中考数学题型归纳探究题
中考数学探究规律题型总结6.周期型

6.周期型1.电子跳蚤游戏盘是如图所示的678ABC AB AC BC ∆===,,,.如果跳蚤开始时在BC 边的0P 处,02BP =.跳蚤第一步从0P 跳到AC 边的1P (第一次落点)处,且10CP CP =;第二步从1P 跳到AB 边的2P (第一次落点)处,且21AP AP =;第三步从2P 跳到BC 边的3P (第三次落点)处,且32BP BP =;……;跳蚤按上述规则一致跳下去,第n 次落点为n P (n 为正整数),则点2007P 与2010P 之间的距离为______.答案:3解析:根据规律:10826CP CP ==-=,12761AP AP ==-=,23615BP BP ==-=, 34853CP CP ==-=,45734AP AP ==-=⋯,由此可得0303633P P CP CP =-=-=,1441413PP AP AP =-=-=, 2552413P P AP AP =-=-=,…∴200720103P P =.故答案为3.2.如图所示,长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为12A A A →→,由1A 翻滚到2A 时被桌面上一小木块挡住,此时长方形木板的边2A C 与桌面成30︒角,则点A 翻滚到2A 位置时所经过的路径总长度为__________cm .答案:7π2解析:由1A A →路径为90π55π1802⋅=,由12A A →路径为60π3π180⋅=,因此由12A A A →→总路径为7π2.故答案为:7π2.3.如图,正方形ABCD 边长为2cm ,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2013cm 时,线段PA 的长为n 的形式,则n =_____cm ;当点P 第n 次(n 为正整数)到达点D 时,点P 的运动路程为____cm(用含n 的代数式表示).答案:5;8n-2,-2+8n 解析:先求出正方形的周长,∵边长为2cm . ∴周长为428cm cm ⨯=.再用2013除以8得到201382515÷=L .即此时点P 已经从A 点运动了5cm . 所以点P 的位置在CD 的中点,如图则根据勾股定理225PA AD DP =+=.当点P 第1次到达D 点时,P 的运动路程为8126⨯-=; 当点P 第2次到达D 点时,P 的运动路程为82214⨯-=; 当点P 第3次到达D 点时,P 的运动路程为83222⨯-=; 以此类推,当点P 第n 次到达D 点时,P 的运动路程为82n -.4.如图,菱形ABCD 中,2AB =,60C∠=︒,我们把菱形ABCD 的对称中心O 称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的 翻滚,每绕着一个顶点旋转60︒叫一次操作,则经过3n (n 为正整数) 次这样的操作菱形中心O 所经过的路径总长为( )解析:∵菱形ABCD 中,2AB =,60C ∠=︒,∴ABD △是等边三角形,1BO DO ==,223AO AB BO =-=,第一次旋转的弧长60π33π1803⨯==,∴第一、二次旋转的弧长和60π360π323π1801803⨯⨯=+=,第三次旋转的弧长为:60π11π1803⨯=,故经过3n (n 为正整数)次这样的操作菱形中心O所经过的路径总长为:231(π+π)33n ⨯231π3n +=. 故答案为:3π3,231π3n +.5.观察下列等式:123456733393273813243372932187======⋯=,,,,,, 解答下列问题:234201333333+++⋯+ 的末位数字是()解析:∵133= ,239= ,3327= ,4381= ,53243= ,63729= ,732187= …∴末尾数,每4个一循环, ∵201345031÷=⋯ , ∴234201333333+++⋯+的末位数字相当于:37913++++⋯+的末尾数为36.如图,动点P 从()03,出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013 次碰到矩形的边时,点P 的坐标为( )A .()14, B .()50,C .()64,D .()83,答案:D 解析:如下图,动点()03P,沿所示的方向运动,满足反弹时反射角等于入射角, 到①时,点()30P ,;到②时,点()74P , ;到③时, 点()83P,;到④时,点()50P , ;到⑤时,点()14P , ; 到⑥时,点()30P,,此时回到出发点,继续......., 出现每5 次一循环碰到矩形的边.因为201340253(201354023)=⨯+÷=…… . 所以点P 第2013 次碰到矩形的边时,点P 的坐标为()83,. 故选D .7.我们知道,一元二次方程21x=-没有实数根,即不存在一个实数的平方等于1- ,若我们规定一个新数“”,使其满足21i=- (即方程2-1x =有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有2i i =,21i =-,321i i i i i =⋅=-⋅=- ,422()1i i == 那么, 23420122013i i i i i i ++++++……的值为( )A .0B .1C .1-D .i答案:D 解析:由于234110i ii i i i +++=--+=,而2013=4503+1⨯,23420122013=i i i i i i i ++++++…… .8.如图,在直角坐标系中,已知点(3,0)A - 、()04B,,对OAB △ 连续作旋转变换,依次得到1△ 、2△、3△、4△…,则2013△的直角顶点的坐标为(______,______).答案:8052;0解析:∵(3,0)A - 、()04B ,, ∴223+4=5AB =,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:45312++= ,∵20133671÷=,∴2013△的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671128052⨯= ,∴2013△的直角顶点的坐标为()80520,.9.根据如图中箭头的指向规律,从2013到2014再到2015 ,箭头的方向是以下图示中的( )选项:A .B .C .D .答案:D解析:由图可知,每4个数为一个循环组依次循环,201345031÷=⋯ ,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D .10.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90︒ 算一次,则滚动第2014 次后,骰子朝下一面的点数是______.答案:3解析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环, ∵201445032÷=⋯ ,∴滚动第2014次后与第二次相同, ∴朝下的点数为3 ,11.一列数123,,,n a a a a ⋯ ,其中11a =- ,2111a a =-,3211a a =-,…,111n n a a -=-,则1232004a a a a +++⋯+= ______. 答案: 1002 解析:11a =-,2111=12a a =-,32211a a =-=,43111a a ==--,…,由此可以看出三个数字一循环,20043668÷= , 则12320041668(12)10022a a a a +++⋯+=⨯-++= .12.如图,弹性小球从点()0,3P出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1 次碰到矩形的边时的点为1P ,第2次碰到矩形的边时的点为2P ,…,第n 次碰到矩形的边时的点为n P ,则点3P 的坐标是___,点2014P 的坐标是___.答案:8;3;5;0 解析:如图,经过6次反弹后动点回到出发点()0,3 ,当点P 第3次碰到矩形的边时,点P 的坐标为:()8,3 ;∵201463354÷=⋯ ,∴当点P 第2014次碰到矩形的边时为第336个循环组的第4次反弹, 点P 的坐标为()5,0 .13.在平面直角坐标系中,正方形ABCD 的顶点分别为(11)A ,、(11)B -,、(11)C --,、(11)D -,,y 轴上有一点P ()2,0,作点P 关于点A 的对称点1P ,作1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作5P 关于点B 的对称点6P ⋅⋅⋅,按如此操作下去,则点2011P 的坐标为( ).A .(02),B .(20),C .(02)-, D .(20)-,答案:D解析:找出规律,1P 20(,)202P -(,),320P (-,),4P (02),,……,4(02)n P ,,41n P +20(,),42n P +02-(,),43n P +20(-,).而2011除以4余3,所以点2011P 的坐标与3P 坐标相同,为20(-,).14.观察图中正方形四个顶点所标的数字规律,可知数2011应标在() A 、第502个正方形的左下角B 、第502个正方形的右下角C 、第503个正方形的左上角D 、第503个正方形的右下角答案:C解析:观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.2011除以4等于余3,所以数2011应标在第503个正方形的左上角.15.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()解析:首先由已知和表求出a 、C 、F ,再观察找出规律求出第2011个格子中的数. 已知其中任意三个相邻格子中所填整数之和都相等, 则,3a Fa F C +=+++,+1abc b c +=+-, 解得1a =-,3C=,按要求排列顺序为,3,1﹣,F ,3,1-,F ,…, 结合已知表得2F=,所以每个小格子中都填入一个整数后排列是:3,1-,2,3,1-,2,…, 其规律是每3个数一个循环.∵20113670÷=余1, ∴第2011个格子中的数为3.故选A .16.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()解析:从图中知,该纸链是5的倍数,中间截去的是剩下35n +,从选项中数减3为5的倍数者即为所求.因为20133-被5整除,故选D . 17.若123121111 , 1 , 1 , a a a m a a =-=-=-⋅⋅⋅,则2011a 的值为( ).(用含m 的代数式表示)解析:根据已知条件,找出题中的规律:2111111 1111111m m m a a m m m m--=-=-=-==----,32111 11111a m m a m=-=-=-+=-, 43111 1a a m=-=-.可见,123 , , , a a a ⋅⋅⋅分别以11m -,11m-,m 循环.而2011 除以3 余1 ,从而2011a 的值与1a 相同,为11m-.18.如下图,在平面直角坐标系中,对ABC △ 进行循环往复的轴对称或中心对称变换,若原来点A 坐标是()2n π,,则经过第2011 次变换后所得的A 点坐标是( ).解析:因为变换是循环往复的,补全一个循环;56y ABC ABC −−−−−→∆−−−−−→∆第次第次关于原点对称关于轴对称到第二象限 回到第一象限初始位置因此一个循环要经过6 次变换.而20116335÷= ……余1 ,从而ABC △ 经过第2011 次变换与经过第1 次变换得到的位置相同,即在第四象限.因为原来点A 坐标是(2π,n ),根据坐标关于x 轴对称时,横坐标不变纵坐标改变符号的特点,得到经过第2011次变换后所得的A 点坐标是(2π,n -).19.将1 、2、3、6按如下方式排列.若规定(m n ,)表示第m排从左向右第n 个数,则(54, )与(157, )表示的两数之积是( ).111122663263323第1排第2排第3排第4排第5排解析:54(,) 从右侧可见为2.下面求157(,) 是几:首先看157(,)是整个排列的第几个数,从排列方式看第1 排1 个数,第2 排2 个数,…… 第m 排m 个数,所以前14 排一共的数目是1214⋯⋯+++(114)(213)(78)⋯⋯=++++++715⨯=105= ,因此(157, )是第1057112+=个数.第二看第112 个数是哪个数,因为1 、2、3、6四个数循环,而1124÷ 商余0 ,所以(157,)为6.则(54, )与(157, )表示的两数之积是4(5,0)P .20.如图物体从点A 出发,按照A B →(第1步)y (第2步)a E →F G A B →→→→→L的顺序循环运动,则第2011 步到达 点处;答案:D解析:根据循环运动的规律,8步一个循环.而2011 除以8 余3 ,故第2011步到达点D 处.21.如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是______.答案:正方形.解析:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,()2014263352-÷=⋯,所以第2014 个图形是与循环的第二个图形相同是正方形.22.将正方体骰子(相对面上的点数分别为1和6、2和5、3和 4)放置于水平桌面上,如图①.在图②中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()解析:不难看出经过一次变换后正面朝上的点数是5,经过第二次变换后正面朝上的6点数是,经过第三次变换后正面朝上的点数是3,又回到了起始位置,则三个变换一循环,10次变换即相当于第一次变换的结果故选B.23.如图,圆圈内分别标有0,1,3,…,11这12个数字,电子跳骚每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳骚从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是______.答案:6解析:根据题意可知是0,1,3121⨯-=,3,4,…,11即12个数是一个循环.因为2010除12余数为6.故该圆圈所标的数字是3224⨯-=.故答案为:6.24.如图,在平面直角坐标系中,以原点O 为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y x =和y x =-分别交于1A ,2A ,3A ,4A ,…,则点31A 的坐标是( ).解析:本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出31A 的位置.根据31473÷=⋯,得出31A 在直线y x =上,在第三象限,且在第8个圆上,求出318OA =,通过解直角三角形即可求出答案.25.如图,菱形ABCD 中,260AB C=∠=︒,,我们把菱形22AB AP BP PC=+⋅的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 ( )解析:从图中可以看出,第一次旋转是以点A 为圆心,那么菱形中心旋转的半径就是OA ,解直角三角形可求出OA 的长,圆心角是60度.第二次还是以点A 为圆心,那么菱形中心旋转的半径就是OA ,圆心角是60度.第三次就是以点B 为旋转中心,OB 为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转18次,就是这样的6个弧长的总长,依此计算即可得,进而得出经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长.26.如图,ABC ∆中,2AB AC == ,若P 为BC 的中点,则2AP BP PC +⋅的值为______;若BC边上有100个不同的点1P ,2P ,…,100P ,记2i i i im AP BP PC =+⋅(1i =,2,…,100),则12m m ++…100m +的值为______.答案:4;400解析:当P 在BC 的中点时,可以得到直角三角形,利用勾股定理证明22AB AP BP PC =+⋅即可;第二个空可作AD BC ⊥于D .根据勾股定理,得22222()i i i AP AD DP AD BD BP =+=+-,从而求得22iM AD BD =+,即可求解.27.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3-2n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳3121⨯-=步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳3224⨯-=步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为______;第2012次电子跳蚤能跳到的圆圈内所标的数字为______.答案:10;6解析:第一次跳到数字2,第二次跳到数字6,第三次跳到数字10,第四次跳到数字2,…然后每三个一循环,用2012除以3,整除为10,余1为2,余2为6即可确定答案.28.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D,第二次逆时针方向跳2步到达顶点B,第三次顺时针方向跳3步到达顶点C,第四次逆时针方向跳4步到达顶点C,… ,以此类推,跳动第10次到达的顶点是______,跳动第2012次到达的顶点是______.A B D C答案:B;C解析:先根据每跳一次所到达的顶点,找出其中的规律是每八次一个循环,再用10812÷=⋯,即可求出跳动第10次到达的顶点,用201282514÷=⋯,即可求出跳动第2012次到达的顶点.29.观察下列图形的排列规律(其中☆、□、●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2009个图形是______.答案:五角星解析:根据题意分析可得:圆、正方形、五角星前七个一组,依次循环;且2009除以7没有余数;故第2009个图形是五角星.30.如图,在平面直角坐标系中,一颗棋子从点P处开始跳动,第一次跳到点P关于x轴的对称点1P处,接着跳到点1P关于y轴的对称点2P处,第三次再跳到点2P关于原点的对称点处,…,如此循环下去.当跳动第2009次时,棋子落点处的坐标是(______,______).答案:3;-2解析:首先发现点P 的坐标是32-(,),第一次跳到点P 关于x 轴的对称点1P 处是32--(,),接着跳到点1P 关于y 轴的对称点2P 处是32-(,),第三次再跳到点2P 关于原点的对称点处是32-(,)…,发现3次一循环.又200936692÷=⋯,则落在了(32)-,处.31.如图平面内有公共端点的五条射线,,,,,OA OB OC OD OE 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线______上;“2011”在射线______上.答案:OC ;OB解析:∵如图所示可知,每隔一个数正好是连续的有理数,∴11在BO 上,∴“12”在射线CO上;∵每5个数一轮,2011÷5=402余数为1,每5轮顶点正好循环一周,402÷5=80余数为2,∴“2011”与第3轮第一个数的位置相同,即与9的位置相同,∴“2011”在射线BO 上.32.在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为(______,______)答案:5;0解析:依题可知,1(3,0)P ,2(7,4)P ,3(8,3)P ,4(5,0)P ,5(1,4)P ,6(0,3)P, 7(3,0)P ,8(7,4)P ,L L,6个一循环,2014=33546L L ,故2014(5,0)P故答案为:(1,4),(5,0).33.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点(2,0)A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是(_____,_____)答案:-1;1解析:依题可知,甲、乙两物体沿着矩形BCDE 在做环形运动,矩形BCDE 的周长为12,12=41+2秒,每过4秒相遇一次,故第一次在(1,1)-处相遇,第二次在(1,1)--处相遇,第三次在(2,0)处相遇,第四次又在(1,1)-处相遇,故3次一循环,2014=67113L L ,所以第2014次在(1,1)-处相遇. 故答案为:(1,1)-.34.如图,正方形ABCD 的边长为3,点E 、F 分别在边AB 、BC 上,1AE BF ==,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到BC 边时,小球P 所经过的路程为__________;当小球P 第一次碰到AD 边时,小球P 所经过的路程为__________;当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为__________.解析:22125EF =+=;3555522EFFM +=+=;画图可知,6次一个循环,一个循环周期,P 所经过的路程为3552(5++)=6522, 当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为65(1)56555n n -+=-.故答案为:5,552,6555n -.35.如图,在平面直角坐标系xOy 中,点(10)A ,,(20)B ,, 正六边形ABCDEF 沿x 轴正方向无滑动滚动,当点D 第一次落 在x 轴上时,点D 的横坐标为:_____;在运动过程中,点A 的纵坐标的最大值是______;保持上述运动过程,经过(20143),的正六边形的顶点是_____.解析:因为2014=3356+4⨯, 所以经过(2014,3)的点必然会经过(4,3).图分别是第二次和第三次滚动后的图形, 可以看出经过(4,3)的点有B 、F 两个, 故经过(2014,3)为B 、F 两个点.故答案为:(4,0),2,B 或F .36.将正整数12345,⋅⋅⋅、、、、按以下方式排放:则根据排放规律,从2002到2004的箭头依次为( ) 解析:200250042,=⨯+Q1 2 3 yx O1234A BCDEF 1 2 3 yx O1234A B C D EF21 / 21∴数2002的位置与数2相同,数2003的位置与数3相同,数2004的位置与数4相同, ∴从2002到2004的箭头依次为,.→↓37.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在( )点.解析:解:∵两个全等菱形的边长为1厘米,∴蚂蚁由A 点开始按ABCDEFCGA 顺序走一圈所走的距离为818⨯=厘米, 201025128=Q L , ∴当蚂蚁走到第251圈后再走2厘米正好到达C 点。
