乘法公式知识点及复习题
小学二年级数学表内乘法重点、难点和必考知识点带练习
![小学二年级数学表内乘法重点、难点和必考知识点带练习](https://img.taocdn.com/s3/m/1c1be79d172ded630a1cb656.png)
一、重点、难点1、乘法的初步认识(1)结合数一数、摆一摆的具体活动,经历相同加数连加算式的抽象过程,感受这种运算与日常生活的联系,体会学习乘法的必要性。
(2)结合具体情境,经历把相同加数的连加算式抽象为乘法算式的过程,初步体会乘法运算的意义,体会乘法和加法之间的联系与区别。
(3)会把相同加数的连加算式改写为乘法算式,知道写法、读法,并能应用加法计算简单的乘法算式的结果。
2、乘法的初步认识(1)能根据加法算式列出乘法算式,知道乘法算式中各部分的名称及含义。
(2)知道用乘法算式表示“相同加数连加算式”比较简便,为进一步学习乘法奠定基础。
(3)能从生活情境中发现并提出可以用乘法解决的问题,初步学会解决简单的乘法问题。
3、5的乘法口诀(1)结合具体情境,进一步体会乘法的意义,并经历5的乘法算式的计算过程和5的乘法口诀的编制过程。
(2)能用5的乘法口诀进行乘法计算,体验运用乘法口诀的优越性。
(3)能用5的乘法运算解决生活中简单的实际问题。
4、2、3、4的乘法口诀(1)结合具体情境,经历2、3、4的乘法口诀的编制过程,进一步体会编制乘法口诀的方法。
(2)能够发现每一组乘法口诀的排列规律,培养有条理的思考问题的习惯,逐步的发展数感。
(3)掌握2、3、4的乘法口诀,会用已经学过的口诀进行乘法计算,并能解决简单的实际问题。
5、(1)结合具体情境,掌握乘加、乘减算式的运算顺序,并能正确计算。
(2)能用含有两级运算的算式解决简单的实际问题,培养应用数学的意识和能力。
(3)培养学生从不同的角度观察思考问题的习惯,体现解决问题策略的多样化。
(4)在做一做2题中,应适当拓展,引导学生发现相邻两句口诀之间的关系,帮助学生理解和记忆乘法口诀。
6、6的乘法口诀(1)经历独立探索、编制6的乘法口诀的过程,体验从已有的知识出发探索新知识的思想和方法。
(2)掌握6的乘法口诀,并能用它解决一些简单的实际问题。
7、7的乘法口诀(1)结合具体情境,探索、编制7的乘法口诀,学会从已有的知识出发探索新知识的方法。
第3课时乘法公式(原卷版)
![第3课时乘法公式(原卷版)](https://img.taocdn.com/s3/m/0f27481ab207e87101f69e3143323968011cf437.png)
第三课时——乘法公式知识点一:平方差公式:1. 公式内容:两数的和乘以两数的差等于这两数的 。
即:()()=-+b a b a 。
2. 特点分析:式子左边是两个二项式相乘,它们其中一项 ,另一项 。
式子右边等于 的平方减去 的平方。
3. 几何意义:如图,将图①的蓝色部分移到 图②的位置。
图①的面积为:()()b a b a -+ 图②的面积为:22b a -图①与图②的面积相等。
所以()()22b a b a b a -=-+【类型一:平方差公式的计算】1.计算:(1)(a +2)(a ﹣2); (2)(3a +2b )(3a ﹣2b );(3)(﹣x ﹣1)(1﹣x ); (4)(﹣4k +3)(﹣4k ﹣3)2.计算:(1)(2m +3n )(2m ﹣3n ); (2)(﹣3a ﹣21b )(﹣3a +21b );(3)(﹣4x +y )(y +4x ); (4)(x +y )(x ﹣y )+(y ﹣z )(y +z )﹣(x +z )(x ﹣z ).【类型二:利用平方差公式求相关式子的值】3.已知a +b =﹣3,a ﹣b =1,则a 2﹣b 2的值是( ) A .8B .3C .﹣3D .104.若a +b =3,则a 2﹣b 2+6b 的值为( ) A .3 B .6C .9D .125.若a 2﹣b 2=32,a +b =21,则a ﹣b 的值为( ) A .﹣21B .34C .23D .26.若x +y =2,x 2﹣y 2=4,则x ﹣y 的值为( ) A .1B .2C .3【类型三:利用平方差公式简便运算】7.计算:199×201=( ) A .3999B .4179C .41790D .399998.计算20202﹣2019×2021的结果是( ) A .﹣1B .0C .1D .﹣29.化简(2+1)(22+1)(24+1)(28+1)(216+1)的结果是( ) A .232﹣1B .232+1C .(216+1)2D .(216﹣1)2【类型四:平方差公式的几何背景】10.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个长方形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)11.如图在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)12.【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式.(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为.(2)计算:20192﹣2020×2018.【拓展】计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.1. 公式内容:两数和(或差)的平方等于这两数的平方和加(或减)这两数的积的2倍。
七年级数学下册9.4乘法公式知识点梳理+练习(新版)苏科版.doc
![七年级数学下册9.4乘法公式知识点梳理+练习(新版)苏科版.doc](https://img.taocdn.com/s3/m/f3df4e7eb14e852458fb57b2.png)
2+(4x+3y)(4x-3y)+(4x+3y)
2
【解析】(1)原式=[(a+2b)-c]
2
.
=(a+2b)
2-2(a+2b)·c+c2=a2+4ab+4b2-2ac-4bc+c2;
(2)原式=[(a-2c)+3b][(a-2c)-3b]
112=1-1
1
22
(3)(-m+1)(m+1)=1m)m
-(;
2224
2+y2+y
22
)(4)(x+y)(x-y)(x)=[(x+y)(x-y)](x
222+y2=x
222244
=(x-y)(x)=(x-(y-y
)).
例4计算:
(1)(2x+3y)(2x-3y)-(3x+y)(3x-y);
(2)998×1002.
【解析】(1)原式=4x2-9y2-9x
2-9y2-9x
2+y2=-5x2-8y2;
2
(2)998×1002=(1000-2)(1000+2)=1000-4=999996.
【在线检测一】
下列1~6题计算是否正确:
1.(x+y)2=x2+y2.()
2=x2+y2.()
2.(x-y)-y2=x
22
.()
2D.4x2-12xy+9y
2
8.(5a+b)(-5a-b)=()
22B.25a2C.25a2+10ab+b2D.-25a
最新人教中考总复习知识点专题乘法公式的灵活应用
![最新人教中考总复习知识点专题乘法公式的灵活应用](https://img.taocdn.com/s3/m/ab5f3bc2c850ad02df804183.png)
专题训练(五) 乘法公式的灵活应用
解:(1)由题意,可得 12×142×16+4=(122+4×12+2)2=1942,所以 12×142×16+4 是 194 的平方. (2)n(n+2)2(n+4)+4=(n2+4n+2)2(n 是正整数).
专题训练(五) 乘法公式的灵活应用
9.2018·武汉市江汉区校级月考 阅读材料:若 m2-2mn+2n2-8n +16=0,求 m,n 的值. 解:∵m2-2mn+2n2-8n+16=0, ∴(m2-2mn+n2)+(n2-8n+16)=0. ∴(m-n)2+(n-4)2=0. ∵(m-n)2≥0,(n-4)2≥0, ∴(m-n)2=0,(n-4)2=0. ∴n=4,m=4. 根据你的观察,探究下面的问题: (1)已知 x2+2xy+2y2+2y+1=0,求 2x+y 的值; (2)已知△ABC 的三边长 a,b,c 都是正整数,且满足 a2+b2-12a -16b+100=0,求△ABC 的最大边长 c 的值.
专题训练(五) 乘法公式的灵活应用
解:(1)∵a+b=6,ab=2, ∴a2+b2=(a+b)2-2ab=62-2×2=32. (2)∵a2+b2=32,ab=2, ∴(a-b)2=a2+b2-2ab=32-4=28. (3)∵a2+b2=32,ab=2, ∴a2-ab+b2=a2+b2-ab=32-2=30.
