④-π____-
21. 绝对值大于1而小于4的整数有_______________,其和为 。
22. 1-2+3-4+5-6+…+2011-2012的值是______________。
23. 已知a =25,b =-3,则99100a b +的末位数字是 。
24. [(4)]---的相反数是________,-5-的绝对值是_________。
25. 若2
(1)
|2|0a b -++=,则a b
+ =_________。
26. 在-5、1、-3、5、-2中任意取三个相乘,其中最大的积是______,最小的积是_____。
27. 平方等于它本身的数有_________,立方等于它本身的数有____________。
28.大肠杆菌每过20分钟便由一个分裂成2个,经过3小时后这种大肠杆菌由一个分裂成
_____个。
29.在某体操比赛中,十位裁判对某运动员打分如下:10、、、、、、、、、去掉一个最高分,去掉
一个最低分,其余8个分数的平均分记为该运动员的得分,则此运动员的得分是_________。
三、计算题(每题5分,共30分)。
30.-20+(-14)-(-18)-13
31.
3571 ()
491236 --+÷
32.772
(6) 483
÷-⨯-
33.10-2×(-5)234.
2 2211
||()(4) 9353
-÷--⨯-35.
()
223
33 1[1126]()
74 --+-÷⨯-
四、解答题(每题5分,共10分)
36.
已知a 、b 互为相反数,m 、n 互为倒数,x 的绝对值为2 ,求 2
2a b mn x m n
+-+-- 的
值。
37. 某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不
足
的部分分别用正、负数来表示,记录如下表:
这批样品的平均质量比标准质量多还是少多或少几克若每袋标准质量为450克,则这20袋食品的总质量是多少
附加题(20分)
1、如果有理数a 、b 满足∣ab -2∣+(1-b)2=0,
试求1111(1)(1)(2)(2)(2012)(2012)ab a b a b a b ++++++++++L 的值。
2、已知∣1x +∣=4,(y +2)2=4,求
x y +的值。