河南数学中考题型汇总 几何探究题题型练习含答案

河南数学中考题型汇总几何探究题题型练习含答案类型 1 实践操作类探究题角度1 折叠类1.[2022河南]综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图(1)中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下.将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图(2),当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图(3),判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP 的长.图(1)图(2)图(3)2.[2022河南省实验模拟]问题情境数学活动课上,同学们开展了以折叠为主题的探究活动,如图(1),已知矩形纸片ABCD(AD>AB),其中宽AB=8.动手实践(1)如图(1),威威同学将矩形纸片ABCD折叠,点A落在BC边上的点M处,折痕为BN,连接MN,然后将纸片展平,得到四边形ABMN,则折痕BN的长为;探究发现(2)如图(2),胜胜同学将图(1)中的四边形ABMN剪下,取AN边的中点E,将△ABE 沿BE折叠得到△A'BE,延长BA'交MN于点F.点Q为BM边的中点,点P是MN边上一动点,将△MQP沿PQ折叠,当点M的对应点M'落在线段BF上时,求此时tan∠PQM的值;反思提升(3)明明同学改变图(2)中点Q的位置,即点Q为BM边上一动点,点P仍是MN边上一动点,按照(2)中方式折叠△MQP,使点M'落在线段BF上,明明同学不断改变点Q 的位置,发现在某一位置∠QPM与(2)中的∠PQM相等,请直接写出此时BQ的长.图(1)图(2)备用图3.综合与实践——探究平行四边形折叠中的数学问题问题情境已知▱ABCD中,ÐA为锐角,AB<AD,点E,F分别是AB,CD边的中点,点G,H分别是AD,BC边上的点,分别沿EG和FH折叠▱ABCD,点A,C的对应点分别为点A',C'.操作分析(1)如图(1),点A'与点B重合,点C'与点D重合.①四边形BHDG 平行四边形(填“是”或“不是”).②当▱ABCD满足某个条件时,四边形BHDG能成为矩形.这个条件可以是.(2)点A',C'均落在▱ABCD内部(含边界),连接A'H,C'G,若AG=CH,则四边形A'HC'G是平行四边形吗?若是,请就图(2)进行证明;若不是,请说明理由.拓展探究(3)在(2)的条件下,若ÐA=60°,AD=2AB=8,且A'G与▱ABCD的一边平行,则此时四边形A'HC'G的面积为.图(1)图(2)备用图4.综合与实践数学活动课上,张老师找来若干张等宽的矩形纸条,让学生们进行折纸探究. (1)希望小组将如图(1)所示的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB边上的点D'处,折痕为AE.填空:图(1)中四边形ADED'的形状是.(2)智慧小组准备了一张如图(2)所示的长、宽之比为3∶2的矩形纸片ABCD,用希望小组的方法折叠纸片,得到四边形ADED',接着沿过点B的直线折叠纸片,使点C落在ED'上的点M处,折痕为BF.求∠MBC的度数.(3)勤奋小组拿着一张如图(3)所示长为4,宽为2的矩形纸片ABCD,利用希望小组的方法折叠纸片,得到四边形ADED',在CE上取一点F(不与点C,E重合),沿BF 折叠△BCF,点C的对应点为N,射线FN交直线AB于点H.①HF与HB的数量关系为.②当射线FN经过△AED'的直角边的中点时,直接写出FC的长.图(1)图(2)图(3)5.综合与实践问题情境数学活动课上,老师让同学们以“矩形纸片的折叠”为主题,开展数学活动,如图(1),在矩形ABCD中,AB=8,BC=4.观察发现(1)如图(2),智慧小组连接对角线BD,将矩形纸片ABCD沿直线BD折叠,使点A落在点P的位置,PB交CD于点Q,连接AP.直接写出图中所有的等腰三角形:.(不再添加字母)探究证明(2)求实小组在智慧小组的启发下,又对矩形纸片ABCD进行了如下操作,并对其中所产生的问题进行了探究:如图(3),沿过点A的直线折叠,使点B的对应点F 落在CD上,折痕交BC于点E,过点F作FG∥BC交AE于点G,连接BG.①小组成员发现四边形BEFG是特殊四边形.请你判断四边形BEFG的形状,并说明理由.②小组成员通过计算求得四边形BEFG的面积.请你直接写出这个面积:.探索拓广(3)参照上面的探究方式,对图(1)进行一次折叠操作,使点B的对应点B'落在BD 的三等分点上,设折痕与AB交于点N.请直接写出BN的长.图(1)图(2)图(3)角度2 旋转类6.综合与实践——图形变换中的数学问题问题情境数学活动课上,老师出示了一个问题:如图(1),已知正方形ABCD、矩形BCEF,点E,F分别在边CD,AB上,且BF=k(3<k<5),BC=5.将矩形BCEF绕点B顺时针旋转得到矩形BGHK,点G,H,K分别是点C,E,F的对应点,如图(2).图(1)图(2)图(3)图(4)同学们通过小组合作,提出下列数学问题,请你解答.(1)在图(2)中,连接BE,BH,EH,CG,得到图(3),可以发现在旋转过程中存在一个三角形始终与△BCG相似,这个三角形是,它与△BCG的相似比为(用含k的式子表示).(2)如图(4),矩形BGHK的顶点K恰好落在正方形ABCD的对角线AC上,KH交DC 的延长线于点T.求证:BK=KT.(3)在旋转过程中,连接CH,CK.若k=23,则当CH=CK时,直接写出CK的长.备用图(1)备用图(2)角度3 平移类7.综合与实践问题背景如图(1),在矩形ABCD中,AB=10,BC=8,点E为边BC上一点,沿直线DE将矩形折叠,使点C落在AB边上的点C'处.问题解决(1)填空:AC'的长为.(2)如图(2),展开后,将△DC'E沿线段AB向右平移,使点C'的对应点与点B重合,得到△D'BE',D'E'与BC交于点F,D'B与DE交于点G.求EF的长.拓展探究(3)如图(3),在△DC'E沿射线AB向右平移的过程中,设点C'的对应点为C″,则当△D'C″E'在线段BC上截得的线段PQ(D'E',折线D'C″E'分别与BC交于点P,Q)的长度为2时,直接写出平移的距离.图(1)图(2)图(3)角度4 尺规作图类8.[2022南阳宛城区一调]下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应的任务.任务:(1)小明的作图依据是.(2)小军作图得到的直线CP是线段AB的垂直平分线吗?请判断并说明理由.(3)如图(3),已知△ABC中,CA=CB,∠ACB=30°,点D,E分别是射线CA,CB上的动点,且CD=CE,连接BD,AE,交点为P.当AB=6,∠PAB=45°时,请直接写出线段CD 的长.图(3)9.[2022开封二模]中华文明源远流长,图(1)是汉代数学家赵爽在注解《周髀算经》时给出的图形,人们称它为“赵爽弦图”.2002年北京国际数学家大会依据赵爽弦图制作了会标,该图由4个全等的直角三角形围成一个大正方形和中间一个小正方形,巧妙地证明了勾股定理.问题发现如图(1),若直角三角形的直角边BC=3,斜边AB=5,则中间小正方形的边长CD= ,连接BD,△ABD的面积为.知识迁移如图(2),P是正方形ABCD内一点,连接PA,PB,PC,当∠BPC=90°,BP=10时,△PAB的面积为.拓展延伸如图(3),已知∠MBN=90°,以点B为圆心,适当长为半径画弧,分别交射线BM,BN 于点A,C.(1)已知D为线段AB上一动点,连接CD,过点B作BE⊥CD,垂足为点E,在线段CE 上取一点F,使EF=BE,过点F作GF⊥CD交BC于点G,试判断BE,DE,GF这三条线段之间的数量关系,并说明理由.(2)在(1)的条件下,若D为射线BM上一动点,F为射线EC上一点,当AB=10,CF=2时,直接写出线段DE的长.图(1)图(2)图(3)备用图类型 2 阅读理解类探究题10.[2022许昌二模]问题情境数学课上,王老师出示了这样一个问题:如图(1),在矩形ABCD中,AD=2AB,点E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示小明发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.又∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC,∴.(平行线分线段成比例)∵BE=AB,∴EM=1,∴EM=DM,DM即AM是△ADE的边DE上的中线.又∵AD=AE,∴.(等腰三角形的“三线合一”)∴AM垂直平分DE.反思交流(1)请将上述证明过程补充完整;(2)小颖受到小明的启发,继续进行探究,如图(2),连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;图(1)图(2)拓展应用(3)如图(3),连接CE,以CE为一边在CE的右上方作正方形CEFG,分别以点B,C 为圆心,m为半径作弧,两弧交于点M,连接MF.若MF=AB=1,请直接写出m的值.图(3)11.[2022商丘二模]如下是小明复习全等三角形时遇到的一个问题及由此引发的思考,请帮助小明完成以下学习任务.如图(1),OC平分∠AOB,点P在OC上,点M,N分别是OA,OB上的点,且OM=ON.求证:PM=PN.小明的思考:要证明PM=PN,只需证明△MOP≌△NOP即可.证明:如图(1),∵OC平分∠AOB,∴∠AOC=∠BOC.又∵OP=OP,OM=ON,∴△MOP≌△NOP,∴PM=PN.请仔细阅读并完成以下任务.(1)小明得出△MOP≌△NOP的依据是(填序号).①SSS ②SAS ③AAS ④ASA⑤HL(2)如图(2),在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上的点P.求证:PC=PD.,当△PBC有一个内角是45°时,△PAD(3)在(2)的条件下,若AB=10,tan∠PAB=12的面积是.图(1)图(2)备用图(1)备用图(2)类型 3 类比、拓展探究题12.[2021湖北仙桃]已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时:①如图(1),当点D在AC上时,请直接写出BE与AD的数量关系:;②如图(2),当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由.(2)当n=90时:①如图(3),探究线段BE 与AD 的数量关系,并说明理由; ②当BE ∥AC ,AB=3√2,AD=1时,请直接写出DC 的长.图(1) 图(2) 图(3)答案:1.(1)∠ABP ,∠PBM ,∠MBC 或∠BME (注:任意写出一个即可) (2)①15 15②∠MBQ=∠CBQ. 理由如下:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°. 由轴对称性质,得BM=AB ,∠BMP=∠A=90°,∴∠BMQ=90°=∠C ,BM=BC.又∵BQ 是公共边,∴Rt △MBQ ≌Rt △CBQ ,∴∠MBQ=∠CBQ.(3)4011 cm 或2413cm. 解法提示:由翻折的性质知AP=PM ,DF=CF=4. 由(2)可知,△MBQ ≌△CBQ ,∴MQ=CQ. 分两种情况讨论.①当点Q 在EF 下方时,如图(1),则MQ=CQ=4-1=3,DQ=4+1=5,PQ=AP+3,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+52=(AP+3)2,∴AP=4011.图(1)②当点Q 在EF 上方时,如图(2),则MQ=CQ=4+1=5,DQ=4-1=3,PQ=AP+5,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+32=(AP+5)2,∴AP=2413.图(2)综上所述,AP 的长为4011 cm 或2413cm. 2.(1)8√2(2)如图(1),连接MM'交PQ 于点O ,连接EF.图(1)由折叠的性质知,点O 为MM'的中点. 又∵点Q 为BM 边的中点,∴QO ∥BM',即QP ∥BF ,∴∠PQM=∠FBM.∵点E 是AN 边的中点,且将△ABE 沿BE 折叠得到△A'BE , ∴EN=EA',∠EA'F=∠N=90°. 又∵EF=EF ,∴Rt △NEF ≌Rt △A'EF. 设NF=x ,则A'F=x ,MF=8-x ,∴BF=BA'+A'F=BA+A'F=8+x.在Rt △BMF 中,由勾股定理,得BM 2+FM 2=BF 2, 即82+(8-x )2=(8+x )2,解得x=2,∴FM=6,∴tan ∠FBM=FM BM =68=34,∴tan ∠PQM=34. (3)BQ 的长为398. 解法提示:如图(2),连接MM'交PQ 于点G.图(2)由折叠的性质知,PQ 垂直平分MM',∴∠QPM+∠PMM'=90°.∵∠PMQ=90°,∴∠PMM'+∠M'MB=90°, ∴∠QPM=∠M'MB.由(2)知,(2)中∠PQM=∠M'BM. 又∵∠QPM 与(2)中的∠PQM 相等,∴∠M'BM=∠M'MB.过点M'作M'H ⊥BM 于点H ,则BH=MH=4,M'H BH =34, ∴M'H=3.设MQ=M'Q=a ,则HQ=4-a.在Rt △M'HQ 中,根据勾股定理,得M'H 2+HQ 2=M'Q 2, 即32+(4-a )2=a 2,解得a=258, ∴BQ=8-258=398. 3.(1)①是解法提示:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠ABC=∠ADC ,AD ∥BC. 如图(1),由折叠可知,∠A=∠1,∠C=∠2,图(1)∴∠1=∠2,∴∠ABC-∠1=∠ADC-∠2,即∠3=∠4. ∵AD ∥BC ,∴∠4+∠5=180°,∴∠3+∠5=180°, ∴BG ∥DH ,∴四边形BHDG 是平行四边形. ②∠A=45°(答案不唯一,正确即可) 解法提示:∵四边形BHDG 是矩形,∴∠BGD=90°,∴∠AGB=90°, 又由折叠可知,AG=A'G ,∴∠A=45°. (2)四边形A'HC'G 是平行四边形. 证明:如图(2),连接GH.图(2)∵四边形ABCD 是平行四边形, ∴∠A=∠C ,AB=CD ,AD ∥BC. ∵点E ,F 分别是AB ,CD 的中点,∴AE=12AB ,CF=12CD ,∴AE=CF. ∵AG=CH ,∴△AEG ≌△CFH , ∴∠1=∠3.由折叠可知,∠1=∠2,∠3=∠4,AG=A'G ,CH=C'H ,∴∠1=∠2=∠3=∠4,A'G=C'H. ∵AD ∥BC ,∴∠AGH=∠CHG ,∴∠5=∠6, ∴A'G ∥C'H ,∴四边形A'HC'G 是平行四边形. (3)2√3或4√3解法提示:当A'G ∥BC 时,如图(3),点A'落在AD 上,EG ⊥AD ,则A'G=AG=12AE=1,∴S 四边形A'HC'G =A'G ·AB sin 60°=1×4×√32=2√3.图(3)当A'G ∥AB 时,如图(4),则∠AGA'=120°,∴∠AGE=∠A'GE=60°,图(4)从而易得△AEG ,△A'EG ,△CHF ,△C'HF 均是等边三角形,EA'∥BC ,C'F ∥AD ,∴S 四边形A'HC'G =S ▱ABCD -4S △AEG -2S 四边形A'EBH=8×4×√32-4×√34×22-2×12×(2+6)×2×√32=4√3. 综上可知,四边形A'HC'G 的面积为2√3或4√3. 4.(1)正方形(2)由题意可知,AB∶AD=3∶2,∴设AD=2a ,AB=3a , ∴BM=BC=AD'=2a ,∴BD'=a ,∴sin ∠BMD'=a 2a =12,∴∠BMD'=30°.又ED'∥AD ∥BC ,∴∠MBC=∠BMD'=30°. (3)①HF=HB②FC 的长为3-√5或23. 解法提示:①∵DC ∥AB ,∴∠CFB=∠ABF. 由折叠可知∠CFB=∠NFB ,∴∠ABF=∠NFB ,∴HF=HB.②设FC=NF=x ,分两种情况讨论.a.当射线FN 经过AD'的中点时,点H 即为AD'的中点,如图(1),则HF=HB=3,∴HN=3-x.在Rt △HBN 中,由勾股定理,得HN 2+BN 2=HB 2,∴(3-x )2+22=32,解得x=3-√5(不合题意的值已舍去),∴FC=3-√5.图(1)b.当射线FN 经过ED'的中点P 时,如图(2), 易证△HD'P ≌△FEP ,∴HD'=EF=2-x ,∴HF=HB=2-x+2=4-x , ∴HN=4-x-x=4-2x.在Rt △HBN 中,由勾股定理,得BN 2+HN 2=HB 2,∴22+(4-2x )2=(4-x )2,解得x=23(不合题意的值已舍去),∴FC=23.图(2)综上可知,当射线FN 经过△AED'的直角边的中点时,FC 的长为3-√5或23. 5.(1)△ADP ,△ABP ,△BDQ (2)①四边形BEFG 是菱形. 理由如下:由折叠知∠BEG=∠FEG.∵FG ∥BC ,∴∠EGF=∠BEG , ∴∠EGF=∠FEG ,∴FG=FE. 又∵FE=BE ,∴FG=BE ,∴四边形BEFG 是平行四边形. 又∵FE=BE ,∴四边形BEFG 是菱形.②224-128√3解法提示:由折叠的性质知AF=AB=8.在Rt △ADF 中,由勾股定理得DF=√AF 2-AD 2=√82-42=4√3,∴CF=8-4√3. 设BE=y ,则EF=y ,CE=4-y.在Rt △CEF 中,由勾股定理得EF 2=CF 2+CE 2, 即y 2=(8-4√3)2+(4-y )2,解得y=16-8√3,∴S 四边形BEFG =BE ·CF=(16-8√3)×(8-4√3)=128-64√3-64√3+96=224-128√3.(3)BN 的长为103或53. 解法提示:分两种情况讨论.①当点B'落在离点D 较近的三等分点上时,如图(1),过点B'作B'H ⊥AB 于点H ,易知B'H=83,BH=163,B'N=BN ,∴HN=163-BN. 根据勾股定理,得B'H 2+HN 2=B'N 2,即(83)2+(163-BN )2=BN 2,∴BN=103.图(1) 图(2)②当点B'落在离点B 较近的三等分点上时,如图(2),同理可求得BN=53. 综上可知,BN 的长为103或53. 6.(1)△BEH√k 2+255(2)证明:如图(1),过点K 分别作KN ⊥BC 于点N ,KM ⊥CD 于点M , 则KN=KM ,∠MKN=90°=∠BKH ,∴∠TKM=∠BKN.又∠TMK=∠BNK=90°,∴△TMK ≌△BNK ,∴BK=KT.图(1)(3)CK 的长为√7或√67.解法提示:分如图(2)、图(3)所示的两种情况讨论,连接CG ,过点K 作KP ⊥BC ,垂足为点P.图(2)图(3)∵CK=CH ,∴∠CKH=∠CHK ,∴∠CKB=∠CHG. 又KB=HG ,∴△CKB ≌△CHG ,∴CG=CB=BG ,∴△CBG 是等边三角形, ∴∠CBG=60°. 图(2)中∠KBC=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=2,∴CK=√(√3)2+22=√7. 图(3)中∠KBP=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=8,∴CK=√(√3)2+82=√67. 综上可知,CK 的长为√7或√67. 7.(1)6(2)由(1)得AC'=6,∴BC'=AB -AC'=10-6=4.在Rt △BEC'中,设BE=x ,则EC'=EC=8-x ,根据勾股定理,得(8-x )2=x 2+42, 解得x=3,即BE=3,∴EC'=EC=5.连接EE',由平移可知,EE'=C'B=4,EE'∥AB ∥CD ,DE ∥D'E',∴△FEE'∽△FCD'∽△ECD , ∴EF∶EE'=EC∶DC=5∶10=1∶2, 又EE'=4,∴EF=2.(3)平移的距离为85或385. 解法提示:设平移的距离为x. 分两种情况讨论.①当点C″在BC 左侧时,如图(1),则BC″=4-x ,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=D'C ·tan ∠CDE=510(10-x )=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠ADC'=68(4-x )=34(4-x ). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+34(4-x )=8,解得x=85.图(1) 图(2)②当点C″在BC 右侧时,如图(2),则BC″=x -4,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠AC'D=43(x-4). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+43(x-4)=8,解得x=385.综上可知,平移的距离为85或385. 8.(1)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合 (2)是. 理由如下:由作图可知,CA=CB ,CD=CE. 又∵∠ACE=∠BCD ,∴△ACE ≌△BCD , ∴∠CAE=∠CBD. ∵CA=CB ,∴∠CAB=∠CBA , ∴∠PAB=∠PBA ,∴AP=BP ,∴直线CP 是线段AB 的垂直平分线. (3)线段CD 的长为√3+1或3√3+3. 解法提示:∵CD=CE ,∠C=∠C ,CA=CB ,∴△CAE ≌△CBD ,∴∠CAE=∠CBD. ∵CA=CB ,∠ACB=30°, ∴∠CAB=∠CBA=75°,∴∠PBA=∠PAB=45°,∴∠APB=90°, ∴PA=PB=√22AB=√3. 分两种情况讨论.