解:(1)x2+y2=12[(x+y)2+(x-y)2]=12×(6+2)=4. (2)xy=14[(x+y)2-(x-y)2]=14×(6-2)=1.
专题训练(五) 乘法公式的灵活应用
3.阅读下列解题过程: 已知 x≠0,且满足 x2-3x=1,求 x2+x12的值. 解:∵x2-3x=1,∴x2-3x-1=0. 又∵x≠0, ∴x-3-1x=0,即 x-1x=3. ∴x2+x12=x-1x2+2=32+2=11. 请根据上述解题思路解答下列问题: 若 a2-5a-1=0,且 a≠0,求 a2+a12的值.
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题
![【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题](https://img.taocdn.com/s3/m/c76502266529647d2628521e.png)
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
整式的乘除知识点及题型复习
![整式的乘除知识点及题型复习](https://img.taocdn.com/s3/m/0348e3c3690203d8ce2f0066f5335a8102d266a8.png)
举例说明:如单项 式x^2除以多项式 2x-1,结果为 (x^2)/(2x1)=x+1
除法运算顺序:按照从左到 右的顺序进行除法运算,注 意先处理括号内的内容
除法法则:类似于多项式乘 法,将除法转化为乘法,然 后利用乘法法则进行计算
除法结果的化简:将除法结 果化简到最简形式,注意约
分和合并同类项
除法运算的注意事项:注意 处理符号和运算优先级的问
添加标题
解析:根据速度、时间和距离的关系,速度=距离/时间,所以时间=距离/速度。将已知数值代入公式,得到时间=100千米 /80千米/小时=1.25小时。
添加标题
题目:一架飞机以每小时800千米的速度从甲地飞往乙地,飞行了3小时后,发现方向有误,于是立即改变航向,并以每小时 1000千米的速度飞行了4小时,求飞机到达乙地所需的总时间。
项式。
整式除法的结 果仍为一个多 项式,其各项 系数和次数与 被除式相同。
整式除法的一 般形式为:被 除式=除式×商
式+余式。
在整式除法中, 需要注意除数 不能为0,且各 项系数和次数 必须符合数学
规则。
定义:将一个单项式除以另一个单项式的商称为单项式除以单项式。
运算法则:与单项式乘法类似,按照系数、字母因子的指数分别相除,对于只在被除式 中出现的字母因子,连同其指数一起作为商的一个字母因子。
定义:两个多项式相乘,将一个多项式的每一项与另一个多项式的每一项 相乘,再将所得积相加。 举例:$(x+1)(x+2) = x^2 + 3x + 2$
公式:$(x+a)(x+b) = x^2 + (a+b)x + ab$
注意事项:注意乘法分配律的应用,以及合并同类项时的符号问题。
乘法公式精选题(含答案)
![乘法公式精选题(含答案)](https://img.taocdn.com/s3/m/006ca55ba417866fb84a8e75.png)
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
三年级乘法计算复习
![三年级乘法计算复习](https://img.taocdn.com/s3/m/9b7a26b7964bcf84b9d57be2.png)
A . 乘1000B. 乘100C . 乘10
3.87×4□≈3200,□中最大填()。
A .5B.4C .9
4.一个乘数是28,另一个乘数是32,积大约是()。
A .1200B.600C .900
5.分别与28和46最接近的两个近似数是()。
3、、25×40的积的末尾有()个0。
4、49×31大约是(),积的末尾一定是()。
5、24×3=72,2400×30=()。
6、在180÷(80-50)中,应先算(),再算()。
例2.在○里填上〉、〈或=。
38×23○38×25 1200○32×41 361○19×19
92×89○65×78 78×30○2400 34×43○43×34
2、a×39=1092,则a×390=(),a×3900=()。
3、两个乘数的积是312,如果一个乘数不变,另一个乘数缩小3倍,积是();
如果一个乘数不变,另一个乘数扩大5倍,积是()。
4、49×57的积得个位上的数是(),积是()位数。
二.判断题
1、一个乘数末尾有一个0,另一个乘数末尾也有一个0,积得末尾一定有
A .30和40B.30和50C .20和50
三、估算
89×52≈13×49≈42×87≈25×11≈
47×48≈34×95≈69×18≈99×12≈
四.应用题
1.王老师为学校买26本作文本,每本18元,王老师带了600元,买完作文本,他还剩多少钱?
()×()=400()×()=400
()×()=400()×()=400
知识点一
【知识梳理】
1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
整式乘法(学生版)知识点+经典例题+题型归纳
![整式乘法(学生版)知识点+经典例题+题型归纳](https://img.taocdn.com/s3/m/3ab393f99e314332396893d7.png)
1 / 2整式的乘法基础知识22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆 22222()():2()a b a b a b a ab b a b ⎧⎪⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤一、幂的运算经典例题【例1】(正确处理运算中的“符号”)【例2】下列各式计算正确的是( ) A 、()66322b a b a =- B 、()5252b a b a -=-C 、124341b a ab =⎪⎭⎫ ⎝⎛-D 、462239131b a b a =⎪⎭⎫⎝⎛-【例3】()()1333--⋅+-m m的值是( )A 、1B 、-1C 、0D 、()13+-m【例4】(1)m m 8812÷+; (2)252m÷(51)1-2m二、整式的乘法【例1】(1)()()25434x y xy -= 。
(2)()2004200324-⨯= 。
【例2】()()22323225x yx y z xy z -⨯+= 。
【例3】a 2 (a +b)(a -2) 。
【例4】()72=+b a ,()42=b a —,求22b a +和ab 的值.【例5】计算()()11a b a b +-++的值【例6】已知:15a a +=,则221a a+= 。
初一乘法知识点总结公式
![初一乘法知识点总结公式](https://img.taocdn.com/s3/m/d9412a92ac51f01dc281e53a580216fc700a5323.png)
初一乘法知识点总结公式一、乘法的基本概念1. 乘法的定义乘法是一种将两个或多个数相乘的运算。
在乘法运算中,被乘数乘以乘数得到积。
2. 乘法的表示乘法可以用符号“×”表示,例如3×5=15,表示3乘以5得到15。
3. 乘法的性质乘法具有交换律和结合律。
交换律表示乘法的顺序可以交换,即a×b=b×a;结合律表示乘法的运算次序可以改变,即(a×b)×c=a×(b×c)。
二、一位数乘一位数的乘法1. 乘法表在学习乘法运算时,学生首先需要掌握1~9的乘法表。
乘法表是一张表格,按行和列分别表示被乘数和乘数,表格中的每个元素表示它们的乘积。
通过背诵乘法表,可以加深对乘法运算的理解和记忆。
2. 一位数乘法的运算方法一位数乘法是指一个一位数与另一个一位数相乘的运算。
学生在学习一位数乘法时,可以通过横式乘法来进行计算。
例如,计算23×6,可以先将23的个位数6乘以6得到18,再将23的十位数2乘以6得到12,最后将18和12相加得到138。
3. 一位数乘法的应用一位数乘法在日常生活中有着广泛的应用。
比如,购物时计算商品的总价、计算身高体重的BMI指数、计算成绩的总分等等都需要用到一位数乘法的知识。
三、一位数乘两位数的乘法1. 一位数乘两位数的运算方法一位数乘两位数是指一个一位数与一个两位数相乘的运算。
学生在学习一位数乘两位数乘法时,可以通过竖式乘法来进行计算。
例如,计算34×7,可以先将34的个位数7乘以7得到238,再将34的十位数3乘以7得到21,最后将238和21相加得到238。
2. 一位数乘两位数的应用一位数乘两位数的乘法知识在日常生活中同样有着广泛的应用。
比如,计算购买苹果的总价、计算家庭月用电量的总费用、计算衣服的总码数等等都需要用到一位数乘两位数的知识。
四、两位数乘两位数的乘法1. 两位数乘两位数的运算方法两位数乘两位数是指两个两位数相乘的运算。
专题复习:乘法公式知识点归纳及典例+练习题(生)
![专题复习:乘法公式知识点归纳及典例+练习题(生)](https://img.taocdn.com/s3/m/93ab299a02d276a200292eb6.png)
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述1、平方差公式由多项式乘法得到 (a+b)(a-b) =a2-b2.即两个数的和与这两个数的差的积,等于它们的平方差.2、完全平方公式由多项式乘法得到(a±b)2=a2±2ab+b2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.推广形式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca二、典型例题讲解例1、计算:(1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3); (4)(a+b+c)(a-b-c).例2、计算:(1)20042-19962 (2)(x-y+z)2-(x+y-z)2 (3)(2x+y-3)(2x-y-3).例3、计算:(1)(3x+4y)2; (2)(-3+2a)2;(3)(2a-b)2;(4)(-3a-2b)2例4、已知m+n=4, mn=-12,求(1);(2);(3).一、选择题1、计算:的结果为()A.B.1000C.5000 D.5002、20092-2008×2010的计算结果为()A.-1 B.1C.-2 D.23、一个多项式的平方是,则()A.9b2B.-3b2C.-9b2D.3b24、如果a2-b2=20,且a+b=-5,则a-b的值等于()A.5 B.4C.-4 D.以上都不对5、用乘法公式计算正确的是()A.(2x-1)2=4x2-2x+1B.(y-2x)2=4x2-4xy+y2C.(a+3b)2=a2+3ab+9b2D.(x+2y)2=x2+4xy+2y26、已知,则=()A.5 B.7C.9 D.117、如果x2+kx+81是一个完全平方式,则k的值是()A.9 B.-9C.±9 D.±188、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的()A.(x-p)2=5 B.(x-p)2=9C.(x-p+2)2=9 D.(x-p+2)2=59、设a+b=0,ab=11,则a2-ab+b2等于()A.11 B.-11C.-33 D.3310、已知x-y=3,y-z=,则(x-z)2+5(x-z)+的值等于().A.B.C.D.36二、解答题11、计算下列各题:(1)(-2x-7)(-2x+7); (2)(3x-y)(y+3x)-2(4x-3y)(4x+3y);(3)(m+1)2-5(m+1)(m-1)+3(m-1)2; (4)(2x+3y-1)(1+2x-3y)+(1+2x-3y)2.12、化简求值:(1)4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.(2)(8x2+4x+1)(8x2+4x-1),其中x=.(3)(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-.13、已知x2+y2=25,x+y=7,且x>y,求x-y的值.14、已知在△ABC中,(a,b,c是三角形三边的长).求证:a+c =2b.15、(1)已知,求:①,②,③,④。
分式、因式分解整式乘除综合知识点及练习
![分式、因式分解整式乘除综合知识点及练习](https://img.taocdn.com/s3/m/3ba151bd02d276a200292ecb.png)
基础知识1.同底数幂的乘法:,(m,n 都是正整数),即同底数幂相乘,底数不变,指mnm na a a +=g 数相加。
2.幂的乘方:,(m,n 都是正整数),即幂的乘方,底数不变,指数相乘。
()m nmn a a=3.积的乘方:,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘()n n nab a b =方,再把所得的幂相乘。
4.整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m (a +b +c )=ma +mb +mc (a 、b 、c 都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差”,即用字母表示为:(a +b )(a -b )=a 2-b 2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab ,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a 、 b 都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。
整式的乘除知识点及题型复习
![整式的乘除知识点及题型复习](https://img.taocdn.com/s3/m/627ff1e5b9f3f90f76c61baa.png)
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(解析版)
![专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(解析版)](https://img.taocdn.com/s3/m/82de648fe109581b6bd97f19227916888486b9af.png)
专题1.3 乘法公式【十大题型】【北师大版】【题型1 判断运用乘法公式计算的正误】 (1)【题型2 利用完全平方式确定系数】 (3)【题型3 乘法公式的计算】 (5)【题型4 利用乘法公式求值】 (8)【题型5 利用面积法验证乘法公式】 (10)【题型6 乘法公式的应用】 (13)【题型7 平方差公式的几何背景】 (17)【题型8 完全平方公式的几何背景】 (22)【题型9 乘法公式中的新定义问题】 (28)【题型10 乘法公式的规律探究】 (31)【知识点乘法公式】平方差公式:(a+b)(a-b)=a2-b2。
两个数的和与这两个数的差的积,等于这两个数的平方差。
这个公式叫做平方差公式。
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。
这两个公式叫做完全平方公式。
【题型1判断运用乘法公式计算的正误】【例1】(2023春·贵州毕节·七年级统考期末)计算(x−y+3)(x+y−3)时,下列变形正确的是()A.[(x−y)+3][(x+y)−3]B.[(x+3)−y][(x−3)+y]C.[x−(y+3)][x+(y−3)]D.[x−(y−3)][x+(y−3)]【答案】D【分析】将(y−3)看做一个整体,则x是相同项,互为相反项的是(y−3),对照平方差公式变形即可求解.【详解】解:(x−y+3)(x+y−3)=[x−(y−3)][x+(y−3)],故选:D.【点睛】本题考查了平方差公式,解题的关键是找出相同项和相反项.【变式1-1】(2023春·浙江杭州·七年级校考期中)下列运算正确的是()A .(x +y )(−y +x )=x 2−y 2B .(−x +y )2=−x 2+2xy +y 2C .(−x−y )2=−x 2−2xy−y 2D .(x +y )(y−x )=x 2−y 2【答案】A【分析】根据平方差公式和完全平方公式,逐个进行判断即可.【详解】解:A 、(x +y )(−y +x )=x 2−y 2,故A 正确,符合题意;B 、(−x +y )2=x 2−2xy +y 2,故B 不正确,不符合题意;C 、(−x−y )2=x 2+2xy +y 2,故C 不正确,不符合题意;D 、(x +y )(y−x )=y 2−x 2,故D 不正确,不符合题意;故选:A .【点睛】本题主要考查根据平方差公式和完全平方公式,解题的关键是掌握平方差公式(a +b )(a−b )=a 2−b 2和完全平方公式(a ±b )2=a 2±2ab +b 2.【变式1-2】(2023春·天津滨海新·七年级统考期末)在下列多项式的乘法中,不可以用平方差公式计算的是( )A .(x +y)(x−y)B .(−x +y)(x +y)C .(−x−y)(−x +y)D .(x−y)(−x +y)【答案】D【分析】根据平方差公式是两个数的和与这两个数的差相乘等于这两个数的平方差,由此进行判断即可.【详解】A 、B 、C 选项都是两个数的和与这两个数的差相乘,可以使用平方差公式,D 选项变形后为−(x−y)2,不能使用平方差公式;故选:D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【变式1-3】(2023春·广东茂名·七年级统考期中)下列多项式不是完全平方式的是( ).A .x 2−4x−4B .14+m 2+mC .a 2+2ab +b 2D .t 2+4t +4【答案】A【分析】根据a 2±2ab +b 2的形式判断即可;【详解】x 2−4x−4不是完全平方公式,故A 符合题意;14+m 2+m =+m 2,故B 不符合题意;a 2+2ab +b 2=(a +b )2,故C 不符合题意;t2+4t+4=(t+2)2,故D不符合题意;故选:A.【点睛】本题主要考查了完全平方公式的判断,准确分析是解题的关键.【题型2利用完全平方式确定系数】【例2】(2023春·江苏扬州·七年级统考期末)若将多项式4a2−2a+1加上一个单项式成为一个完全平方式,则这个单项式可以是.(只要写出符合条件的一个)【答案】−2a,6a,−34,−3a2.【分析】根据完全平方公式的特点分情况讨论:若把4a2和1看成两个平方项,则该完全平方式可以;是(2a−1)2或(2a+1)2;②若把4a2看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2;③若把1看成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2.分别算出所需添加的单项式即可.【详解】①若把4a2和1看成两个平方项,则该完全平方式可以是(2a−1)2或(2a+1)2,∵(2a−1)2=4a2−4a+1=4a2−2a+1+(−2a),∴这个单项式可以是−2a;∵(2a+1)2=4a2+4a+1=4a2−2a+1+6a,∴这个单项式可以是6a;②若把4a2成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(2a−12)2,∵(2a−12)2=4a2−2a+14=4a2−2a+1+(−34),∴这个单项式可以是−34;③若把1成一个平方项,把−2a看成二倍两项积,则该完全平方式可以是(a−1)2,∵(a−1)2=a2−2a+1=4a2−2a+1+(−3a2),∴这个单项式可以是−3a2.