①当点P 在AB 上方时,如图(1),图(1)则∠DAP=∠EBP=30°,∠APD=90°,∴DB=DC ,DP=√33AP=1,∴CD=DB=√3+1. ②当点P 在AB 下方时,如图(2), 则∠DAP=∠EBP=60°,∠APD=90°,∴∠ADP=30°,∴BD=BC,DP=√3AP=3,AD=2AP=2√3,∴BC=BD=√3+3,∴CD=CA+AD=CB+AD=√3+3+2√3=3√3+3.综上可知,线段CD的长为√3+1或3√3+3.图(2) 9.问题发现192知识迁移 5拓展延伸(1)BE=DE+GF.理由:如图(1),过点G作GH⊥BE于点H.图(1)∵BE⊥CD,GF⊥CD,∴∠HEF=∠EFG=∠EHG=90°,∴四边形EFGH为矩形,∴EH=GF,EF=GH.∵EF=BE,∴GH=BE.∵∠MBN=90°,∠BHG=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.又∵∠BED=∠GHB=90°,BE=GH,∴△BDE≌△GBH(ASA),∴DE=BH,∴BE=BH+EH=DE+GF.(2)92或323. 解法提示:分两种情况讨论.①当点F 在线段EC 上时,如图(2).图(2)由(1)可得BE=DE+GF. 设BE=EF=m ,则EC=m+2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即m 2+(m+2)2=102,解得m=6(负值已舍),∴BE=EF=6.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即22+6=GF 6, ∴GF=32,∴DE=BE -GF=6-32=92. ②当点F 在线段EC 的延长线上时,如图(3).图(3)同(1)中方法可得BE=DE-GF. 设BE=EF=n ,则EC=n-2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即n 2+(n-2)2=102,解得n=8(负值已舍),∴BE=EF=8.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即28−2=GF 8, ∴GF=83,∴DE=BE+GF=8+83=323.10.(1)EM DM =EBAB AM ⊥DE(2)证明:如图(1),过点G 作GH ⊥BC 于点H.图(1)∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴∠CBE=∠GHC=90°,∴∠BCE+∠BEC=90°. ∵四边形CEFG 为正方形, ∴CG=CE ,∠GCE=90°,∴∠BCE+∠BCG=90°,∴∠BEC=∠BCG , ∴△GHC ≌△CBE ,∴HC=BE. ∵AD=BC=2AB ,BE=AB ,∴BC=2BE=2HC , ∴HC=BH ,∴GH 垂直平分BC , 即点G 在线段BC 的垂直平分线上. (3)√5或√17.解法提示:同(2)中思路可证得点F 在线段BC 的垂直平分线上.如图(2),过点F 作FN ⊥BC 于点N ,连接CF ,则CF=√2CE=√2×√22+12=√10,CN=1,∴NF=√(√10)2-12=3.图(2)由作图过程可知,点M 在线段BC 的垂直平分线上,故分两种情况讨论.①当点M 在点F 左侧时,如图(3),连接MC ,图(3)则NM=3-1=2,∴m=CM=√22+12=√5.②当点M在点F右侧时,如图(4),连接MC,图(4)则NM=3+1=4,∴m=CM=√42+12=√17.综上可知,m的值为√5或√17.11.(1)②(2)如图(1),在AB上取点E,使得AE=AD,连接PE.图(1)∵AP平分∠DAE,∴∠DAP=∠EAP.又∵AP=AP,AD=AE,∴△DAP≌△EAP,∴PD=PE.∵AD+BC=AB=AE+BE,AD=AE,∴BC=BE.∵BP平分∠CBE,∴∠CBP=∠EBP.又∵BP=BP,∴△EBP≌△CBP,∴PE=PC,∴PC=PD.(3)8或403解法提示:如图(1),由(2)可得△DAP ≌△EAP ,△EBP ≌△CBP ,∴∠DPA=∠EPA ,∠CPB=∠EPB ,∠D=∠AEP ,∠C=∠BEP. 又∵∠DPA+∠EPA+∠CPB+∠EPB=180°,∠AEP+∠BEP=180°,∴∠APB=∠EPA+∠EPB=90°,∠D+∠C=180°, ∴AD ∥BC.在Rt △PAB 中,tan ∠PAB=12,∠APB=90°, 故可设BP=x ,AP=2x ,∴AB=√x 2+(2x)2=√5x=10, 解得x=2√5,∴AP=4√5,sin ∠PAB=1√5. 易知∠PBC>45°,故分两种情况讨论.①当∠C=45°时,如图(2),图(2)过点P 作PM ⊥AD ,交AD 的延长线于点M ,则∠MDP=∠C=45°,∴MP=MD. 又∵tan ∠MAP=tan ∠PAB=12,∴AM=2MP , ∴AD=MD=MP=AP ·sin ∠MAP=4, ∴S △PAD =12×4×4=8. ②当∠BPC=45°时,如图(3),图(3)过点D 作DN ⊥AP 于点N ,则∠DPN=180°-45°-90°=45°,∴NP=ND.∵tan ∠DAP=tan ∠PAB=12,∴AN=2ND. 又∵AP=AN+NP ,∴4√5=2ND+ND ,∴ND=4√53,∴S △PAD =12×4√5×4√53=403. 综上可知,△PAD 的面积为8或403.12.(1)①BE=AD②BE=AD. 理由如下:当点D 不在AC 上时,∵∠ACB=∠ACD+∠DCB=60°,∠DCE=∠BCE+∠DCB=60°,∴∠ACD=∠BCE. 在△ACD 和△BCE中,{AC =BC,∠ACD =∠BCE,DC =EC,∴△ACD ≌△BCE ,∴AD=BE. (2)①BE=√2AD. 理由如下:当n=90时,在等腰直角三角形DEC 中,DC EC =sin 45°=√22, 在等腰直角三角形ABC 中,AC BC =sin 45°=√22.∵∠ACB=∠ACE+∠ECB=45°,∠DCE=∠ACE+∠DCA=45°,∴∠ECB=∠DCA. 在△DCA 和△ECB中,{DCEC=AC BC=√22,∠DCA =∠ECB,∴△DCA ∽△ECB ,∴AD BE =√22,∴BE=√2AD. ②5或√13.解法提示:当点D 在△ABC 外部时,设EC 与AB 交于点F ,如图(1)所示.图(1)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BE=√2AD=√2. 又∵BE ∥AC ,∴∠EBF=∠CAF=90°.而∠EFB=∠CFA ,∴△EFB ∽△CFA ,∴EF CF =BF AF =BE AC =√23√2=13,∴AF=3BF ,而AB=BF+AF=3√2,∴BF=14×3√2=3√24. 在Rt △EBF 中,EF=√EB 2+BF 2=(√2)2+(3√24)2=5√24. 又∵CF=3EF=3×5√24=15√24, ∴EC=EF+CF=5√24+15√24=5√2. 在等腰直角三角形DEC 中,DC=EC ·sin 45°=5√2×√22=5.当点D 在△ABC 内部时,设AB 延长线与CE 延长线交于点F ,如图(2),图(2)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BC=√2AB=6,BE=√2AD=√2. 又∵BE ∥AC ,∴△EFB ∽△CFA ,∴FB FA =BE AC =13, ∴BF=12AB=3√22,AF=AB+BF=3√2+3√22=9√22. 在Rt △ACF 中,CF=√AC 2+AF 2=3√262.CE=23CF=23×3√262=√26. 在等腰直角三角形DEC 中,DC=√22CE=√13. 综上所述,满足条件的CD 的值为5或√13.。
中考数学专题复习题型-多条件探究题

1.(成都28)如图,在平面直角坐标系xOy中,抛物线()213y a x=+-与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,83-),顶点为D,对称轴与x轴交于点H.过点H的直线l交抛物线于P,Q两点,点Q在y轴右侧.(1)求a的值及点A、B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否成为菱形?若能,求出点N的坐标;若不能,请说明理由.2.(昆明23).如图,对称轴为直线21=x的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值;(3)如图①,若M是线段BC上一动点,在x轴上是否存在这样有点Q,使∆MQC为等腰三角形且∆MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.1/ 22 / 2(日照22).如图1,抛物线()2325y x n ⎡⎤=--+⎢⎥⎣⎦与x 轴交于点A (m ﹣2,0)和B (2m +3,0)(点A 在点B 的左侧),与y 轴交于点C ,连结BC .(1)求m 、n 的值;(2)如图2,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .求△NBC 面积的最大值; (3)如图3,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.。
中考数学复习《几何探究型问题》经典题型及测试题(含答案)

中考数学复习《几何探究型问题》经典题型及测试题(含答案)题型解读1.考查类型:①动点探究题;②平移、旋转、折叠探究题;③图形形状变化探究题.2.考查内容:①多与特殊四边形的性质、三角形全等、相似的判定和性质有关;②涉及平移、旋转或折叠的相关性质;③多与二次函数的性质有关.3.备考指导:在做此类题型时,要观察题中已知条件,并结合题设,联系相关的知识解题,对结果猜想题根据前面问题大胆猜想,往往是解题的突破口.类型一动点探究题1.如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.2.如图①,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于点E、F.(1)如图②,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图③,当顶点G运动到AC中点时,探究线段EC、CF与BC的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.图①3.已知:如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm .对角线AC ,BD 交于点O ,点P 从点A 出发,沿AD 方向匀速运动,速度为1 cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm /s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF∥AC,交BD 于点F.设运动时间为t(s )(0<t<6),解答下列问题: (1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP?若存在,求出t 值;若不存在,请说明理由.4.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF. (1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.类型二 平移、旋转、折叠探究题5.如图①,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③6.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.7.已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD 的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N 在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②8.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.9.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.10.如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.11.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.类型三图形形状变化探究题12.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.图①(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.图②(3)填空:在上述(1)(2)的基础上可得在图③中∠BOC=________(填写度数).图③图④(4)由此推广到一般情形(如图④),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想∠BOC的度数为____________________(用含n的式子表示).13.阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.14.已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE=90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE∽△CBF; ②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF=45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).15.已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF⊥BC; ②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图③,若△ABC 是等腰三角形,且AB =AC =kBC ,请你直接写出EF 与BC 之间的数量关系.类型一 动点探究题1. 解:(1)根据题意BM =2t ,BN =BC -3t ,而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如解图①, △NBM ∽△ABC ,cos B =cos 30°=BM BN ,∴2t 53-3t =32,解得t =157.②当∠BNM =∠ACB =90°时,如解图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM, ∴53-3t 2t =32,解得t =52. 因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.第1题解图(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大, 而△MBN 的面积是S =12BM ×BN ×sin B=12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0, ∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538, 因此四边形ACNM 面积最小值是12×5×53-2538=7538.2. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC ,即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为: EC +CF =12BC.理由如下:如解图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.第2题解图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t,∴CE =1tCE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如解图②,连接BD 与AC 交于点H.第2题解图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.3. 解:(1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10,第3题解图①∴AO =CO =5,∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC ,∴△APO ≌△CEO ,∴PO =OE =t.如解图①,作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.第3题解图②③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形.(2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N. 则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t ,S △OCD =12·CD·ON =12·6·4=12.∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC =(DQ DC)2,即S △DFQ 12=(t 6)2,∴S △DFQ =13t 2,∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t ,即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16,即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,第3题解图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12,∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8.∵AG ∥PE ,∴∠DPI =∠DAG .∵AD ∥BC ,∴∠DAG =∠AGB ,∴∠DPI =∠AGB , ∴Rt △ABG ∽Rt △DIP.由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP, ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)4. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF , 又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°,∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF , ∵BC =CD +BD , ∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如解图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,第4题解图∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4,∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1, ∴EG =EM 2+GM 2=10.类型二 平移、旋转、折叠探究题5. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°,第5题解图∴HD ⊥HF ,即BD ⊥CF.②解:如解图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF ,∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106,∴DH =9105.6. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B,E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③解:BE的长为33-4;【解法提示】由②知AF=12AD=12AB=3,AE=AC=5,BF⊥AD,由勾股定理得EF=AE2-AF2=4.在等边△ABD中,AB=6,BF⊥AD,∴BF=32AB=33,∴BE=33-4.(2)解:BE+CE的值为13;第6题解图【解法提示】如解图,∵∠DAG=∠ACB,∴∠DAB=2∠CAB.∵∠DAE=∠CAB,∴∠BAE=∠CAB,∴∠BAE=∠CBA,∴AE∥BC,∵AE=AC=BC,∴四边形ACBE是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8, ∴CE +BE =13.7. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA =(CP DA)2,即14=(CP8)2,∴CP =4,设CD =x ,则DP =x -4,AP =AB =CD =x , ∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10. (2)第7题解图线段EF 的长度始终不发生变化,为2 5.证明:如解图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG,∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.8. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,第8题解图①∵四边形ABCD 是菱形, ∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC ′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.