综上,添加的这个单项式可以是−2a,6a,−34,−3a2.故答案为:−2a,6a,−34,−3a2.【点睛】本题主要考查了完全平方公式,熟练掌握完全平方公式的特点,进行分类讨论是解题的关键.【变式2-1】(2023春·四川达州·七年级校考期中)若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为.【答案】4或16【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m 与n 的值,代入原式计算即可求出值.【详解】解:∵x 2+2(m−3)x +1是完全平方式,∴m−3=±1,∴m =4或m =2,∵x +n 与x +2的乘积中不含x 的一次项,(x +n )(x +2)=x 2+(n +2)x +2n ,∴n +2=0,∴n =−2,当m =4,n =−2时,n m =(−2)4=16;当m =2,n =−2时,n m =(−2)2=4,则n m =4或16,故答案为:4或16.【点睛】本题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.【变式2-2】(2023春·七年级课时练习)若9x 2−(k−1)xy +25y 2是关于x 的完全平方式,则k =.【答案】31或−29/−29或31【分析】由9x 2−(k−1)xy +25y 2是关于x 的完全平方式,得出9x 2−(k−1)xy +25y 2=(3x ±5y )2,进而得出−(k−1)=±30,即可求出k 的值.【详解】解:∵9x 2−(k−1)xy +25y 2是关于x 的完全平方式,∴9x 2−(k−1)xy +25y 2=(3x ±5y )2,∴−(k−1)=±30,解得:k =31或−29,故答案为:31或−29【点睛】本题考查了完全平方式,掌握完全平方式的特点,考虑两种情况是解决问题的关键.【变式2-3】(2023春·福建泉州·七年级晋江市季延中学校考期中)已知B 是含字母x 的单项式,要使x 2+B +14是完全平方式,那么B = .【答案】±x 或x 4.【分析】分类讨论:①当x 2+B +14是完全平方式时和当B +x 2+14是完全平方式时,再根据完全平方式的特点即可得出答案.【详解】解:分类讨论:①当x 2+B +14是完全平方式时.∵x 2+B +14=x 2+B +,∴B =±2×x ×12=±x ;②当B +x 2+14是完全平方式时.∵B +x 2+14=B +2×x 2×12+,∴B =x 4.综上可知,B =±x 或x 4.故答案为:±x 或x 4.【点睛】本题考查完全平方式.掌握完全平方式的结构特征和利用分类讨论的思想是解题关键.【题型3 乘法公式的计算】【例3】(2023春·云南昭通·七年级校考期末)计算:(1)(2m−n +3p)(2m +3p +n);(2)化简求值:(x−3)(x +3)−(x 2−2x +1),其中x =12.【答案】(1)4m 2+12mp +9p 2−n 2(2)2x−10,−9【分析】(1)先把原式化为[(2m +3p)−n ][(2m +3p)+n ],再利用平方差公式和完全平方公式计算即可;(2)先利用平方差公式和去括号法则展开,再合并同类项,最后求值即可.【详解】(1)解:原式=[(2m +3p)−n ][(2m +3p)+n ]=(2m +3p)2−n 2=4m 2+12mp +9p 2−n 2;(2)原式=x 2−9−x 2+2x−1=2x−10,当x =12时,原式=1−10=−9.【点睛】本题考查了整式的混合运算以及平方差公式,熟练掌握整式的混合运算法则是解本题的关键.【变式3-1】(2023春·山东东营·六年级统考期末)利用整式乘法公式计算.(1)1002−98×102;(2)(a+b+3)(a+b−3);(3)(−2m+3)(−2m−3);x−2y 2.【答案】(1)4(2)a2+2ab+b2−9(3)4m2−9(4)14x2−2xy+4y2【分析】(1)首先把98×102转化为(100−2)×(100+2),然后再根据平方差公式计算即可;(2)利用平方差公式变形,然后再根据完全平方公式计算即可;(3)根据平方差公式计算即可;(4)根据完全平方公式计算即可.【详解】(1)解:1002−98×102=1002−(100−2)×(100+2)=1002−(1002−22)=1002−1002+22=4;(2)解:(a+b+3)(a+b−3)=[(a+b)+3][(a+b)−3]=(a+b)2−32=a2+2ab+b2−9;(3)解:(−2m+3)(−2m−3)=(−2m)2−32=4m2−9;(4x−2y2=14x2−2xy+4y2.【点睛】本题考查了平方差公式和完全平方公式,解本题的关键在熟练掌握整式的乘法公式进行计算.【变式3-2】(2023春·湖南永州·七年级校联考期中)1−1−=.【答案】1528【分析】根据平方差公式得,1−=1−+...1−+=12×32×23×43×34×54...×1314×1514,然后计算求解即可.【详解】解:1−==12×32×23×43×34×54...×1314×1514=12×1514=1528,故答案为:1528.【点睛】本题考查了平方差公式的应用.解题的关键在于对知识的熟练掌握与灵活运用.【变式3-3】(2023春·江西抚州·七年级校联考期中)运用乘法公式计算:(1)(2m−3n)(−2m−3n)−(2m−3n)2(2)1002−992+982−972+…+22−12.【答案】(1)−8m2+12mn(2)5050【分析】(1)原式第一项利用平方差是化简,第二项利用完全平方公式展开,去括号合并即可得到结果;(2)原式结合后,利用平方差公式化简,计算即可得到结果.【详解】(1)原式=9n2−4m2−4m2+12mn−9n2=−8m2+12mn;(2)原式=(100+99)×(100−99)+(98+97)×(98−97)+…+(2+1)×(2−1)=100+99+98+97+96+……+1=5050.【点睛】本题考查了平方差公式和完全平方公式的应用,熟练掌握运算法则是解题的关键.【题型4利用乘法公式求值】【例4】(2023春·山东济南·七年级统考期末)设a=x−2022,b=x−2024,c=x−2023.若a2+b2=16,则c2的值是( )A.5B.6C.7D.8【答案】C【分析】根据完全平方公式得出ab=6,a−b=2,进而根据已知条件得出c2=(a−1)(b+1),进而即可求解.【详解】∵a=x−2022,b=x−2024,c=x−2023,∴a−1=x−2023=c=b+1,a−b=2,∵a2+b2=16,∴(a−b)2+2ab=16,∴ab=6,∴c2=(a−1)(b+1)=ab+a−b−1=6+2−1=7,故选:C.【点睛】本题考查了完全平方公式变形求值,根据题意得出c2=(a−1)(b+1)是解题的关键.【变式4-1】(2023春·广西贵港·七年级校考期末)若x−y−7=0,则代数式x2−y2−14y的值为.【答案】49【分析】先计算x−y的值,再将所求代数式利用平方差公式分解前两项后,将x−y的值代入化简计算,然后再代入计算即可求解.【详解】解:∵x−y−7=0,∴x−y=7,∴x2−y2−14y=(x+y)(x−y)−14y=7(x+y)−14y=7x +7y−14y =7(x−y )=49.故答案为:49.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.【变式4-2】(2023春·湖南永州·七年级校考期中)(1)已知a +1a =3,求a 2+1a 2的值;(2)已知(a−b )2=9,ab =18,求a 2+b 2的值.【答案】(1)7;(2)45【分析】(1)根据完全平方和公式恒等变形后,代值求解即可得到答案;(2)根据完全平方差公式,代值求解即可得到答案.【详解】解:(1)∵ a 2+1a 2=a−2,a +1a =3,∴原式=32−2=9−2=7;(2)∵(a−b )2=a 2−2ab +b 2,(a−b )2=9,ab =18,∴ 9=a 2−2×18+b 2,解得a 2+b 2=9+2×18=45.【点睛】本题考查代数式求值,涉及完全平方公式,熟记完全平方和与完全平方差公式是解决问题的关键.【变式4-3】(2023春·陕西西安·七年级校考期中)已知m 满足(3m−2015)2+(2014−3m )2=5.(1)求(2015−3m )(2014−3m )的值.(2)求6m−4029的值.【答案】(1)−2(2)±3【分析】(1)原式利用完全平方公式化简,计算即可确定出原式的值;(2)原式利用完全平方公式变形,计算即可得到结果.【详解】(1)解:设a =3m−2015,b =2014−3m ,可得a +b =−1,a 2+b 2=5,∵(a+b)2=a2+b2+2ab,∴1=5+2ab,即ab=−2,则(2015−3m)(2014−3m)=(3m−2015)(2014−3m)=−ab=2;(2)解:设a=3m−2015,b=2014−3m,可得6m−4029=(3m−2015)−(2014−3m)=a−b,∵(a−b)2=a2+b2−2ab,∴(6m−4029)2=(a−b)2=a2+b2−2ab=5+4=9,则6m−4029=±3.【点睛】此题考查了完全平方公式,熟练掌握公式及运算法则是解本题的关键.【题型5利用面积法验证乘法公式】【例5】(2023春·七年级课时练习)如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能【答案】C【分析】分别在两个图形中表示出阴影部分的面积,继而可得出验证公式,即可得到答案.【详解】解:在图①中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;在图②中,左边的图形中阴影部分的面积为:a2−b2,右边图形中的阴影部分的面积为:(a+b)(a−b),故可得:a2−b2=(a+b)(a−b),可验证平方差公式,符合题意;故能够验证平方差公式的是:①②,故选:C.【点睛】本题主要考查了平方差公式,运用不同方法表示阴影部分的面积是解题的关键.【变式5-1】(2023春·山东烟台·六年级统考期末)在下面的正方形分割方案中,可以验证(a+b)2=(a−b)2 +4ab的图形是()A.B.C.D.【答案】C【分析】用面积公式和作差法求小正方形、长方形的面积,令其与大正方形相等.【详解】A、不能验证公式,该选项不符合题意;B、可以验证(a+b)2=a2+2ab+b2,该选项不符合题意;C、可以验证(a+b)2=(a−b)2+4ab,该选项符合题意;D、可以验证a2=(a−b)2+2ab−b2,即(a−b)2=a2−2ab+b2,该选项不符合题意.故选:C.【点睛】本题考查了完全平方公式的几何验证,解题的关键在于对知识的熟练掌握与灵活运用.【变式5-2】(2023春·福建宁德·七年级校联考期中)下列等式不能用如图所示的方形网格验证的是()A.(a+b)2=a2+2ab+b2B.(a+b)(b+c)=ab+ac+b2+bcC.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcD.(a+b)(a−b)=a2−b2【答案】D【分析】利用图形面积直接得出等式,从而可选择.【详解】解:等式(a+b)2=a2+2ab+b2是由边长为(a+b)的正方形推导而出,故A可验证,不符合题意;等式(a+b)(b+c)=ab+ac+b2+bc是由长为(b+c),宽为(a+b)的长方形推导而出,故B可验证,不符合题意;等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc是由边长为(a+b+c)的正方形推导而出,故C可验证,不符合题意;等式(a+b)(a−b)=a2−b2,图中找不到有关于a−b的面积,故D不可验证,符合题意.故选D.【点睛】本题考查多项式的乘法与图形面积.利用数形结合的思想是解题关键.【变式5-3】(2023春·江西抚州·七年级统考期末)(1)课本再现:如图1,2是“数形结合”的典型实例,应用“等积法”验证乘法公式.图1验证的是______,图2验证的是______;(2)应用公式计算:①已知x+y=5,xy=−1,求x2+y2的值;②求20222−2021×2023的值.【答案】(1)(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①27;②1【分析】(1)根据图1中大正方形的面积为两个小正方形的面积与两个长方形的面积之和得到完全平方公式,根据图2中左右两边阴影部分的面积相等得到平方差公式;(2)①利用x2+y2=(x+y)2−2xy进行计算即可;②利用平方差公式将2021×2023=(2022−1) (2022+1)=20222−1化简即可.【详解】解:(1)图1中,边长为a的正方形的面积为a2,边长为b的正方形的面积为b2,长为a宽为b的长方形的面积为ab,大正方形的边长为(a+b),面积为(a+b)2,∵大正方形的面积为两个小正方形的面积与两个长方形的面积之和,∴(a+b)2=a2+b2+2ab图2中,左边阴影部分的面积为:a2−b2,右边阴影部分的面积为:(a+b)(a−b),∵左右两边的阴影部分面积相等,∴a2−b2=(a+b)(a−b),故答案为:(a+b)2=a2+b2+2ab,a2−b2=(a+b)(a−b);(2)①∵x+y=5,xy=−1,∴x2+y2=(x+y)2−2xy=52−2×(−1)=27;②20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1.【点睛】本题主要考查了完全平方公式和平方差公式,熟练掌握(a+b)2=a2+b2+2ab,a2−b2=(a+b) (a−b)是解题的关键.【题型6乘法公式的应用】【例6】(2023春·浙江宁波·七年级校考期中)如图,为了美化校园,某校要在面积为30平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为14米,则m-n的值为()A.4米B.7米C.5米D.3.5米【答案】B【分析】根据长方形的周长及面积计算公式,可找出关于m,n的方程组,变形后可得出(m−n)2=49,解之取其正值即可得出结论.【详解】解:依题意得:2(m−3)+2(n−3)=14①mn=30②,由①可得:m+n=13,∵(m−n)2=(m+n)2−4mn,∴(m−n)2=49,∴m−n=7或m−n=−7(不合题意,舍去).故选:B.【点睛】本题考查了完全平方公式的几何背景,牢记(a±b)2=a2±2ab+b2是解题的关键.【变式6-1】(2023春·陕西西安·七年级校考期中)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若m+n=9,mn=10,求m2+n2的值;(2)如图,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形院子,再以AD、CD为边分别向外扩建正方形ADGH、正方形DCEF的空地,并在两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.【答案】(1)61(2)800m2【分析】(1)利用完全平方公式代入计算即可;(2)设CD=x m,AD=y m,由周长可得x+y=60, 由两块正方形的面积和为2000平方米,x²+y²=2000,求xy即可.【详解】(1)∵(m+n)²=m²+n²+2mn,m+n=9,mn=10,∴m²+n²=(m+n)²−2mn=92−2×10=61,(2)设CD=x m,AD=y m,∵长方形ABCD的周长是120米,∴2(x+y)=120,即x+y=60,又∵两块正方形的面积和为2000平方米,∴x²+y²=2000,=800,∴xy=602−20002答: 长方形ABCD的面积为800平方米.【点睛】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确应用的前提,适当的等式变形是解决问题的的关键.【变式6-2】(2023春·湖南邵阳·七年级统考期中)如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a−2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?【答案】(1)七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2)(2)多8ab m2【分析】(1)根据图形可知:七年级(2)班、七年级(3)班的清洁区为长方形,通过2a−(a−2b)=(a+2b) (m),可求出对应的长,(a+2b)(a−2b)=(a2−4b2)(m2),即可解答此题.(2)由正方形的面积公式可得到:(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),从而解答此题.【详解】(1)解:(1)因为2a−(a−2b)=(a+2b)(m),所以七年级(2)班、七年级(3)班的清洁区的面积均为(a+2b)(a−2b)=(a2−4b2)(m2).(2)因为(a+2b)2−(a−2b)2=a2+4ab+4b2−(a2−4ab+4b2)=8ab(m2),所以七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多8ab m2.【点睛】本题考查了整式的乘法,熟练掌握完全平方公式、平方差公式是解本题的关键.【变式6-3】(2023春·浙江温州·七年级期中)学校为迎接艺术节,准备在一个正方形空地ABCD上搭建一个表演舞台,如图所示,正中间是“红五月”三个正方形平台.其中“五”字正方形和“月”字正方形边长均为a 米,“红”字正方形边长为b米.Ⅰ号区域布置造型背景,Ⅱ号区域设置为乐队演奏席.(1)用含a,b的代数式表示阴影部分的面积(即Ⅰ和Ⅱ面积之和)并化简;(2)若阴影部分的面积(即Ⅰ和Ⅱ面积之和)为288平方米,且a+b=20米,求“红”字正方形边长b的值.【答案】(1)2a2+4ab(2)16【分析】(1)根据题意,分别表示出正方形空地ABCD的面积和“红五月”三个正方形平台的面积,相减即为阴影部分的面积;(2)根据阴影部分的面积求出a2+2ab=144,再根据a+b=20,得到a2+2ab+b2=400,进而求得b2 =256,即可求出正方形边长b的值.【详解】(1)解:由题意可知,正方形空地ABCD的边长为2a+b,∴正方形空地ABCD的面积为(2a+b)2,∵“红五月”三个正方形平台的面积为a2+b2+a2=2a2+b2,∴阴影部分的面积为(2a+b)2−(2a2+b2)=4a2+4ab+b2−2a2−b2=2a2+4ab;(2)解:阴影部分的面积为288平方米,∴2a2+4ab=288,∴a2+2ab=144,∵a+b=20,∴(a+b)2=a2+2ab+b2=400,∴b2=400−144=256,∵b>0,∴b=16.【点睛】本题考查了正方形的面积公式,列代数式,完全平方公式,平方根知识,根据题意正确得出阴影部分的面积是解题关键.