第8题解图②(4)解:答案不唯一,例:画出正确图形如解图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形.9. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)第9题解图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM ,∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如解图②,第9题解图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF ,∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 10. 解:(1)△ABP ∽△PCD. 【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PEPF 的值为定值.如解图,过点F 作FG ⊥BC ,垂足为G.第10题解图类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG, ∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12, 即在旋转过程中,PE PF 的值为定值12.(3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12, 又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t ,∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t)=t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去).∴t 的值是2-455.11. 解:(1)如解图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,第11题解图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如解图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,第11题解图②∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.第11题解图③(3)如解图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.类型三 图形形状变化探究题12. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC, ∴△ABE ≌△ADC(SAS ). (2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°, ∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°.(4)解:180°-180°·(n -2)n.【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 13. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如解图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,第13题解图则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h , 又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m =2,∴sin ∠A 1B 1C 1=12,∴∠A 1B 1C 1=30°,∴∠A 1E 1B 1+∠A 1D 1B 1=30°. 14. (1)①证明:如解图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,第14题解图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2, 由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°,第14题解图②由CE 2=2EF 2=2(BE 2+BF 2)=6, 解得CE = 6.(2)解:连接BF ,如解图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如解图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),第14题解图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2=(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.15. 证明:(1)①连接AH ,如解图①. 第15题解图①∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC.②由①得AH =32BC ,∵AH =12EF∴32BC =12EF ,∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.第15题解图②【解法提示】如解图②,连接AH,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰直角三角形,∴AH⊥BC,在Rt△ABH中,AH2=AB2-BH2=(2BH)2-BH2=BH2,∴AH=BH=12BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,EF=2AH=BC.第15题解图③(3)EF=4k2-1 BC.【解法提示】如解图③,连接AH,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰三角形,AB=kBC,∴AH⊥BC,在Rt△ABH中,AH2=AB2-BH2=(kBC)2-(12=(k2-14)BC2,2BC)∴AH=12-1 BC,24k∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,12-1 BC=12EF,24k∴EF=4k2-1 BC.。
探究迁移型问题-中考数学重难点题型分类(全国通用)(全国通用)

类型二探究迁移型问题1.【性质探究】如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分∠BAC ,交BC 于点E .作DF ⊥AE 于点H ,分别交AB ,AC 于点F ,G .(1)判断△AFG 的形状并说明理由; (2)求证:BF =2OG . 【迁移应用】(3)记△DGO 的面积为S 1,△DBF 的面积为S 2,当12S 1S 3=时,求AD AB 的值; 【拓展延伸】(4)若DF 交射线AB 于点F ,【性质探究】中的其余条件不变,连结EF ,当△BEF 的面积为矩形ABCD 面积的110时,请直接写出tan ∠BAE 的值. 【解析】(1)如图1中,△AFG 是等腰三角形.利用全等三角形的性质来进行证明. (2)如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .首先证明OG =OL ,再证明BF =2OL ,即BF =2OG .(3)如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,利用相似三角形的性质解决问题即可.(4)设OG =a ,AG =k .分两种情形:①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .分别求解即可解决问题.【答案】解:如图1中,△AFG 是等腰三角形.理由:∵AE 平分∠BAC ,∴∠1=∠2,∵DF ⊥AE ,∴∠AHF =∠AHG =90°, ∵AH =AH ,∴△AHF ≌△AHG ,∴AF =AG ,∴△AFG 是等腰三角形. (2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG . ∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB ,∴OL DOBF BD =, ∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG . (3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴DK CDAD AC=.∵S112=•OG •DK ,S212=•BF •AD ,又∵BF =2OG ,1213S S =,∴23DK CD AD AC ==,设CD =2x ,AC =3x ,则AD =5x ,∴52AD AD AB CD ==. (4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k+2a ,AC =2AO=2(k+a ), ∴AD2=AC2﹣CD2=[2(k+a )]2﹣(k+2a )2=3k2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴BE AFAB AD =, ∴2BE k k a AD =+,∴BE ()2k k a AD +=,由题意:1012⨯⨯2a ()2k k a AD +⨯=AD •(k+2a ),∴AD2=10ka ,即10ka =3k2+4ka ,∴k =2a ,∴AD =25a ,∴BE()2455k k a AD+==a ,AB =4a ,∴tan ∠BAE 55BE AB==. ②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ), ∴AD2=AC2﹣CD2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k2﹣4ka , ∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF , ∴BE AFAB AD =,∴2BE k k a AD =-,∴BE()2k k a AD -=, 由题意:1012⨯⨯2a ()2k k a AD -⨯=AD •(k ﹣2a ),∴AD2=10ka ,即10ka =3k2﹣4ka ,∴k 143=a ,∴AD21053=a ,∴BE()2810545k k a AD-==a ,AB 83=a ,∴tan ∠BAE 10515BE AB ==,综上所述,tan ∠BAE 的值为55或10515.2.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC 和DEF 拼在一起,使点A 与点F 重合,点C 与点D 重合(如图1),其中∠ACB =∠DFE =90°,BC =EF =3cm ,AC =DF =4cm ,并进行如下研究活动.活动一:将图1中的纸片DEF 沿AC 方向平移,连结AE ,BD (如图2),当点F 与点C 重合时停止平移.【思考】图2中的四边形ABDE 是平行四边形吗?请说明理由.【发现】当纸片DEF 平移到某一位置时,小兵发现四边形ABDE 为矩形(如图3).求AF 的长. 活动二:在图3中,取AD 的中点O ,再将纸片DEF 绕点O 顺时针方向旋转α度(0≤α≤90),连结OB ,OE (如图4).【探究】当EF 平分∠AEO 时,探究OF 与BD 的数量关系,并说明理由.【解析】本题考查了平行四边形的判定,矩形的性质,勾股定理,全等三角形的判定及性质、图形的变换等知识.【思考】由△ABC ≌△DEF 可知,AB =DE ,∠BAC =∠ADE ,∴AB ∥DE ,所以四边形ABDE 是平行四边形;【发现】连接BE 交AD 于点O ,由矩形可知OA =OB =OE =OD ,又AF =DC ,得到OF =OC ,在Rt △OEF 中,设AF =x ,则AD =x +4,OA =42x +,所以OF =OA –AF =42x -,所以22244()3()22x x -++=,解得AF =94。
中考数学探究规律题型总结1.差后等差型

1.差后等差型1.如图,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果n 层六边形点阵的总点数为331,则n 等于___①___.答案:11解析:令第n 个数的代数表达式为=2ax bx c ++利用待定系数法得,1n =时,总数为1a b c ++=,2n =时,总数为427a b c ++=, 3n =时,总数为93=19a b c ++,解得3a =,3b =-,1c = 故代数式为2331n n -+,∴当2331=331n n -+时,解得111n =,210n =-2.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A.15B.25C.55D.1225答案:D解析:三角形数为:1(1)2n n +,四边形数2n , A.选项中15不满足四边形数2n ,故舍去,B.选项中25不满足三角形数为:1(1)2n n +,故舍去, C.选项中55不满足四边形数2n ,故舍去, D.选项中1225既满足三角形数为:1(1)2n n +,又满足四边形数2n ,故选D ,3.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要____枚棋子,摆第n 个图案需要____枚棋子.答案:127;3;3;1 解析:令总数=2anbn c ++利用待定系数法将,1n =时,总数为7,2n =时,总数为19,3n =时,总数为37,代入总数=2an bn c ++,解得3a =,3b =,1c =,故代数式为2331n n ++4.如图,用火柴摆出一列正方形图案,若按这种方式摆下去,摆出第30个图案用______根火柴棍.答案:1860解析:令总数=2anbn c ++利用待定系数法将,1n =时,总数为4,2n =时,总数为12,3n =时,总数为24,代入总数=2an bn c ++,解得2a =,2b =,0c =, 故代数式为222n n +,当30n =时,故2230+230=1860⨯⨯5.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =().A .29B .30C .31D .32答案:B解析:设第n 行的代数是2anbn c ++利用待定系数法,将(12),、(26),、(312),代入二次代数式求1a=,1b =,0c =,故代数式为2n n +,另2930n n +=,解得130n =,231n =-(舍)6.下面是一个按某种规律排列的数阵:根据数阵排列的规律,则第5行从左向右数第5个数为_____,第n (3n ≥,且n 是整数)行从左向右数第5个数是105,则=n _______.答案:21;11解析:令第n 个数的代数表达式为=2ax bx c ++利用待定系数法得,3n =时,表达式为9,4n =时,总数为14,5n =时,总数为21,代入表达式为=2ax bx c ++,解得1a =,2b =-,6c =故代数式为226n n -+,∴226105n n -+=,226105n n -+=,∴19n =-(舍),11n =6.在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_____个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)n -,,(0)n ,,(20)n ,,(0)n -,(n 为正整数),且菱形n n n n A B C D 能覆盖的单位格点正方形的个数为288,则n =____.-8-448ODC BA y x答案:48;9解析:114(844)2S =⨯⨯⨯-,故14(2)2n S n n n =⨯⨯⨯-=244n n -∴244288n n -=,解得,19n =,2=8n -(舍) ∴菱形n n n n A B C D 能覆盖的单位格点正方形的个数为288,则9n =7.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且(2,0)A -,(0,1)B ,在直线AB 上截取1BB AB =,过点1B 分别作x 、y 轴的垂线,垂足分别为点1A 、1C ,得到矩形111OA B C ;在直线AB 上截取121B B BB =,过点2B 分别作x 、y 轴的垂线,垂足分别为点y xA 2A 3C 3C 2A 1C 1OB 3B 2B 1B A2A 、2C ,得到矩形222OA B C ;在直线AB 上截取2312B B B B =,过点3B 分别作x 、y 轴的垂线,垂足分别为点3A 、3C ,得到矩形333OA B C ;…则第3个矩形333OA B C 的面积是______;第40个矩形n n n OA B C 的面积是______. 答案:24;3280 解析:令面积=2an bn c ++利用待定系数法将,1n =时,总数为4,2n =时,总数为12,3n =时,总数为24,代入面积=2an bn c ++,解得2a =,2b =,0c = 故代数式为222n n +,当40n =时,2240+240=3280⨯⨯8.将全体正整数排成一个三角形数阵:按照以上排列的规律,第5行从左到右的第3个数为_________;第n 行(3n ≥)从左到右的第3个数为_________.(用含n 的代数式表示) 答案:13;0.5;-0.5;3解析:令第n 行(3n ≥)从左到右的第3个数为=2an bn c ++利用待定系数法将,3n =时,总数为6,4n =时,总数为9,5n =时,总数为13,代入总数=2an bn c ++,解得12a =,12b =-,3c =,故代数式为211322n n -+9.在平面直角坐标系xOy 中,动点P 从原点O 出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是01(,)、20(,),第2次平移后可能到达的点是02(,)、21(,)、40(,),第3次平移后可能到达的点是03(,)、22(,)、41(,)、60(,),依此类推…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为1l ,13l =;第2次平移后可能到达的所有点的横、纵坐标之和为2l ,29l =;第3次平移后可能到达的所有点的横、纵坐标之和为3l ,318l =;按照这样的规律,4l =______;40l =_____.yx123456789123456789O答案:30;2460 解析:令nl =2an bn c ++利用待定系数法将,1n =时,13l =,2n =时,2 9l =,3n =时,318l =,代入n l =2an bn c ++,解得32a =,32b =,0c =,故代数式为()312n n +,当40n =时,()31340(401)=246022n n +⨯⨯+=10.在平面直角坐标系xOy 中,直线2x =和抛物线2yax =在第一象限交于点A ,过A 作AB x ⊥轴于点B .如果a 取1,2,3,…,n 时对应的AOB △的面积为1S ,2S ,3S ,…,n S ,那么1S =_____;若123...1300n S S S S ++++=,则n =______.xOy答案:4;25 解析:把1a=代入2y ax =得2y x =,则直线2x =和抛物线2y x =在第一象限交点A 的坐标为(2,4),易求14S =;分别把2a =、3a =代入2y ax =中,可求得点A 的坐标分别是(2,8)、(2,12);可求28S =、312S =;观察1S 、2S 、3S 可以发现4n S n =,所以12......2(1)n S S S n n +++=+.∴2(1)1300n n +=,解得125n =,226n =-(舍)11.如图,点1A ,2A ,3A ,…,点1B ,2B ,3B ,…,分别在射线OM ,ON 上.11OA =,1112A B OA =,1212A A OA =,2313A A OA =,3414A A OA =,….11223344A B A B A B A B ∥∥∥∥….则22A B =____,n n A B =____.(n 为正整数).B 4NMO A 1A 2A 3A 4B 3B 2B 1答案:6;1;1;0 解析:∵11OA =,∴12212A A =⨯=,23313A A =⨯=,344A A =,…,211n n A A n --=-,1n n A A n -=,∵11223344A B A B A B A B ∥∥∥∥…,∴111222OA A B OA A B =,∴2212112A B ⨯=+, ∴2262(21)A B ==⨯+,33123(31)A B ==⨯+,44204(41)A B ==⨯+,…, ∴(1)n n A B n n =+,故答案为:6;(1)n n +.∴1a=,1b =,0c =12.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②).如果规定11a =,23a =,36a =,410a =,…;11b =,24b =,39b =,416b =,…;1112y a b =+,2222y a b =+,3332y a b =+,4442y a b =+,…,那么,按此规定,6y =____,50y =____.(用含n 的式子表示,n 为正整数).答案:78,5050解析:根据题中给出的数据可得6123......6a =++++,266b =,∴66622213678y a b =+=⨯+=;222(1)22(123......)222n n n n n y a b n n n n n +=+=⨯+++++=⨯+=+.当50n =时,250250505050y =⨯+=.13.观察下面一列数的规律并填空:0381524⋯,,,,,,则第n 个数是5183,则n =______.答案:72解析:观察不难发现,每一个数都是比完全平方数小1的数,则第n 个数的表达式为21n -,故215183n-=,解得172n =,272n =-(舍)14.