【题型7平方差公式的几何背景】【例7】(2023春·安徽安庆·七年级统考期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=______ ,S2=______ ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是______ ;(3)利用(2)中得到的公式,计算:20232−2022×2024.【答案】(1)a2−b2,(a+b)(a−b)(2)(a+b)(a−b)=a2−b2(3)1【分析】(1)根据图形的和差关系表示出S1,根据长方形的面积公式表示出S2;(2)由(1)中的结果可验证的乘法公式是(a+b)(a−b)=a2−b2;(3)由(2)中所得公式,可得2022×2024=(2023+1)(2023−1)=20232−1,从而简便计算出该题结果.【详解】(1)解:由题意得,S1=a2−b2,S2=(a+b)(a−b).故答案为:a2−b2,(a+b)(a−b);(2)解:由(1)中的结果可验证的乘法公式为(a+b)(a−b)=a2−b2.故答案为:(a+b)(a−b)=a2−b2;(3)解:由(2)中所得乘法公式(a+b)(a−b)=a2−b2可得,20232−2021×2023=20232−(2023+1)×(2023−1)=20232−(20232−1)=20232−20232+1=1.【点睛】本题考查了平方差公式几何背景的应用能力,掌握图形准确列式验证平方差公式,并能利用所验证公式解决相关问题是关键.【变式7-1】(2023春·全国·七年级期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分的面积S1可表示为;(写成多项式乘法的形式);在图3中的阴影部分的面积S2可表示为;(写成两数平方差的形式);(2)比较图2与图3的阴影部分面积,可以得到的等式是;A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2﹣n2=12,2m+n=4,则2m﹣n=;②计算(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1的值,并直接写出该值的个位数字是多少.【答案】(1)(a+b)(a﹣b),a2﹣b2;(2)B(3)①3,②264,6【分析】(1)根据长方形和正方形的面积公式即可求解即可;(2)根据两个阴影部分的面积相等由(1)的结果即可解答.(3)①利用(2)得到的等式求解即可;②可以先把原式乘上一个(2﹣1),这样可以和(2+1)凑成平方差公式,以此逐步解答即可.【详解】(1)解:图2中长方形的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图3中阴影部分的面积为两个正方形的面积差,即a2﹣b2.故答案为:(a+b)(a﹣b),a2﹣b2.(2)解:由(1)得(a+b)(a﹣b)=a2﹣b2;故选B.(3)解:①因为4m2﹣n2=12,所以(2m+n)(2m﹣n)=12,又因为2m+n=4,所以2m﹣n=12÷4=3.故答案为:3;②(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24﹣1)(24+1)(28+1)+…+(232+1)+1=……=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,其个位数字2,4,8,6,重复出现,而64÷4=16,于是“2、4、8、6”经过16次循环,因此264的个位数字为6.答:其结果的个位数字为6.【点睛】本题主要考查了平方差公式的应用和数字类规律,灵活应用平方差公式成为解答本题的关键.【变式7-2】(2023春·陕西咸阳·七年级咸阳市秦都中学校考阶段练习)【知识生成】(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中剩余部分的面积为______,图2的面积为______,请写出这个代数恒等式;【知识应用】(2)应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(a+2m)(a−2m),Q=(a+m) (a−m),比较P、Q大小;【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,通过计算写出一个代数恒等式.【答案】(1)−3m2;(2)P<Q;(3)x(x+1)(x−1)=x3−x.【分析】(1)分别用代数式表示图1,图2的面积即可;(2)利用(1)中得到的等式计算P−Q的值即可;(3)分别用代数式表示图3中左图和右图的体积即可.【详解】解:(1)图1中剩余部分的面积为a2−b2,图2的面积为(a+b)(a−b),所以代数恒等式为(a+b)(a−b)=a2−b2;(2)∵P=(a+2m)(a−2m),Q=(a+m)(a−m),∴P−Q=(a+2m)(a−2m)−(a+m)(a−m)=a2−4m2−(a2−m2)=−3m2因为m是不为0的有理数,所以−3m2<0,即P−Q<0,所以P<Q;(3)图3中左图的体积为x⋅x⋅x−1×1×x=x3−x,图3中右图是长为x+1,宽为x,高为x−1的长方体,因此体积为(x+1)⋅x⋅(x−1),所以有x(x+1)(x−1)=x3−x.【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确应用的前提,利用代数式表示图形的面积和体积是正确解答的关键.【变式7-3】(2023春·山西大同·七年级统考期中)【实践操作】(1)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形(a>b),把图①中L形的纸片按图②剪拼,改造成了一个大长方形如图③,请求出图③中大长方形的面积;(2)请写出图①、图②、图③验证的乘法公式为:.【应用探究】(3)利用(2)中验证的公式简便计算:499×501+1;(4)计算:1−×1−×1−×…×1−×1−【知识迁移】(5)类似地,我们还可以通过对立体图形进行变换得到代数恒等式如图④,将一个棱长为a的正方体中去掉一个棱长为b的正方体,再把剩余立体图形切割分成三部分如图⑤,利用立体图形的体积,可得恒等式为:a3−b3=.(结果不需要化简);(5)(a−b)a2+(a−b)b2+(a−b)ab或【答案】(1)a2−b2;(2)(a−b)(a+b)=a2−b2;(3)250000;(4)20234044(a−b)(a2+b2+ab)【分析】(1)利用长方形的面积等于长乘以宽即可.(2)图③中大长方形的面积等于图①的阴影部分面积,分别计算即可得出:(a−b)(a+b)=a2−b2(3)观察(2)的的乘法公式的特点是两数之和乘以两数之差,故将499拆成500−1,将501拆成500+1即可.(4)利用a2−b2=(a+b)(a−b)将各个因其进行因式分解后,再将各因式通分相加,发现每相邻两个的乘积为0,故答案为第一个因式乘以最后一个因式.(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab (a−b),恰等于a3−b3.【详解】解:(1)长方形的面积为:2(a−b)(a−b2+b)=(a−b)(a−b+2b)=(a−b)(a+b)=a2−b2;(2)图③整个大长方形的面积等于图①阴影部分的面积:∴(a−b)(a+b)=a2−b2;(3)原式=(500−1)×(500+1)+1=5002-12+1=250000;(4)原式=1−1−=12×32×23×43×34×45×⋯×20202021×20222021×20212022×20232022=12×20232022=20234044;(5)将立体图形分割成三部分,分别为:a2(a−b)、b2(a−b)、ab(a−b),其和为a2(a−b)+b2(a−b)+ab(a−b)=a3−b3.故答案为:a2(a−b)+b2(a−b)+ab(a−b).【点睛】本题考查了“数形结合”中的乘法公式及其灵活运用,解题的关键是善于发现规律并总结规律.【题型8完全平方公式的几何背景】【例8】(2023春·浙江温州·七年级校联考期中)图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m−n)2,mn之间的等量关系是;(3)若x+y=−6,xy=11,则x−y=;(直接写出答案)4【答案】(1)(m−n)2(2)(m+n)2−4mn=(m−n)2(3)±5【分析】(1)根据阴影部分的面积等于右边大正方形的面积减去左边矩形的面积进而得出答案;(2)由(1)中计算过程可得答案;(3)根据(2)中的等式可得答案.【详解】(1)解:图2中的阴影部分为正方形,边长为(m−n),则面积为(m−n)2.故答案为:(m−n)2;(2)解:左边图形的面积=2m×2n=4mn,右边的大正方形面积=(m+n)2,则阴影部分的面积=(m+n)2−4mn,因此三个代数式(m+n)2,(m−n)2,mn之间的等量关系为:(m+n)2−4mn=(m−n)2;故答案为:(m+n)2−4mn=(m−n)2;(3)解:由(2)得(x+y)2−4xy=(x−y)2,=25,∴(x−y)2=(−6)2−4×114∴x−y=±=±5,故答案为:±5.【点睛】本题考查了完全平方公式的背景知识以及完全平方公式的变形,解题的关键是认真观察图形,用不同的形式表示图形的面积.【变式8-1】(2023春·七年级课时练习)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因ab=1,所以a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,则xy的值为______;(2)拓展:若(4−x)x=3,则(4−x)2+x2=______.(3)应用:如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为160,求图中阴影部分的面积和.【答案】(1)12(2)10(3)384【分析】(1)利用完全平方公式进行计算,即可解答;(2)设4−x=a,x=b,则a+b=4,ab=3,然后完全平方公式进行计算,即可解答;(3)根据题意可得FC=20−x,CE=12−x,然后设FC=20−x=a,CE=12−x=b,则a−b=8,ab=160,最后利用完全平方公式进行计算,即可解答.【详解】(1)解:∵x+y=8,x2+y2=40,∴2xy=(x+y)2−(x2+y2)=82−40=64−40=24,∴xy=12.(2)解:设4−x=a,x=b,∴a+b=4−x+x=4,∵(4−x)x=3,∴ab=3,∴(4−x)2+x2=a2+b2=(a+b)2−2ab=42−2×3=16−6=10.(3)解:∵四边形ABCD是长方形,∴AB=CD=20,AD=BC=12,∵BE=DF=x,∴FC=DC−DF=20−x,CE=BC−BE=12−x,设FC=20−x=a,CE=12−x=b,∴a−b=20−x−(12−x)=8,∵长方形CEPF的面积为160,∴FC⋅CE=(20−x)(12−x)=ab=160,∴正方形CFGH的面积+正方形CEMN的面积=CF2+CE2=(20−x)2+(12−x)2=a2+b2=(a−b)2+2ab=82+2×160=64+320=384,∴图中阴影部分的面积和为384.【点睛】本题考查了整式的混合运算−化简求值,完全平方公式的几何背景,熟练掌握完全平方公式变形的计算是解题的关键.【变式8-2】(2023春·江苏·七年级期中)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2-b2,图2中阴影部分面积可表示为(a+b)(a-b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2-b2=(a+b)(a-b);【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a-b)2、ab的的等量关系式是;(3)若a+b=10,ab=5,则(a-b)2=;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.【答案】(1)(a-b)2,(a+b)2-4ab;(2)(a+b)2-4ab=(a-b)2;(3)80;(4)x3-x=x(x+1)(x-1)【分析】(1)利用直接和间接的方法表示出阴影部分面积;(2)由阴影部分面积相等可得结果;(3)直接根据(2)的结论代入求值即可;(4)分别求得图中几何体的体积,然后根据原图形与新图形体积相等列出恒等式即可.【详解】解:(1)方法1:直接根据正方形的面积公式得,(a-b)2,方法2:大正方形面积减去四种四个长方形的面积,即(a+b)2-4ab;(2)由阴影部分面积相等可得(a+b)2-4ab=(a-b)2;(3)由(a+b)2-4ab=(a-b)2,可得:102-4×5=(a-b)2,∴(a-b)2=80;(4)∵原几何体的体积=x3-1×1•x=x3-x,新几何体的体积=x(x+1)(x-1),∴恒等式为x3-x=x(x+1)(x-1).【点睛】本题考查完全平方公式的几何意义;能够由面积相等,过渡到利用体积相等推导公式是解题的关键.【变式8-3】(2023春·江苏·七年级期中)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a−b)2、(a+b)2、ab三者之间的等量关系式:________﹔【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3ab(a+b).利用上面所得的结论解答下列问题:(1)已知x+y=6,xy=11,求(x−y)2的值;4(2)已知a+b=6,ab=7,求a3+b3的值.【答案】[知识生成](a+b)2-4ab=(a-b)2;[知识迁移](1)25;(2)90。
整式的乘除知识点总结及针对练习题
![整式的乘除知识点总结及针对练习题](https://img.taocdn.com/s3/m/024af553dcccda38376baf1ffc4ffe473368fdcc.png)
整式的乘除知识点总结及针对练习题思维辅导:整式的乘除知识点及练基础知识:1.单项式:由数与字母的乘积构成的代数式叫做单项式。
数字因数叫做系数,所有字母指数和叫次数。
例如,-2abc的系数为-2,次数为4,单独的一个非零数的次数是0.2.多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
例如,a-2ab+x+1,项有a、-2ab、x、1,二次项为a、-2ab,一次项为x,常数项为1,各项次数分别为2、2、1、0,系数分别为1、-2、1、1,叫二次四项式。
3.整式:单项式和多项式统称整式。
凡分母含有字母代数式都不是整式。
4.多项式按字母的升(降)幂排列:例如,x-2xy+xy-2y-1,按x的升幂排列为-1-2y+xy-2xy+x,按x的降幂排列为x-2xy+xy-2y-1.知识点归纳:一、同底数幂的乘法法则:a^m * a^n = a^(m+n)(m、n都是正整数)。
同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
基础过关】1.下列计算正确的是()A。
y^3 * y^5 = y^8B。
y^2 + y^3 = y^5C。
y^2 + y^2 = 2y^4D。
y^3 * y^5 = y^82.下列各式中,结果为(a+b)^3的是()A。
a^3 + b^3B。
(a+b)(a^2+b^2)C。
(a+b)(a+b)^2D。
a+b(a+b)^23.下列各式中,不能用同底数幂的乘法法则化简的是()A。
(a+b)(a+b)^2B。
(a+b)(a-b)^2C。
-(a-b)(b-a)^2D。
(a+b)(a+b)^3(a+b)^24.下列计算中,错误的是()A。
2y^4 + y^4 = 2y^8B。
(-7)^5 * (-7)^3 * 74 = 712C。
(-a)^2 * a^5 * a^3 = a^10D。
(a-b)^3(b-a)^2 = (a-b)^5应用拓展】5.计算:1) 64*(-6)^52) -a^4(-a)^43) -x^5 * x^3 * (-x)^44) (x-y)^5 * (x-y)^6 * (x-y)^76.已知ax=2,ay=3,求ax+y的值。
七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)
![七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)](https://img.taocdn.com/s3/m/7e0792667f1922791688e8d9.png)
乘法公式、整式的除法【考向解读】一、考点突破本讲考点主要包括:平方差公式、完全平方公式,同底数幂的除法、单项式除以单项式、多项式除以单项式。
通过多项式的乘法运算得到乘法公式,再运用公式计算多项式的乘法,培养从一般到特殊,再从特殊到一般的思维能力;通过乘法公式的几何背景,培养运用数形结合思想和整体思想解决问题的能力。
平方差公式是中考命题中比较重要的考点之一,单独命题的题型多为填空题,选择题和简单的计算题,这一知识点也常融入其他知识命题;完全平方公式在中考中占有重要地位,它在数的运算,代数式的化简,方程,函数等方面都有极其广泛的应用。
整式的除法在中考中出现的频率比较高,题型多见选择题与填空题,有时也会出现化简求值题,因此运算必须熟练。
二、重点、难点提示重点:平方差公式、完全平方公式,整式的除法及零指数幂的运算。
难点:乘法公式中字母的广泛含义及整式除法法则的应用。
【重点点拨】知识脉络图【典例精析】能力提升类例1 计算:(1)(-2a-b)(b-2a);(2)(2x+y-z)2.一点通:第(1)题中的b-2a=-2a+b,把-2a看成平方差公式中的“a”即可;第(2)题有多种解法,可把2x看成完全平方公式中的“a”,把y-z看成公式中的“b”,也可把2x+y看成公式中“a”,把z看成公式中的“b”。
答案:(1)(-2a-b)(b-2a)=(-2a-b)(-2a+b)=(-2a)2-b2=4a2-b2;(2)(2x+y-z)2=[(2x+y)-z]2=(2x+y)2-2z(2x+y)+z2=4x2+4xy+y2-4xz -2yz +z 2.点评:这两题都可以运用乘法公式计算,第(1)题先变形,再用平方差公式;第(2)题把三项和看成两项和,两次运用完全平方公式。
例2 计算:(1)[(-3xy )2·x 3-2x 2·(3xy 2)3·12y ]÷(9x 4y 2);(2)[(x +2y )(x -2y )+4(x -y )2]÷(6x ).一点通:本题是整式的混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的。
整式的乘法知识点及练习
![整式的乘法知识点及练习](https://img.taocdn.com/s3/m/e46b659651e79b8968022628.png)
a
6.若
1 1 3 a2 2 a a ,则
7.如果多项式 x 2 m x 9 是一个完全平方式,则 m 的值
4
经典习题 1. ( x y)
2 n1
( x y) 2 n
___ 2. ( x 1)(x 2) ( x 3)(x 3) __________
( x 1)(x 2) ( x 3)(x 3)
(3x+2y)(2x+3y)-(x-3y)(3x+4y)
2 2 26.已知 a b 3, ab 12 ,求下列各式的值. (1) a ab b
(2) (a b) .