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对21(,)对应,数5与13(,)对应,数14与34(,)对应,根据这一规律,数2014对应的有序数对为______. 本题答案为()a b ,,则a =___①___;b =___②___.答案:45;12解析:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同; ∵45452025⨯=,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为4512(,). 故答案为:4512(,).15.凸n 边形的对角线的条数记作()4≥n a n 例如:4=2a ,那么:①5=a _____;②65=a a -______;③1=n n a a +-______.(4≥n ,用含n 的代数式表示).答案:5;4;n-1.解析:凸5边形每个点的对角线有53-条,计535=52-⨯条; 凸6边形每个点的对角线有63-条,计636=92-⨯条; 凸n 边形每个点的对角线有3n -条,计()32n n -条;凸1+n 边形每个点的对角线有2n -条,计()()122n n +-条.因此55=a ;65=954a a --=;1=n n a a +-()()()12322n n n n +---2223122n n n n n ---=-=-.16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去, 则第60个图形需要黑色棋子的个数是______.第4个图形第3个图形第2个图形第1个图形答案:3720解析:从图中观察,第1个图形需要3个黑色棋子,第2个图形需要8222()=⨯+个黑色棋子,第3个图形需要15332()=⨯+个黑色棋子,第4个图形需要24442()=⨯+个黑色棋子,……则第n (n 是大于0的整数)个图形需要黑色棋子的个数是2()n n +,则第60个为6062=3720⨯.17.已知:如图,互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有___个平行四边形,……,第n 个图形中一共有平行四边形的个数为599个,则n =______.答案:19,24解析:图①有1个,图②有5个,图③有11个平行四边形.设第n 个图平行四边形个数2y an bn c =++.代入前三个数据解得111a b c =⎧⎪=⎨⎪=-⎩.∴第④个图形有19个平行四边形,∴第n 个图形中一共有平行四边形的个数为21n n +-.故21=599n n +-,解得124n =,225n =-.18.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为____答案:76解析:第①个图形有1个棋子, 第②个图形有15+个棋子, 第③个图形有1510++个棋子,由此可以推知:第④个图形有151015+++个棋子, 第⑤个图形有15101520++++个棋子, 第⑥个图形有1510152025+++++个棋子.故选C.19.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是______.答案:51-=,解析:∵514=-,1257-,221210=∴相邻两个图形的小石子数的差值依次增加3,+=,∴第4个五边形数是221335+=.第5个五边形数是351651故答案为:51.20.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为_____.(用含n 的代数式表示).图1图2图3答案:1;2;1解析:找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示. ①134+= ②1359++= ③135716+++= ④1357925++++=221357(21)(1)21n n n n ++++⋯⋯++=+++=21.用同样大小的圆按下列方式组成图案,第10个图案中圆的个数为_____答案:331解析:第一个图形中圆的个数为:6×1+1=7个; 第二个图形中圆的个数为:6×(1+2)+1=19个; 第三个图形中圆的个数为:6×(1+2+3)+1=37个; 第四个图形中圆的个数为:6×(1+2+3+4)+1=61个; …第10个图案中圆的个数为:6×(1+2+3+4+5+6+7+8+9+10)+1=331.22.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为______颗;当挪动60颗珠子时(n 为大于1的整数),所得分数为______(用含n 的代数式表示). 答案:8;3659解析:由题中数据可知:5+6=11,11+8=19,19+10=29,19+12=41,41+14=55,55+16=71. 这是一个二次等差数列,可知结果一定是二次三项式的形式,可通过待定系数法求出结果为21n n +-.当60n =时,221606013659n n +-=+-=23.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2,第(2)个图形的面积为8,第(3)个图形的面积为18,……,第(10)个图形的面积为____(4)(3)(2)(1)答案:200 解析:观察图形,第1()个图形中有21(1)个矩形,面积为2cm 2,即2122⨯=cm ;第2()个图形中有24(2)个矩形,面积为28cm ,即2242228⨯=⨯=cm ;第3()个图形有29(3)个矩形,面积为218cm ,即22923218cm ⨯=⨯=;……,所以第10()个图形有2100(10)个矩形,面积为:21002200⨯=cm .故选B .24.如下图,每一幅图中均含有若干个正方形,第1幅图中含有1个正方形;第2幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有______个正方形;答案:91解析:第①幅图中含有1个正方形, 第②幅图中含有5个正方形; 第③幅图中含有14个正方形……,21=1;225=1+2;22214=1+2+3……,则第⑥幅图中含有:2222221+2+3+4+5+6=91个正方形.25.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有______个.答案:100解析:观察每一个图中黑色正六边形的排列规律, 第1个图中黑色正六边形有211=个, 第2个图中黑色正六边形有242=个,第3个图中黑色正六边形有293=个,⋯ 则第10个图中黑色正六边形有210100=个.26.已知:如图,在Rt ABC △中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连结1BE 交1CD 于点2D ;过点2D 作22D E AC⊥于点2E ,连结2BE 交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…、n D ,分别记11BD E △、22BD E △、33BD E △…、n n BD E △的面积为1S 、2S 、3S 、…、n S .设ABC △的面积是1,1S =______,若1=2401n S ,则n =______.(若答案不为整数,请填分数) D 4D 1D 2D 3ABCE 3E 2E 1答案:0.25;48 解析:11AD BD =,11D E BC ∥,1112D E BC =,1111111=44BD E CD E ACB S S S S ===△△△;112233n n CD E CD E CD E CD E ∽∽△△△△111221=2D E D D BC CD =,2123CD CD =,2222112221==()39BD E CD E CD E S S S S ==△△△,22112=3D E D E ,2223313D E D D BC CD ==,3234CD CD =,3333222331==()416BD E CD E CD E S S S S ==△△△,33223=4D E D E ,3334414D E D D BC CD ==,4345CD CD =,4444332441==()=525BD E CD E CD E S S S S =△△△,11221=n n n n D E n D E n -----,1111n n n n n D E D D BC CD n ---==,11n n CD nCD n -=+,11221==()1(1)n n n n n n n BD E CD E CD E n S S S S n n --==++△△△.∴211(1)2401n =+,解得148n =,250n =-(舍)27.如图,在平面直角坐标系中,123401030()()()(6)010⋯,,,,,,,,,B B B B 以12B B 为对角线作第一个正方形1112A B C B ,以23B B 为对角线作第一个正方形2223A B C B ,以34B B 为对角线作第一个正方形3334⋯,,A B C B 如果所作正方形的对角线1+n n B B 都在y 轴上,且1+n n B B 的长度依次增加1个单位,顶点n A 都在第一象限内(1≥n ,且n 为整数),那么1A 的纵坐标为______,表示31A 的纵坐标______.Oy xB 5C 4A 4B 4C 3A 3B 3C 2A 2B 2C 1B 1A 1答案:2;512 解析:作1⊥A Dy 轴于点D ,则11223121B D B B =÷=-÷=(), ∴1A 的纵坐标11112=+=+=B D B O同理可得2A 的纵坐标=22323632 4.5+÷=+-÷=()()OB B B ,∴n A 的纵坐标为2(1)2+n 当32n =时,2(1)3232==51222n +⨯28.按一定规律排列的一列数依次为:1111112310152635,,,,,……,按此规律排列下去,这列数中的第9个数是______.答案:82解析:观察可得这列数依次可化为:222111112131+-+,,当n 为奇数时,第n 个数为211+n 当n 为偶数时,第n 个数为211-n 所以第9个数是2119182=+。
中考数学探索题---新题型训练(含答案)-

中考数学探索题 新题型训练1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:A 、618 B 、638 C 、658 D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如下图是用棋子摆成的“上”字:(1)(2)(3)第4题第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)第n个“上”字需用枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。
9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
中考数学复习考点题型专题讲解24 新定义与数字类规律探究问题

中考数学复习考点题型专题讲解中考数学复习考点题型专题讲解)专题24 新定义与数字类规律探究问题(重难点培优重难点培优)小题))解答题((共24小题一.解答题1.(2023秋•北京期中)对于有理数a,b,n,d,若|a﹣n|+|b﹣n|=d,则称a和b关于n的“相对关系值”为d,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“相对关系值”为3.(1)﹣3和5关于1的“相对关系值”为8;(2)若a和2关于1的“相对关系值”为4,求a的值.【分析】(1)根据“相对关系值”的定义直接列式计算即可;(2)根据“相对关系值”的定义列出关于a的方程,解方程即可.【解析】(1)由题意得,|﹣3﹣1|+|5﹣1|=8.故答案为8;(2)由题意得,|a﹣1|+|2﹣1|=4,解得,a=4或﹣2.2.(2023春•梁溪区校级期中)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如因为23=8,所以(2,8)=3.(1)根据上述规定,填空①(3,81)=4,(﹣2,﹣32)=5;②若(x,ଵ଼)=﹣3,则x=2.(2)若(4,5)=a,(4,6)=b,(4,30)=c,探究a,b,c之间的数量关系并说明理由.【分析】(1)①根据有理数的乘方及新定义计算;②根据新定义和负整数指数幂计算;(2)根据题意得4a=5,4b=6,4c=30,根据5×6=30列出等式即可得出答案.【解析】(1)①∵34=81,∴(3,81)=4,∵(﹣2)5=﹣32,∴(﹣2,﹣32)=5,故答案为4,5;(2)根据题意得x﹣3=18,∴ଵ௫య=ଵ଼,∴x=2,故答案为2;(3)a+b=c,理由如下根据题意得4a=5,4b=6,4c=30,∵5×6=30,∴4a•4b=4c,∴4a+b=4c,∴a+b=c.3.(2023春•洪泽区期中)规定两数a,b之间的一种运算,记作(a,b)如果a c=b,那么(a,b)=c.例如因为23=8,所以(2,8)=3.(1)根据上述规定,填空(3,9)=2,(4,1)=0,(2,ଵ଼)= ﹣3.(2)小明在研究这种运算时发现一个现象(3n,4n)=(3,4),小明给出了如下的证明设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你用这种方法证明下面这个等式(3,4)+(3,5)=(3,20).【分析】(1)根据定义直接可得(3,9)=2,(4,1)=0,(2,ଵ଼)=﹣3;(2)设(3,4)=x,(3,5)=y,则3x=4,3y=5,所以3x+y=3x•3y,=20,从而求解.【解答】(1)解因为32=9,所以(3,9)=2;因为40=1,所以(4,1)=0;因为2﹣3=18,所以(2,ଵ଼)=﹣3.故答案为2,0,﹣3;(2)证明设(3,4)=x,(3,5)=y,则3x=4,3y=5,所以3x+y=3x•3y=4×5=20,所以(3,20)=x+y,所以(3,4)+(3,5)=(3,20).4.(2023春•东台市期中)对于任意有理数a、b、c、d,我们规定符号(a,b)⊗(c,d)=ad﹣bc+2,例如(1,3)⊗(2,4)=1×4﹣2×3+2=0.(1)求(﹣2,1)⊗(3,5)的值;(2)求(2a+1,a﹣2)⊗(3a+2,a﹣3)的值,其中a2+a+5=0.【分析】(1)根据(a,b)⊗(c,d)=ad﹣bc+2,可以求得所求式子的值;(2)根据(a,b)⊗(c,d)=ad﹣bc+2,先将所求式子化简,然后再根据a2+a+5=0,可以得到a2+a=﹣5,再代入化简后的式子计算即可.【解析】(1)∵(a,b)⊗(c,d)=ad﹣bc+2,∴(﹣2,1)⊗(3,5)=(﹣2)×5﹣1×3+2=(﹣10)﹣3+2=﹣11;(2)∵(a,b)⊗(c,d)=ad﹣bc+2,∴(2a+1,a﹣2)⊗(3a+2,a﹣3)=(2a+1)(a﹣3)﹣(a﹣2)(3a+2)+2=2a2﹣5a﹣3﹣3a2+4a+4+2=﹣a2﹣a+3,∵a2+a+5=0,∴a2+a=﹣5,∴原式=﹣(a2+a)+3=﹣(﹣5)+3=5+3=8.5.(2023春•罗山县期中)观察下列两个等式2−13=2×13+1,5−23=5×23+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b).如数对(2,13),(5,23)都是“共生有理数对”.(1)判断数对(﹣2,1),(3,12)中,(3,12)是“共生有理数对”;(2)若(a,3)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则(﹣n,﹣m) 是 (填写“是”或“不是”)“共生有理数对”,说明你的理由.【分析】(1)先判断,然后根据题目中的新定义,可以判断(﹣2,1),(3,12)是否为“共生有理数对“;(2)根据新定义可得关于a的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(﹣n,﹣m)变形即可判断.【解析】(1)(﹣2,1)不是“共生有理数对“,(3,ଵଶ)是“共生有理数对“,理由∵﹣2﹣1=﹣3,﹣2×1+1=﹣2+1=﹣1,∴(﹣2,1)不是“共生有理数对“,∵3−12=52,3×12+1=52,∴(3,ଵଶ)是“共生有理数对”;故答案为(3,12);(2)由题意,得a﹣3=3a+1,解得a=﹣2;(3)是,理由∵m﹣n=mn+1,∴﹣n﹣(﹣m)=﹣n+m=mn+1=(﹣n)(﹣m)+1,∴(﹣n,﹣m)是共生有理数对.故答案为是.6.(2023秋•成武县期中)【概念学习】现规定求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”,一般地,把ܽ÷ܽ÷ܽ⋯÷ܽ个(a≠0)写作aⓝ,读作“a的圈n次方”.︸【初步探究】(1)直接写出计算结果2③=ଵଶ,(−12)④=4;(2)下列关于除方说法中,错误的是C.A任何非零数的圈2次方都等于1B对于任何正整数n,1ⓝ=1C 3④=4③D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试 仿照上面的算3,(ଵହ)⑥=54.(4)想一想 请把有理数﹣2. .(5)算一算 12ଶൊሺെ13ሻ【分析】(1)根据规定运算(2)根据圈n 次方的意义(3)根据题例的规定,直接(4)根据圈n 次方的规定和(5)先把圈n 次方转化成幂【解析】(1)2③=2÷2(−12)④=(െ12)÷(故答案为 ଵଶ,4;(2)∵3④=3÷3÷3÷3∴3④≠4③. 故选 C .(3)(﹣3)⑤=(﹣3)÷×(−13)=(െ13)3,(ଵହ)⑥=(ଵହ)÷(ଵହ)÷面的算式,把下列除方运算直接写成幂的形式 (﹣理数a (a ≠0)的圈n (n ≥3)次方写成幂的形式为)④×(−2ሻ⑥െሺെ13ሻ⑥ൊ3ଷൌ ﹣2.定运算,直接计算即可;意义,计算判断得结论; 直接写成幂的形式即可;规定和(3)的结果,综合可得结论;化成幂的形式,利用有理数的混合运算,计算求值即÷2=1÷2ൌ12,െ12)÷(െ12)÷(െ12)=1×2×2=4; ൌ19,4③=4÷4÷4ൌ14, ÷(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×(÷(ଵହ)÷(ଵହ)÷(ଵହ)÷(ଵହ)=1×5×5×53)⑤= (െ13)式为a ⓝ= (ଵ)n求值即可. (−13)×(െ13)×5=54;故答案为 (െ13)3,54;(4)(4)a ÷a ÷a ÷…÷a =a ×1ܽ×1ܽ×⋯×1ܽ=(ଵ)n ﹣2.故答案为 (ଵ)n ﹣2.(5)原式==122÷32×(ଵଶ)4﹣34÷33=24×32÷32×(ଵଶ)4﹣3 =1﹣3 =﹣2. 故答案为 ﹣2.7.(2018秋•长葛市期中)材料一般地,n 个相同的因数a 相乘 ܽ⋅ܽ⋯ܽ︸个记为ܽ.如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).问题(1)计算以下各对数的值 log 24=2,log 216=4,log 264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式为4×16=64log 24、log 216、log 264之间又满足怎样的关系式 log 24+log 216=log 264(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M +log a N =MN (a >o 且a ≠1,M >0,N >0).【分析】(1)根据对数的定义求解;(2)认真观察,不难找到规律 4×16=64,log 24+log 216=log 264; (3)由特殊到一般,得出结论 log a M +log a N =log a MN . 【解析】(1)log 24=2,log 216=4,log 264=6,故答案为2、4、6;(2)4×16=64,log24+log216=log264,故答案为4×16=64,log24+log216=log264;(3)log a M+log a N=log a MN,故答案为MN.8.(2023春•邗江区校级月考)概念学习规定求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a……÷a(n个a,a≠0)记作aⓝ,读作“a的圈n次方”.(1)直接写出计算结果2③=ଵଶ,(−12)⑤=﹣8;(2)将下列运算结果直接写成幂的形式5⑥=ଵହర;(−12)⑩=28;(3)想一想将一个非零有理数a的圈n(n≥3)次方写成幂的形式为ଵషమ;(4)算一算42×(−13)④.【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.【解析】(1)2③=2÷2÷2=12;(−12)③=(−12)÷(−12)÷(−12)÷(−12)÷(−12)=﹣8;(2)5⑥=5÷5÷5÷5÷5÷5=154;(−12)⑩=28;(3)aⓝ=a÷a÷a……÷a=1ܽ݊−2;(4)原式=16×9=144.9.(2023秋•滕州市期末)如果x n=y,那么我们记为(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空(2,8)=3,(2,ଵସ)= ﹣2;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.【分析】(1)这个定义括号内第一个数为底数,第二个数为幂,结果为指数,根据有理数的乘方及负整数指数幂的计算即可;(2)根据定义先求出a,b的值,再求(b,a)的值.【解析】(1)因为23=8,所以(2,8)=3;因为2﹣2=14,所以(2,ଵସ)=﹣2.故答案为3,﹣2;(2)根据题意得a=42=16,b3=8,所以b=2,所以(b,a)=(2,16),因为24=16,所以(2,16)=4.答(b,a)的值为4.10.(2023秋•六合区期中)类比有理数的乘方,我们把求若干个相同的有理数(均不等0)的除法运算叫做除方,记作aⓝ,读作“a的圈n次方”.如2÷2÷2,记作2③,读作“2的圈3次方;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.(1)直接写出计算结果2③=ଵଶ,(−12)④=4;(2)除方也可以转化为幂的形式,如2④=2÷2÷2÷2=2×12×12×12=(ଵଶ)2.试将下列运算结果直接写成幂的形式(﹣3)④= (ଵଷ)2;(ଵଶ)⑩=28;a ⓝ= (ଵ)n ﹣2;(3)计算 22×(−13)④÷(﹣2)③﹣(﹣3)②.