2
27.化简与求值:
2 1 (1) (a+b) (a-b)+(a+b) -a(2a+b),其中 a= 3 ,b=-1 2
3( x 2 ) 2 ( x 2 ) 4 ( x 5 ) 2 ( x 2 ) 2 __________ _________
(7)若 x 3 , 则 x
n 3n
3.积的乘方 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。用字母表示为 (ab) =a .b (n 为正整数) 练习: 2 4 3 3 n 5 1-n 5 2 3 4 2 4 -(2x y ) (-a) ·(a ) ·(a ) [(10 ) ] [(a+b) ] 5 2 a b c [-(-x) ] (x ·x ) 4.整式的乘法 (1) 单项式的乘法 单项式与单项式相乘,把它们的 、 分别相乘,对于只在一个单项式 里含的字母,则连同它的指数作为积的一个因式。3x2 )( x2 2x 1)
1 (2 x 4 x 3 8) ( x 2 ) 2
(3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒙迪尔国际教育咨询电话:83737513
乘法公式
一、知识梳理
1.平方差公式:a-b a b二a2-b2
2 2 2
2.完全平方公式:a_b a b _2ab
2
3.x a x b
]=x a b x ab
2 2
3 3
4.立方和(差)公式:a b a b - ab = a b
a「b ii a2b2ab 二a3_b3
2 2 2 2
5.三数和平方公式:(a+b+c)=a +b +c +2ab+2ac + 2bc
2 2 2 333
6.欧拉公式: a b c a b c- ab - ac - be = a b c - 3abc
二、例题讲解
2 2
例1、要使等式(P *q )+ M =(p -q )成立,代数式M应为__________________ 。
2 2
例2、(1)如果x
+6xy+ky是一个完全平方公式的展开式,那么常数k= ________ 2 2
(2)如果
x +kx r^9y是一个完全平方式的展开式,那么常数k= ________ 。
2 2
例3、已知a,b 满足a F=3,
ab=2,则a b二-------------------
“22 2
芦a—b=3,ab=2,贝V a +b = _______ ,(a+b)= ________ .
右
m 丄=3,求m2 2禾廿! m _ 1
例4、已知m
m * m 的值。
蒙迪尔国际教育咨询电话:83737513例5、试说明不论a,b取任何有理数,代数式a2• b2-2a -4b 5的值总是非负数。
4 , 4 2 ,2 , ,
a b a b b-aab“
例6、计算'人八 A 丿的结果是________________ 例7、用乘法公式计算:
(1)20142-2013 2015
(2)
2 3 1 32 1 33 1 川332 1 1
例&如果(2a+2b+1 )(2a+2b-1 )=63,那么a+b的值为多少?
例9、已知
a =2013x 2012,
b =2013x 2013,
c =2013x 2014,则a2 b2 c2 -ab -be-ac =
例10、若一个正整数能表示为两个连续偶数的平方差,那么这个正整数为“神秘数”
4 =22 - 02,12 =42 -22,20 £-42,因此
4,12,20这三个数都是神秘数。
(1)28和76是神秘数吗?为什么?
(2)设两个连续偶数为2k+2和2k(k为非负整数),由这两个偶数构成的神秘数是数吗?为什么?。
如4的倍
—、随堂测试(时间:30分钟,满分:100分)
已知 a • b =3,ab =1,则 a -b 2 若x y =3,xy 二-2,则 1
x
2
1
3 3
1 2
1
x _ — 二 2,贝y x - -2-=
(1)已知 x
x
2 2 , 2 2
(2)已知
a b
二3,
二
2,
则
a b
二 4、运用完全平方公式进行简便计算:
6、运用平方差公式计算:
2 2 2 2
a b j ia -b j ia -b a b iia -b
1、
姓名.
2 2 若把代数式
x -2x
-3化为x-rn k
得分
的形式,其中 m,k 为常数,则m+k=
2、
3、 (1) 4982 (2) 3022
(3)
5、已知
2
a a 「1 ]亠[
b 「a 二-7,求
b 2 2
-ab 的值。
(1)
2
3 x 2-3x1 x -1
2
2y-1 4y 1 2y 1
(3)
蒙迪尔国际教育咨询电话:83737513 7、计算
ii i丄i丄i丄4
2 22 24 28 215
9、数学老师给同学们出了一道题:当x= —2014时,求
|(x+2 )2+2(x+2 J(x_2 )_3(x+2 )(x_3)g x + 2 )
- 的值。
题目出完后,小敏说老师给
的条件x= —2014是多余的,你认为小敏说的正确吗?为什么?
10、观察下列各式
x -1 x 1[=x2-1. x -1 x2x 1 =x3-1 x-1 x3x2x 1 =x4-1
根据前面的各式的规律可得x x n' x n4' x ■ 1 二
(其中n为正整数)。
(1)
已知
2
x - y -165 i 亠x y 2 0,
求代数式
2 2
x—y的值
三、课后练习
2 2 2
1、
a a -1 -a 1
的值
A
~
2x 3y
B 2x -3y
C -2xy _3y • D.
2x 3
y
C.恒为负数
2
2、如果
2x _3y M
=4x -9y
,则M 表示的式子为
A.不是负数
B.恒为整数 -一 .2
D.不等于0
lx 3、计算5
一 y -5x 5y - y 2
5
的结果为
a 2-
b 2 1
1
二一,a -b 二-,则a - b 的值为 6 3
a b
a b 5、定义 c d 为二阶行列式。
规定它的运算法则为 c d
X -1 x 1 4、右 =ad - be。
那么当x=2013时,
二阶行列式
x x 1
的值为 2 m 2 + n 2
m m-3 i [m -3n = 9,求 mn 的
值。
6、已知 2
7、求 2+1 22 + 1 24+1川
232+1 +1
的个位数字
8、用简便方法计算: 1 8 1 90
89 9 9
⑵99 101 10001
⑶ 2
2012
012 -2013 2011
2 2
9、试说明理由:不论x,y取什么有理数多项式x y -2x 2y 3的值总是正数。
10、阅读解答题:
有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过
程,再解答后面的问题.
例:(2004年河北省初中数学竞赛题)若x=123456789 X 123456786 ,
y=123456788 X 123456787,试比较x、y 的大小.
解:设123456788=a ,那么x= a 1 a — 2 =a2—a — 2 , y= a a —
1 =a2—a
看完后,你学到了这种方法吗?再亲自试一试吧,你准行!
蒙迪尔国际教育咨询电话:83737513八“2
化简:200刃20 12- 2)0 0 0 2 0 1 1x 2 000 20 1 3。