【分析】(1)根据除方的定义计算即可; (2)把除法转化为乘法即可得出答案; (3)根据除方的定义计算即可. 【解析】(1)2÷2÷2=12,(−12)÷(−12)÷(−12)÷(−12)=1×(﹣2)×(﹣2)=4, 故答案为 ଵଶ,4;(2)(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×(−13)×(−13)=(ଵଷ)2,ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ÷ଵଶ=1×2×2×2×2×2×2×2×2=28,ܽ÷ܽ÷ܽ÷⋯÷ܽ︸个=1×1ܽ⋅1ܽ⋅⋯⋅1ܽ︸(ିଶ)个1ܽ=(ଵ)n ﹣2,故答案为 (13)ଶ,28,(1ܽ)ିଶ;(3)原式=2ଶ×(−3)ଶ÷(−12)−[(−3)÷(−3)] =4×9×(﹣2)﹣1 =﹣72﹣1 =﹣73.11.(2023秋•海安市月考)已知M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…,ܯ()=(−2)×(−2)×⋯×(−2)︸个(ିଶ)相乘(n 为正整数).(1)求2M (2018)+M (2019)的值.(2)猜想2M (n )与M (n +1)的关系并说明理由. 【分析】(1)根据已知算式即可进行计算;(2)结合(1)将算式变形即可说明2M (n )与M (n +1)互为相反数. 【解析】(1)2M (2018)+M (2019) =2×(﹣2)2018+(﹣2)2019=2×22018+(﹣2)2019=22019+(﹣2)2019=0;(2)2M (n )与M (n +1)互为相反数,理由如下因为2M (n )=2×(﹣2)n=﹣(﹣2)×(﹣2)n=﹣(﹣2)n +1,M (n +1)=(﹣2)n +1,所以2M (n )=﹣M (n +1),所以2M (n )与M (n +1)互为相反数.12.(2019秋•崇川区校级期中)如果2b=n ,那么称b 为n 的布谷数,记为b =g (n ),如g(8)=g (23)=3.(1)根据布谷数的定义填空 g (2)=1,g (32)=5. (2)布谷数有如下运算性质若m ,n 为正数,则g (mn )=g (m )+g (n ),g ()=g (m )﹣g (n ).根据运算性质填空(ర)()=4,(a 为正数).若g (7)=2.807,则g (14)=3.807,g (ସ)=0.807.(3)下表中与数x 对应的布谷数g (x )有且仅有两个是错误的,请指出错误的布谷数,要求说明你这样找的理由,并求出正确的答案(用含a ,b 的代数式表示)x316 233 6 9 27g (x ) 1﹣4a +2b 1﹣2a +b2a ﹣b 3a ﹣2b4a ﹣2b 6a ﹣3b【分析】(1)g (32)=g (25)=5;g (32)=g (25)=5; (2)(ర)()=(⋅⋅⋅)()=ସ()()=4,g (14)=g (2×7)=g (2)+g (7),g (ସ)=g (7)﹣g (4); (3)g (ଷଵ)=g (3)﹣4,g (ଶଷ)=1﹣g (3),g (6)=g (2)+g (3)=1+g (3),g(9)=2g (3),g (27)=3g (3),当g (3)正确时,有且仅有两个是错误; 【解析】(1)g (2)=g (21)=1, g (32)=g (25)=5;故答案为1,5; (2)(ర)()=(⋅⋅⋅)()=ସ()()=4,g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1, ∴g (14)=3.807; g (ସ)=g (7)﹣g (4), g (4)=g (22)=2,∴g (ସ)=g (7)﹣g (4)=2.807﹣2=0.807; 故答案为4,3.807,0.807; (3)g (ଷଵ)=g (3)﹣4,g (ଶଷ)=1﹣g (3),g (6)=g (2)+g (3)=1+g (3), g (9)=2g (3), g (27)=3g (3),从表中可以得到g(3)=2a﹣b,∴g(ଷଵ)和g(6)错误,∴g(ଷଵ)=2a﹣b﹣4,g(6)=1+2a﹣b;13.(2023秋•凌河区校级期中)阅读计算阅读下列各式(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…回答下列三个问题(1)验证(4×0.25)100=1;4100×0.25100=1.(2)通过上述验证,归纳得出(ab)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算(﹣0.125)2015×22014×42014.【分析】①先算括号内的,再算乘方;先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【解析】①(4×0.25)100=1100=1;4100×0.25100=1,故答案为1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2014×22014×42014×(﹣0.125)=(﹣0.125×2×4)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=1×(﹣0.125)=﹣0.125.14.(2017秋•高邮市校级月考)回答下列问题(1)填空①(2×3)2=36;22×32=36②(−12×8)2=16;(−12)2×82=16③(−12×2)3= ﹣1;(−12)3×23= ﹣1(2)想一想(1)中每组中的两个算式的结果是否相等? 是 (填“是”或“不是”).(3)猜一猜当n为正整数时,(ab)n=a n b n.(4)试一试(1ଵଶ)2017×(−23)2017= ﹣1.【分析】根据已知条件进行计算,然后归纳结论即可.【解析】(1)①(2×3)2=62=36;22×32=4×9=36.故答案为36,36;②(−12×8)2=(﹣4)2=16,(−12)2×82=14×64=16.故答案为16,16;③(−12×2)3=(﹣1)3=﹣1,(−12)3×23=−18×8=﹣1.故答案为﹣1,﹣1;(2)答案为是.(3)答案为a n b n;(4)(1ଵଶ)2017×(−23)2017=[ଷଶ×(−23)]2017=(﹣1)2017=﹣1.故答案为﹣1.15.(2017秋•兴化市月考)定义 如果10b=n ,那么称b 为n 的劳格数,记为b =d (n ). (1)根据劳格数的定义,可知 d (10)=1,d (102)=2 那么 d (103)=3.(2)劳格数有如下运算性质若m ,n 为正数,则d (mn )=d (m )+d (n ); d ()=d (m )﹣d (n ).根据运算性质,填空ௗ(ଶఱ)ௗ(ଶ)=5,若d (3)=0.48,则d (9)=0.96,d (0.3)= ﹣0.52. 【分析】(1)根据劳格数的定义,可知d (10b)=b ,即可得解;(2)根据劳格数的运算性质,d (mn )=d (m )+d (n ),计算d (25)=d (2)+d (2)+d (2)+d (2)+d (2),再求约分即可;根据劳格数的运算性质,d (9)=d (3×3)=d (3)+d (3),再将d (3)的值代入即可;根据劳格数的运算性质,d (0.3)=d (ଷଵ)=d (3)﹣d (10),再代入d (3)和d (10)的值即可. 【解析】(1)根据劳格数的定义,可知d (103)=3, 故答案为 3;(2)根据题意,得 d (25)=d (2)+d (2)+d (2)+d (2)+d (2), ∴ௗ(ଶఱ)ௗ(ଶ)=ହ×ௗ(ଶ)ௗ(ଶ)=5,d (9)=d (3×3)=d (3)+d (3)=0.48+0.48=0.96; d (0.3)=d (ଷଵ)=d (3)﹣d (10)=0.48﹣1=﹣0.52.故答案为 5;0.96;﹣0.52.16.(2023春•阜宁县校级月考)规定 M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…M (n )=(−2)×(−2)×(−2)×⋯(−2)︸(ିଶ).(1)计算M(5)+M(6);(2)求2×M(2023)+M(2023)的值;(3)试说明2×M(n)与M(n+1)互为相反数.【分析】(1)根据新定义的法则及有理数乘法的法则进行计算即可;(2)根据新定义的法则进行计算,即可得出结果;(3)根据新定义的法则分别计算2×M(n)与M(n+1),即可得出结果.【解析】(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2023)+M(2023)=2×(﹣2)202l+(﹣2)2023=2×(﹣22023)+22023=﹣22023+22023=0;(3)2M(n)=2×(﹣2)n=﹣(﹣2)×(﹣2)n=﹣(﹣2)n+1,M(n+1)=(﹣2)n+1,∵﹣(﹣2)n+1与(﹣2)n+1互为相反数,∴2M(n)与M(n+1)互为相反数.17.(2023秋•高邮市期中)小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f (4,ଵଶ)=4,f (5,3)=ଵଶ;(2)关于“有理数的除方”下列说法正确的是②.(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现 “除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算 f (5,3)×f (4,ଵଷ)×f (5,﹣2)×f (6,ଵଶ). 【分析】(1)根据题意计算即可;(2)①分别计算f (6,3)和f (3,6)的结果进行比较即可; ②根据题意计算即可判断;③分为n 为偶数和奇数两种情况分别计算即可判断; ④2n 为偶数,偶数个a 相除,结果应为正;(3)推导f (n ,a )(n 为正整数,a ≠0,n ≥2),按照题目中的做法推到即可; (4)按照上题的推导式可以将算式中的每一部分表示出来再计算. 【解析】(1)f (4,ଵଶ)=12÷12÷12÷12=4, f (5,3)=3÷3÷3÷3÷3=127;故答案为 4;ଵଶ.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16, ∴f (6,3)≠f (3,6),故错误; ②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误;④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为 ②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(ଵ)n ﹣2(n 为正整数,a≠0,n ≥2).(4)f (5,3)×f (4,ଵଷ)×f (5,﹣2)×f (6,ଵଶ) =127×9×(−18)×16=−23.18.(2023秋•诸暨市期中)阅读下列材料 |x |=൞ݔ,ݔ>00,ݔ=0−ݔ,ݔ<0,即当x <0时,௫|௫|=௫ି௫=−1.用这个结论可以解决下面问题(1)已知a ,b 是有理数,当ab ≠0时,求||+||的值;(2)已知a ,b ,c 是有理数,当abc ≠0时,求||+||+||的值;(3)已知a ,b ,c 是有理数,a +b +c =0,abc <0,求ା||+ା||+ା||的值.【分析】(1)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,a 、b 异号,根据绝对值的意义计算||+||得到结果;(2)对a 、b 、c 进行讨论,即a 、b 、c 同正、同负、两正一负、两负一正,然后计算||+||+||得结果;(3)根据a ,b ,c 是有理数,a +b +c =0,把求ା||+ା||+ା||转化为求ି||+ି||+ି||的值,根据abc<0得结果.【解析】(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,||+||=−1﹣1=﹣2;②a>0,b>0,||+||=1+1=2;③a,b异号,||+||=0.故||+||的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,||+||+||=−1﹣1﹣1=﹣3;②a>0,b>0,c>0,||+||+||=1+1+1=3;③a,b,c两负一正,||+||+||=−1﹣1+1=﹣1;④a,b,c两正一负,||+||+||=−1+1+1=1.故||+||+||的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以ା||+ା||+ା||=−ܽ|ܽ|+−ܾ|ܾ|+−ܿ|ܿ|=﹣[||+||+||]=﹣1.19.(2023秋•泗洪县校级月考)用符号M表示一种运算,它对整数和分数的运算结果分别如下M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1… M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,… 利用以上规律计算(1)M (28)×M (ଵହ);(2)﹣1÷M (39)÷[﹣M (ଵ)].【分析】(1)根据M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1…,可得M (n )=n ﹣3,根据M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,…,可得M (ଵ)=﹣(ଵ)2,再根据有理数的乘法,可得答案;(2)根据M (1)=﹣2,M (2)=﹣1,M (3)=0,M (4)=1…,可得M (n )=n ﹣3,根据M (ଵଶ)=−14,M (ଵଷ)=−19,M (ଵସ)=−116,…,可得M (ଵ)=﹣(ଵ)2,再根据有理数的除法,可得答案.【解析】(1)原式=(28﹣3)×[﹣(ଵହ)2]=25×(−125)=﹣1;(2)原式=﹣1÷(39﹣3)÷{﹣[﹣(ଵ)2]} =﹣1×136×36 =﹣1.20.(2019秋•曲靖期末)阅读理解 李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是 “头尾一拉,中间相加,满十进一”例如 ①24×11=264.计算过程 24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程 68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算 ①32×11=352,②78×11=858;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是a,十位数字是a+b,个位数字是b;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.【分析】(1)根据口诀“头尾一拉,中间相加,满十进一”即可求解;(2)由(1)两位数十位数字是a,个位数字是b,将这个两位数乘11,得到一个三位数即可得结果;(3)结合(2)可得11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b.【解析】(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为“头尾一拉,中间相加,满十进一”.21.(2023秋•魏都区校级期中)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示知道|2|=|2﹣0|,它在数轴上|5﹣2|可理解为5与2两数在表示5与﹣2两数在数轴上(1)数轴上表示3和﹣(2)探索①若|x ﹣4|=3,则x =1②若使x 所表示的点到表示2、1、0、﹣1.(3)进一步探究 |x +1|+|(4)能力提升 当|x +1+|【分析】(1)根据材料可得(2)①根据材料判断式子的②根据距离可直接得到(3)通过材料及前两问的解(4)通过材料及前几问的解式子有最小值时,x =4【解析】(1)根据材料可得|;故答案为 |3﹣(﹣1)|(2)①根据材料可知|x ∴x =1或7; 故答案为 1或7;②由题意可知x所表示的整揭示了数与点之间的内在联系,它是“数形结合数轴上的意义是表示数2的点与原点(即表示0的点两数在数轴上所对应的两点之间的距离 |5+2|可以看作数轴上所对应的两点之间的距离.1的两点之间的距离的式子是|3﹣(﹣1)|. 或7.到表示4和﹣1的点的距离之和为5.所有符合条件的1|+|x ﹣6|的最小值为7.x ﹣4+|x ﹣9|的值最小时,x 的值为4.料可得结果;式子的意义,然后得出x 的值; x 的取值;问的解答可知|x +1|+|x ﹣6|的最小值就是|﹣1﹣6|;问的解答可知|x +1+|x ﹣4+|x ﹣9|中x 表示到﹣1、4.料可得 数轴上表示3和﹣1的两点之间的距离的式子;﹣4|=3中x 表示到﹣4的距离等于3的点对应的数示的整数为4、3、2、1、0、﹣1;结合”的基础,我们的点)之间的距离,以看作|5﹣(﹣2)|,条件的整数为4、3、、9的距离之和,的式子是|3﹣(﹣1)应的数,故答案为4、3、2、1、0、﹣1;(3)根据材料可知|x+1|+|x﹣6|中x表示到﹣1和6的距离之和,∴|x+1|+|x﹣6|的最小值为7;故答案为7;(4)根据材料可知|x+1+|x﹣4+|x﹣9|中x表示到﹣1、4、9的距离之和,∴当x=4时,式子有最小值;故答案为4.22.(2018秋•雄县期中)已知点A,B在数轴上分别表示有理数a,b.(1)对照数轴填写下表a 4 ﹣6 ﹣6 ﹣10 ﹣1.5b 6 0 ﹣4 2 ﹣1.5A、B两点的距离 2 6 2 12 0(2)若A,B两点间的距离记为d,试问d和a,b(a≤b)有何数量关系;(3)写出数轴上到﹣1和1的距离之和为2的所有整数;(4)若x表示一个有理数,求|x﹣1|+|x+3|的最小值.【分析】(1)由AB=|a﹣b|即可求解;(2)由d=|a﹣b|,又知b>a,化简可得d=b﹣a;(3)设数轴上一点为x,由﹣1与1的距离为2,可确定﹣1≤x≤1,求出符合条件的整数x即可;(4)由1与﹣3的距离为4,即可求|x﹣1|+|x+3|的最小值为4.【解析】(1)a=﹣6,b=0,则AB=|﹣6﹣0|=6,a=﹣6,b=﹣4,则AB=|﹣6﹣(﹣4)|=2,a=﹣10,b=2,则AB=|﹣10﹣2|=12,故答案为6,2,12;(2)∵a≤b,∴d=|a﹣b|=b﹣a;(3)设数轴上一点为x,∵数轴上点x到﹣1和1的距离之和为2,∴|x+1|+|x﹣1|=2,∵﹣1与1的距离为2,∴﹣1≤x≤1,∵x是整数,∴x=﹣1,0,1,∴数轴上到﹣1和1的距离之和为2的整数有﹣1,0,1;(4)|x﹣1|+|x+3|表示数轴上点x到1和﹣3的距离和最小,∵1与﹣3的距离为4,∴|x﹣1|+|x+3|的最小值为4.23.(2023秋•攀枝花期中)我们知道|4﹣(﹣1)|表示4与﹣1的差的绝对值,实际上也可以理解为4与﹣1两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可以理解为x与3两数在数轴上所对应的两点之间的距离.类似地,|5+3|=|5﹣(﹣3)|表示5、﹣3之间的距离.一般地,A,B两点在数轴上表示有理数a、b,那么A、B之间的距离可以表示为|a﹣b|.试探索.(1)若|x﹣3|=7,则x= ﹣4或10;(2)若A,B分别为数轴上的两点,A点对应的数为﹣2,B点对应的数为4.折叠数轴,使得A点与B点重合,则表示﹣4的点与表示6的点重合;(3)计算|x﹣4|+|x+1|=7.【分析】(1)根据题意给出的定义即可求出答案.(2)设表示﹣4的点与表示x的点重合,根据题意列出方程,求出方程的解即可得到所求;(3)分类讨论x的范围,利用绝对值的代数意义化简,计算即可求出x的值.【解析】(1)∵|x﹣3|=7,∴x﹣3=7或x﹣3=﹣7,解得x=10或x=﹣4;故答案为﹣4或10;(2)设表示﹣4的点与表示x的点重合,根据题意得ିଶାସଶ=1,∴ିସା௫ଶ=1,解得x=6;故答案为6;(3)①当x<﹣1时;(﹣x+4)+(﹣x﹣1)=7,则x=﹣2;②当﹣1≤x≤4时;(x﹣4)+(﹣x﹣1)=7,则﹣5=7,无解;③当x≥4时;(x﹣4)+(x+1)=7,则x=5,综上,x=﹣2或5.24.(2023秋•玄武区校级月考)已知数轴上A、B两点表示的数分别为a、b,请回答问题(1)①若a=3,b=2,则A、B两点之间的距离是1;②若a=﹣3,b=﹣2,则A、B两点之间的距离是1;③若a=﹣3,b=2,则A、B两点之间的距离是5;(2)若数轴上A、B两点之间的距离为d,则d与a、b满足的关系式是d=|a﹣b|;(3)若|3﹣2|的几何意义是数轴上表示数3的点与表示数2的点之间的距离,则|2+5|的几何意义数轴上表示数2的点与表示数﹣5的点之间的距离;(4)若|a|<b,化简|a﹣b|+|a+b|=2b.【分析】(1)计算出两数差的绝对值即可;(2)两点间的距离等于两数差的绝对值;(3)根据|2+5|=|2﹣(﹣5)|,即可判断;(4)先化简每一个绝对值,然后再进行计算.【解析】(1)①|3﹣2|=1,②|﹣3﹣(﹣2)|=1,③|﹣3﹣2|=5;(2)d=|a﹣b|;(3)∵|2+5|=|2﹣(﹣5)|,∴|2+5|的几何意义数轴上表示数2的点与表示数﹣5的点之间的距离;(4)∵|a|<b,∴a﹣b<0,a+b>0,∴|a﹣b|+|a+b|=b﹣a+a+b=2b;故答案为(1)①1,②1,③5;(2)d=|a﹣b|;(3)数轴上表示数2的点与表示数﹣5的点之间的距离;(4)2b.。
中考数学专题复习分考点归纳练习规律探究之数式(一)

中考数学专题复习分考点归纳练习规律探究之数式(一)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.122.一列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.713.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n等于()A.499B.500C.501D.10024.根据图中数字的规律,若第n个图中的143q ,则p的值为()A.100B.121C.144D.1695.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为()A.10B.15C.18D.216.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣27.已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a=-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .238.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019评卷人 得分二、填空题 9.观察下列各项:112,124,138,1416,…,则第n 项是______________.10.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.11.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.12.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.13.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).14.观察下列等式: 2+22=23﹣2; 2+22+23=24﹣2; 2+22+23+24=25﹣2; 2+22+23+24+25=26﹣2; …已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m ,则220+221+222+223+224+…+238+239+240=_____(结果用含m 的代数式表示). 15.观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.16.观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.17.按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是______.18.把正整数1,2,3,4,5,……,按如下规律排列:按此规律,可知第n行有_________个正整数19.如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.20.将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b 个数.例如(4,3)表示的数是9,则(7,2)表示的数是_________.21.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.22.观察下面的变化规律:212112112111,,,133353557577979=-=-=-=-⨯⨯⨯⨯,……222213355720192021++++=⨯⨯⨯⨯__________.23.观察下列各式的规律:①2132341⨯-=-=-;①2243891⨯-=-=-;①235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n个算式为________.24.有一列数,按一定的规律排列成13,1-,3,9-,27,-81,….若其中某三个相邻数的和是567-,则这三个数中第一个数是______.25.观察下列各式:1234523101526,,,,,357911a a a a a=====,根据其中的规律可得na=________(用含n的式子表示).26.下面各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第10个图中黑点的个数是________.27.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第①个图形中一共有7个菱形,第①个图形中一共有13个菱形,…,按此规律排列下去,第①个图形中菱形的个数为________.28.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.-1-610a-4-52-329.一组按规律排列的代数式:2335472,2,2,2a b a b a b a b+-+-,…,则第n个式子是30.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.评卷人 得分三、解答题 31.阅读解答:(1)填空:1022==_____()2=;2122-=_____()2=;3222-=_____()2=…… (2)探索(1)中式子的规律,试写出第n 个等式_________; (3)根据上述规律,计算:012342021222222++++++.参考答案:1.D 【解析】 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案. 【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+= ∴这个数为51102= 故选:D . 【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键. 2.C 【解析】 【分析】根据题意得出已知数组的规律,得到第n 个数的表示方法,从而得出结果. 【详解】 解:1=1×2-1, 5=2×3-1, 11=3×4-1, 19=4×5-1, ...第n 个数为n (n+1)-1, 则第7个数是:55 故选C. 【点睛】本题考查了数字型规律,解题的关键是总结出第n 个数为n (n+1)-1. 3.C【解析】 【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值. 【详解】设最后三位数为x -4,x -2,x . 由题意得: x -4+x -2+x =3000, 解得x =1002. n =1002÷2=501. 故选C . 【点睛】本题考查找规律的题型,关键在于列出方程简化步骤. 4.B 【解析】 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 【详解】解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ①第n 个图中的143q =, ①2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ①2=121p n =, 故选:B . 【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.5.B【解析】【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第①个图案中黑色三角形的个数.【详解】解:①第①个图案中黑色三角形的个数为1,第①个图案中黑色三角形的个数3=1+2,第①个图案中黑色三角形的个数6=1+2+3,……①第①个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+……+n.6.A【解析】【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【详解】解:①2100=S,①2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100-2+2100)=S(2S-1)=2S2-S.故选:A.【点睛】本题考查了规律型——数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律. 7.D 【解析】 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+,2021223a a ∴==, 故选:D . 【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答. 8.B 【解析】 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可. 【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1, ①第32行,第32列的数据为:2×32×(32-1)+1=1985, 根据数据的排列规律,第偶数行从右往左的数据一次增加2, ①第32行,第13列的数据为:1985+2×(32-13)=2023, 故选:B . 【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.12nn + 【解析】【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, … 则第n 项是12nn +; 故答案为:12n n +. 【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 10.1275【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第①个图形中的黑色圆点的个数为:()1222+⨯=3,第①个图形中的黑色圆点的个数为:()1332+⨯=6,第①个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.11.2n+1【解析】【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.12.20【解析】【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.【详解】解:①第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……①第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=, 解得:20n =或21-(不合题意,舍去),①第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .13.()31n +【解析】【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.14.()21m m﹣. 【解析】【分析】由题意可得220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=220(220×2﹣1),再将220=m 代入即可求解.【详解】①220=m ,①220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m ﹣1).故答案为:m(2m ﹣1).【点睛】本题考查了规律型问题:数字变化,列代数式等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考填空题中的压轴题.15.2m m -【解析】【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【详解】由题意规律可得:2399100222222++++=-.①1002=m①23991000222222=2m m +++++==, ①22991001012222222+++++=-,①10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……①1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=②①-①,得10021S -=①10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键. 16.()221n n --. 【解析】【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:①22110=-,22321=-,22532=-,…①第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.17.bc =a##a=bc【解析】【分析】首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a ÷b =c ,据此解答即可.【详解】①3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,121333-÷=,213333-÷=,134333--÷=,347333-÷=,4711333--÷=,71118333-÷=,…, ①a ,b ,c 满足的关系式是a ÷b =c ,即bc =a .故答案为:bc =a .【点睛】此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.18.12n -【解析】【分析】仔细观察各行数字的个数,不难发现,第一行有1102=2=1-个数字,第二行有2112=2=2-个数字,第三行有3122=2=4-4个数字,第四行有4132=2=8-个数字,由此得出规律求解即可.【详解】解:仔细观察各行数字的个数,不难发现,第一行有1102=2=1-个数字,第二行有2112=2=2-个数字,第三行有3122=2=4-4个数字,第四行有4132=2=8-个数字,①可以推出第n 行有12n -个数字,故答案为:12n -.【点睛】本题主要考查了数字类的规律型问题,解题的关键在于准确理解题意得到规律.19. 64 5【解析】【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解【详解】通过观察发现:1=13=1+26=1+2+310=1+2+3+4……故第n 行第n 列数字为:1(1)2n n +, 则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1 设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<- 即24421)0(n n m +=-,可以看作两个连续的整数的乘积,2263=396964=4096,,m n ,为正整数, 64n ∴=当64n =时,=5m故答案为:64,5【点睛】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.20.23【解析】【详解】根据图中所揭示的规律可知,1+2+3+4+5+6=21,所以第7排;应从左到右由小到大,从22开始数,第二个应是23,所以(7,2)表示的数是23.故答案是:23.21.3【解析】【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.22.2020 2021【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题.【详解】由题干信息可抽象出一般规律:211a b a b=-•(,a b均为奇数,且2b a=+).故222213355720192021++++=⨯⨯⨯⨯111111111111111202011()()()1 3355720192021335520192019202120212021 -+-+-++-=+-+-++--=-=.故答案:20202021. 【点睛】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解.23. 246524251⨯-=-=- ()()2211n n n ⨯+-+=- 【解析】【分析】(1)按照前三个算式的规律书写即可;(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;【详解】(1)2132341⨯-=-=-,①2243891⨯-=-=-,①235415161⨯-=-=-,①246524251⨯-=-=-;故答案为246524251⨯-=-=-. (2)第n 个式子为:()()2211n n n ⨯+-+=-.故答案为()()2211n n n ⨯+-+=-. 【点睛】本题主要考查了规律性数字变化类知识点,准确分析是做题的关键.24.81-【解析】【分析】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设三个数为n ,-3n ,9n ,据题意列式即可求解.【详解】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,-3 n ,9n由题意:()n 3n 9n 567+-+=-,解得:n=-81,故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.25.()12121n n n ++-+【解析】【分析】 观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+, 故答案为:21(1)21n n n a n ++-=+【点睛】 本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.26.119【解析】【分析】根据题意,找出图形的规律,得到第n 个图形的黑点数为2(1)2n +-,即可求出答案.【详解】解:根据题意,第1个图有2个黑点;第2个图有7个黑点;第3个图有14个黑点;……第n 个图有2(1)2n +-个黑点;①当n=10时,有2(101)21212119+-=-=(个);故答案为:119.【点睛】本题考查了图形的变化规律,找出图形的摆放规律,得出数字之间的运算方法,利用计算规律解决问题.27.57【解析】【分析】根据题意得出第n 个图形中菱形的个数为21n n ++;由此代入求得第①个图形中菱形的个数.【详解】解:第①个图形中一共有3个菱形,2312=+;第①个图形中共有7个菱形,2723=+; 第①个图形中共有13个菱形,21334=+;…,第n 个图形中菱形的个数为:21n n ++;则第①个图形中菱形的个数为277157++=.故答案为:57.【点睛】本题考查了整式加减的探究规律—图形类找规律,其关键是根据已知图形找出规律. 28.-2【解析】【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值.【详解】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-,①626a -++=-,①2a =-,故答案为:2-.【点睛】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.29.()12112n n n a b +-+-⋅ 【解析】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号.【详解】解:①当n 为奇数时,()111n +-=; 当n 为偶数时,()111n +-=-,①第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+- 【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.30.875【解析】【分析】设第n 个“龟图”中有an 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“an =n 2−n +5(n 为正整数)”,再代入n =30即可得出结论.【详解】解:设第n 个“龟图”中有an 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,①an =1+(n +1)+(n −1)2+2=n 2−n +5(n 为正整数),①a 30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“an =n 2−n +5(n 为正整数)”是解题的关键.31.(1)1,0;2,1;4,2;(2)2n -2n -1=2n -1;(3)202221-【解析】【分析】(1)根据有理数的乘方的定义进行计算即可得解;(2)根据(1)中式子的规律,可得结果;(3)设S =20+21+22+23+24+…+22021,然后表示出2S ,再相减计算即可得解.【详解】解:(1)21-20=1=20,22-21=2=21,23-22=4=22;(2)由题意可得:2n -2n -1=2n -1;(3)设012342021222222S =++++++, ①12342022222222S =+++++, ①2S S S =-=()()1234202201234202122222222222+++++++++++- =202221-.【点睛】本题是对数字变化规律的考查,主要利用了有理数的乘方的计算,难点在于(3)利用整体思想求解.。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
中考数学题型二 类比、拓展探究题

类型1 “手拉手”模型
如图(2),当点M,C在OA下侧重合时,在Rt△ABC 中,AB2=AC2+BC2,∴(2 )2=( x)2+(x-2)2, 解得x1=-2(不合题意,舍去),x2=3,∴AC= x=3 . 综上所述,AC的长为2 或3 .
类型1 “手拉手”模型
例2 在△ABC中,∠BAC=60°. (1)如图(1),AB=AC,点P在△ABC内,且∠APC=150°,PA=3,PC=4.以AP为一边,在AP右侧 作等边三角形APD,连接CD. ①依题意补全图(1);②直接写出PB的长. (2)如图(2),若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数. (3)如图(3),若AB=2AC,点P在△ABC内,且PA= ,PB=5,∠APC=120°,直接写出PC的长.
类型1 “手拉手”模型
(3)PC=2.
解法提示:在△ABC中,∠BAC=60°,AB=2AC,易得∠ACB=90°,∠ABC=30°.如图(3),将
AP绕点A逆时针旋转60°,得到AE,在AE上截取AD= AP,连接DP,DC,
(根据“手拉手”相似模型4补形,已知△ABC和“拉手线”BP,补充与它相似的△APD和
类型1 “手拉手”模型
(2)如图(2), 以AP为一边,在AP的左上方作等边三角形APD,连接DC,(根据“手拉手”全等模型2补形, 已知等边三角形ABC和“拉手线”BP,补充等边三角形APD和“拉手线”CD) 可得DP=AD=AP=3,∠PAD=∠DPA=60°=∠BAC, ∴∠BAP=∠CAD, 又AB=AC,∴△APB≌△ADC, ∴CD=BP=5. 在△DPC中,DP2+CP2=32+42=52=CD2, ∴∠DPC=90°, ∴∠APC=∠DPC-∠DPA=90°-60°=30°.
中考数学重难点题型:12道几何探究题解析

中考数学重难点题型---12道几何探究题解析考点1 三角形几何探究1.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,∠C >90°,∠A =60°,则∠B =15°;(2)如图1,在Rt △ABC 中,∠ACB =90°,AC =4,BC =5.若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图2,在四边形ABCD 中,AB =7,CD =12,BD ⊥CD ,∠ABD =2∠BCD ,且△ABC 是“准互余三角形”,求对角线AC 的长.解:(1)∵△ABC 是“准互余三角形”,∠C >90°,∠A =60°,∴2∠B +∠A =90°,解得∠B =15°. (2)如答图1,在Rt △ABC 中,∵∠B +∠BAC =90°,∠BAC =2∠BAD ,∴∠B +2∠BAD =90°, ∴△ABD 是“准互余三角形”. ∵△ABE 也是“准互余三角形”, ∴只有2∠B +∠BAE =90°.∵∠B +∠BAE +∠EAC =90°,∴∠CAE =∠B. ∵∠C =∠C =90°,∴△CAE ∽△CBA ,∴CA 2=CE·CB, ∴CE =165,∴BE =5-165=95.(3)如答图2,将△BCD沿BC翻折得到△BCF,∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD.∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴点A,B,F共线,∴∠A+∠ACF=90°,∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC.∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB·FA,设FB=x,则有x(x+7)=122,∴x=9或x=-16(舍去),∴AF=7+9=16,在Rt△ACF中,AC=AF2+CF2=162+122=20.2.将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 3 cm.(1)求GC的长;(2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H,C作AB的垂线,垂足分别为M,N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.解:(1)在Rt△ABC中,∵BC=23,∠B=60°,∴AC=BC·tan60°=6,AB=2BC=43,在Rt△ADG中,AG=ADcos30°=4,∴CG=AC-AG=6-4=2.(2)结论:DM+DN=2 3.理由:∵HM⊥AB,CN⊥AB,∴∠AMH=∠DMH=∠CNB=∠CND=90°.∵∠A+∠B=90°,∠B+∠BCN=90°,∴∠A=∠BCN,∴△AHM∽△CBN,∴AMCN=HMBN①,同理可证:△DHM∽△CDN,∴DNMH=CNDM②由①②可得AM·BN=DN·DM,∴DMAM=BNDN,∴DM+AMAM=BN+DNDN,∴ADAM=BDDN.∵AD=BD,∴AM=DN,∴DM+DN=AM+DM=AD=2 3.第2题答图(3)如答图,作GK∥DE交AB于K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG·cos30°=23,可得AK=2AH=43,此时K与B重合.∴DD′=DB=2 3.考点2四边形几何探究3.我们定义:有一组邻角相等且对角线相等的凸四边形叫做邻对等四边形.概念理解(1)我们所学过的特殊四边形中的邻对等四边形是矩形或正方形; 性质探究(2)如图1,在邻对等四边形ABCD 中,∠ABC =∠DCB ,AC =DB ,AB>CD ,求证:∠BAC 与∠CDB 互补;拓展应用(3)如图2,在四边形ABCD 中,∠BCD =2∠B ,AC =BC =5,AB =6,CD =4.在BC 的延长线上是否存在一点E ,使得四边形ABED 为邻对等四边形?如果存在,求出DE 的长;如果不存在,说明理由.(1)解:矩形或正方形.(2)证明:如答图1,延长CD 至E ,使CE =BA ,连接BE.在△ABC 和△ECB 中,⎩⎨⎧AB =EC ,∠ABC =∠ECB ,BC =CB ,∴△ABC ≌△ECB(SAS), ∴BE =CA ,∠BAC =∠E.∵AC =DB ,∴BD =BE ,∴∠BDE =∠E ,∴∠CDB +∠BDE =∠CDB +∠E =∠BAC +∠CDB =180°,即∠BAC 与∠CDB 互补.(3)解:存在这样一点E ,使得四边形ABED 为邻对等四边形,如答图2,在BC 的延长线上取一点E ,使得CE =CD =4,连接DE ,AE ,BD ,则四边形ABED 为邻对等四边形.理由如下:∵CE =CD ,∴∠CDE =∠CED. ∵∠BCD =2∠ABC ,∴∠ABC =∠DEB ,∴∠ACE =∠BCD.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS),∴BD =AE ,四边形ABED 为邻对等四边形. ∵∠CBA =∠CAB =∠CDE =∠CED , ∴△ABC ∽△DEC , ∴AB BC =65=DE CE =DE 4,∴DE =245.4.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.解:(1)由旋转可得,AE =AB ,∠AEF =∠ABC =∠DAB =90°,EF =BC =AD ,∴∠AEB =∠ABE. ∵∠ABE +∠EDA =90°=∠AEB +∠DEF , ∴∠EDA =∠DEF.∵DE =ED ,∴△AED ≌△FDE(SAS), ∴DF =AE ,∵AE =AB =CD ,∴CD =DF.(2)当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论: ①当点G 在AD 右侧时,如答图1,取BC 的中点H ,连接GH 交AD 于M , ∵GC =GB ,∴GH ⊥BC ,∴四边形ABHM 是矩形, ∴AM =BH =12AD =12AG ,∴GM 垂直平分AD ,∴GD =GA =DA , ∴△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=60°;②当点G 在AD 左侧时,如答图2,同理可得△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=360°-60°=300°. 综上,α为60°或300°时,GC =GB.5.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B ,C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH 的形状为正方形,此时AE 与BF 的数量关系是AE =BF ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.解:(1)如题图2,由旋转性质可知EF =DF =DE ,则△DEF 为等边三角形. 在Rt △ADE 和Rt △CDF 中,⎩⎨⎧AD =CD ,DE =DF ,∴Rt △ADE ≌Rt △CDF(HL).∴AE =CF. 设AE =CF =x ,则BE =BF =4-x ∴△BEF 为等腰直角三角形.∴DE =DF =EF =2(4-x).在Rt △ADE 中,由勾股定理得AE 2+AD 2=DE 2,即x 2+42=[2(4-x)]2, 解得x 1=8-43,x 2=8+43(舍去). ∴EF =2(4-x)=46-4 2.△DEF 的形状为等边三角形,EF 的长为46-4 2.第5题答图(2)①四边形EFGH 的形状为正方形,此时AE =BF.理由如下:依题意画出图形,如答图所示,连接EG ,FH ,作HN ⊥BC 于N ,GM ⊥AB 于M. 由旋转性质可知,EF =FG =GH =HE , ∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH ,∴四边形EFGH 的形状为正方形,∴∠HEF =90°. ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3. ∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH 和△BFE 中,⎩⎨⎧∠1=∠3,EH =EF ,∠2=∠4,∴△AEH ≌△BFE(ASA),∴AE =BF.②利用①中结论,易证△AEH ,△BFE ,△CGF ,△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4-x.∴y =S 正方形ABCD -4S △AEH =4×4-4×12·x·(4-x)=2x 2-8x +16,∴y =2x 2-8x +16(0<x <4).∵y =2x 2-8x +16=2(x -2)2+8,∴当x =2时,y 取得最小值8;当x =0或4时,y =16.∴y的取值范围为8≤y<16.6.提出问题如图,已知在矩形ABCD中,AB=2,BC=3,点P是线段AD边上的一动点(不与端点A,D重合),连接PC,过点P作PE⊥PC交AB于点E,在点P的运动过程中,图中各角和线段之间是否存在某种关系和规律?特殊求解当点E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中BE的取值范围.解:特殊求解∵PE⊥PC,∴∠APE+∠DPC=90°.∵∠D=90°,∴∠DPC+∠DCP=90°.∴∠APE=∠DCP.∵∠A=∠D=90°,∴△APE∽△DCP,∴APDC=AEDP.设AP=x,则有DP=3-x.而AE=BE=1,∴x(3-x)=2×1,解得x1=2,x2=1.∵AP>AE,∴AP=2,AE=PD=1,∴△APE≌△DCP,∴PE=PC.深入探究设AP=x,AE=y,由AP·DP=AE·DC,可得x(3-x)=2y.∴y=12x(3-x)=-12x2+32x=-12(x-32)2+98.∴在0<x<3范围内,当x =32时,y 最大=98.∵当AE =y 取得最大值时,BE 取得最小值为2-98=78,∴BE 的取值范围为78≤BE<2.7.已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC =60°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O→C→B 路径匀速运动,N 沿O→B→C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值.最大值为多少?解:(1)由旋转性质可知OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形,∴∠OBC =60°.第7题答图1(2)如答图1中, ∵OB =4,∠ABO =30°, ∴OA =12OB =2,AB =3OA =23,∴S △AOC =12·OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°, ∴AC =AB 2+BC 2=2r(32+42)=27,∴OP =2S △AOC AC =4327=2217.第7题答图2(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E.如答图2,则NE =ON·sin60°=32x ,∴S △OMN =12·OM·NE=12×1.5x×32x ,∴y =338x 2,∴当x =83时,y 有最大值,最大值为833.第7题答图3②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如答图3,作MH ⊥OB 于H.则BM =8-1.5x ,MH =BM·sin60°=32(8-1.5x),∴y =12×ON×MH=-338x 2+23x.当x =83时,y 取得最大值,最大值为833.第7题答图4③当4<x≤4.8时,M,N都在BC上运动,作OG⊥BC于G.如答图4,MN=12-2.5x,OG=AB=23,∴y=12·MN·OG=123-532x,当x=4时,y有最大值,最大值为2 3.综上所述,y有最大值,最大值为83 3.8.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E 的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是PB=EC,CE与AD 的位置关系是CE⊥AD;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.解:(1)结论:PB=EC,CE⊥AD.理由:如答图1中,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.第8题答图2(2)结论仍然成立.理由:如答图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)如答图3,连接AC 交BD 于点O ,连接CE 交AD 于点H , 由(2)可知EC ⊥AD ,CE =BP , 在菱形ABCD 中,AD ∥BC , ∴EC ⊥BC.∵BC =AB =23,BE =219, ∴在Rt △BCE 中,EC =2r(192-2r(3)2)=8,∴BP =CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD =12∠ABC =30°,AC ⊥BD ,∴BD =2BO =2AB·cos30°=6,∴OA =12AB =3,DP =BP -BD =8-6=2,∴OP =OD +DP =5,在Rt △AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △AEP =12DP·AO+34·AP 2=12×2×3+34×(27)2=8 3.考点3 三角形、四边形混合几何探究9.我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC =a ,AC =b ,AB =c.特例探索(1)如图1,当∠ABE =45°,c =22时,a =____25____,b =____25____. 如图2,当∠ABE =30°,c =4时,a =____213____,b =____27____. 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3,求AF的长.解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=22AB=2.∵AF,BE是△ABC的中线,∴EF∥AB,EF=12AB=2,∴∠PFE=∠PEF=45°,∴PE=PF=1.在Rt△FPB和Rt△PEA中,AE=BF=12+22=5,∴AC=BC=25,∴a=b=2 5.如答图1,连接EF.同理可得EF=12×4=2.∵EF∥AB,∴△PEF∽△PBA,∴PFAP=PEPB=EFAB=12.在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=23,∴PF=1,PE= 3.在Rt△APE和Rt△BPF中,AE=7,BF=13,∴a=213,b=27.(2)猜想:a2+b2=5c2,证明如下:如答图2,连接EF.设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得PF=12PA=csinα2,PE=12PB=ccosα2, ∴AE 2=AP 2+PE 2=c 2sin 2α+c 2cos 2α4,BF 2=PB 2+PF 2=c 2cos 2α+c 2sin 2α4,∴(b 2)2=c 2sin 2α+c 2cos 2α4,(a 2)2=c 2sin 2α4+c 2cos 2α,∴a 24+b 24=c 2sin 2α4+c 2cos 2α+c 2sin 2α+c 2cos 2α4, ∴a 2+b 2=5c 2.(3)如答图3,连接AC ,EF 交于点H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P. ∵点E ,G 分别是AD ,CD 的中点,∴EG ∥AC. ∵BE ⊥EG ,∴BE ⊥AC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =25,∴∠EAH =∠FCH. ∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,BF =12BC ,∴AE =BF =CF =12AD = 5.∵AE ∥BF ,∴四边形ABFE 是平行四边形, ∴EF =AB =3,AP =PF.在△AEH 和△CFH 中,⎩⎨⎧∠EAH =∠FCH ,∠AHE =∠FHC ,AE =CF ,∴△AEH ≌△CFH ,∴EH =FH ,∴EP ,AH 分别是△AFE 的中线,由(2)的结论得AF 2+EF 2=5AE 2,或连接F 与AB 的中点M ,证MF 垂直BP ,构造出“中垂三角形”,由AB =3,BC =12AD =5及(2)中的结论,直接可求AF.10.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A 逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB′C′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知(1)在图2,图3中,△AB′C′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =12BC ;②如图3,当∠BAC =90°,BC =8时,则AD 长为4. 猜想论证(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图4,在四边形ABCD ,∠C =90°,∠D =150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.图1 图2 图3 图4解:(1)①∵△ABC 是等边三角形,∴AB =BC =AC =AB′=AC′.∵DB′=DC′, ∴AD ⊥B′C′.∵∠BAC =60°,∠BAC +∠B′AC′=180°, ∴∠B′AC′=120°,∴∠B′=∠C′=30°, ∴AD =12AB′=12BC.②∵∠BAC =90°,∠BAC +∠B′AC′=180°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′.∵B′D=DC′,∴AD=12B′C′=12BC=4.(2)结论:AD=12 BC.证明如下:如答图1,延长AD到M,使得AD=DM,连接B′M,C′M.∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC.第10题答图1∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A.∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=12 BC.(3)存在.理由:如答图2,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA,PD,PC,作△PCD的中线PN,第10题答图2连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°.在Rt△DCM中,CD=23,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°.在Rt△BEM中,∠BEM=90°,BM=14,∠MBE=30°,∴EM=12BM=7,∴DE=EM-DM=3.∵AD=6,∴AE=DE.∵BE⊥AD,∴PA=PD,PB=PC.在Rt△CDF中,CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF.∵CD∥PF.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=r(32+62)=39.考点4 多边形几何探究11.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”;【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形.(2)如图2,求证:∠OAB=∠OAE′;【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为60°-180°n.(用含n的式子表示)解:(1)∵四边形ABCD是正方形,由旋转知,AD=AD′,∠D=∠D′=90°,∠DAD′=∠OAP=60°,∴∠DAP=∠D′AO,∴△APD≌△AOD′(ASA),∴AP=AO.∵∠OAP=60°,∴△AOP是等边三角形;第11题答图(2)如答图,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知,AE=AE′,∠E=∠E′=108°,∠EAE′=∠OAP=60°,∴∠EAP=∠E′AO.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AE=AB,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM =∠BAN ,AM =AN.在Rt △APM 和Rt △AON 中,AP =AO ,AM =AN , ∴Rt △APM ≌Rt △AON (HL), ∴∠PAM =∠OAN ,∴∠PAE =∠OAB, ∴∠OAE′=∠OAB.(3)由(1)知,△APD ≌△AOD′, ∴∠DAP =∠D′AO.在Rt △AD′O 和Rt △ABO 中,⎩⎨⎧AD′=AB ,AO =AO ,∴Rt △AD′O≌Rt △ABO(HL), ∴∠D′AO=∠BAO.由旋转得,∠DAD′=60°.∵∠DAB =90°, ∴∠D′AB=∠DAB -∠DAD′=30°, ∴∠D′AO=12∠D′AB=15°,∵题图2的多边形是正五边形, ∴∠EAB =5-2×180°5=108°,∴∠E′AB=∠EAB -∠EAE′=108°-60°=48°, ∴同理可得,∠E′AO=12∠E′AB=24°.(4)是(5)同(3)的方法得,∠OAB =[(n -2)×180°÷n-60°]÷2=60°-180°n.考点5 圆形几何探究12.如图,在半径为3 cm 的⊙O 中,A ,B ,C 三点在圆上,∠BAC =75°.点P 从点B 开始以π5cm/s 的速度在劣弧BC 上运动,且运动时间为t s ,∠AOB =90°,∠BOP =n°.(1)求n与t之间的函数关系式,并求t的取值范围;(2)试探究:当点P运动多少秒时,①在BP,PC,CA,AB四条线段中有两条相互平行?②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形?解:(1)∵∠BOP=n°,∴π5t=3πn180,n=12t.当n=150时,150=12t,t=12.5.∴t的取值范围为0≤t≤12.5.(2)①∠BOP=n°,n=12t.如答图1,当BP∥AC时,t=5.理由:∵∠PBA=180°-75°=105°,∠OBA=45°,∴∠OBP=60°.∵OB=OP,∴∠BOP=60°,∴60=12t,t=5.如答图2,当PC∥AB时,t=10.理由:易得∠PBA=∠BAC=75°,∴∠PBO=∠BPO=30°,∴∠BOP=120°,∴120=12t,t=10.综上所述,当点P的运动时间为5 s时,BP∥AC.当点P的运动时间为10 s时,PC∥AB.②在△ABP中,以AB为腰时(如答图3),∠BPA=∠BAP=45°,∠BOP=90°,∴t=7.5. 以AB为底边时(如答图4),∠BPA=45°,∠BAP=67.5°,∠BOP=2×67.5°=135°,∴t=11.25.如答图5,在△APC中,易得∠AOC=120°,∴∠APC=60°,△APC是等边三角形.∴∠AOP=120°,∴∠BOP=30°,t=2.5.如答图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况.此时点P是弧BC的中心,∴∠BOP=75°,t=6.25.综上所述,当点P的运动时间为7.5 s或11.25 s时,△ABP为等腰三角形;当点P的运动时间为2.5 s时,△APC为等边三角形;当点P的运动时间为6.25 s时,△BPC为等腰三角形.。
中考数学专题复习规律探究题练习(四)

中考数学专题复习规律探究题练习(四)学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、解答题1.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n ++++⋯+=. 如果图3、图4中的圆圈均有13层.(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)2.已知点P (0x ,0y )和直线y=kx+b ,则点P 到直线y=kx+b 的距离证明可用公式d=002||1kx y b k -++ 计算.例如:求点P (﹣1,2)到直线y=3x+7的距离. 解:因为直线y=3x+7,其中k=3,b=7. 所以点P (﹣1,2)到直线y=3x+7的距离为:d=002||1kx y b k -++=2|3(1)27|1k ⨯--++ =210=105. 根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y=x ﹣1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y=3x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x ﹣6平行,求这两条直线之间的距离.3.观察以下等式:第1个等式:2222233+=⨯;第2个等式:2333388+=⨯;第3个等式:244441515+=⨯;第4个等式:255552424+=⨯;……按照以上规律,解决下列问题:(1)写出第5个等式:____________________________________________________________;(2)写出你猜想的第n 个等式:____________________;(用含n 的等式表示),并证明.4.观察下列各式规律:⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…;根据上面等式的规律:(1)写出第6个和第n 个等式; (2)证明你写的第n 个等式的正确性.5.观察下列等式: 2111123⎛⎫÷⨯+= ⎪⎝⎭ 21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭ 21111546⎛⎫÷⨯+= ⎪⎝⎭()1写出第⑥个等式: ;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.6.化简:2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整. 【分析问题】第1个加数:23122⨯⨯=112⨯﹣2122⨯;第2个加数:34232⨯⨯=2122⨯﹣3132⨯;第3个加数:45342⨯⨯=3132⨯﹣4142⨯;第4个加数: =2142⨯﹣5152⨯; 【总结规律】第n 个加数: = ﹣ .【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)2334122232+⨯⨯⨯⨯+45342⨯⨯+…+20203201920202⨯⨯.7.(1)观察下列图形与等式的关系,并填空: 第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n 个等式(用含有n 的代数式表示),并证明.8.观察以下等式:第1个等式:23-22=13+2×1+1; 第2个等式:33-32=23+3×2+22; 第3个等式:43-42=33+4×3+32; ……按照以上规律,解决下列问题:(1)写出第4个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.参考答案:1.(1)79;(2)6;(3)2554. 【解析】 【详解】【分析】(1)13层时最底层最左边这个圆圈中的数是前12层圆圈的个数和再加1; (2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数即可得; (3)将图⊙中的所有数字加起来利用所给的公式进行计算即可得.【详解】(1)当有13层时,前12层共有:1+2+3+…+12=78个圆圈,78+1=79, 故答案为79;(2)图⊙中所有圆圈中共有1+2+3+…+13=()131312⨯+=91个数,其中23个负数,1个0,67个正数, 故答案为67;(3)图⊙中共有91个数,分别为-23,-22,-21,...,66,67, 图⊙中所有圆圈中各数的和为: -23+(-22)+...+(-1)+0+1+2+ (67)()9123672⨯-+=2002.【点睛】本题是一道找规律的题目,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=()12n n +.2.(1)22;(2)见解析;(3)25. 【解析】 【分析】(1)根据点P 到直线y=kx+b 的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q 到直线y=3x+9,然后根据切线的判定方法可判断⊙Q 与直线y=3x+9相切;(3)利用两平行线间的距离定义,在直线y=-2x+4上任意取一点,然后计算这个点到直线y=-2x-6的距离即可. 【详解】(1)因为直线y=x-1,其中k=1,b=-1, 所以点P (1,-1)到直线y=x-1的距离为:d=002211(1)(1)1222111kx y b k -+⨯--+-===++; (2)⊙Q 与直线y=3x+9的位置关系为相切.理由如下:圆心Q (0,5)到直线y=3x+9的距离为:d=230594221(3)⨯-+==+, 而⊙O 的半径r 为2,即d=r , 所以⊙Q 与直线y=3x+9相切;(3)当x=0时,y=-2x+4=4,即点(0,4)在直线y=-2x+4, 因为点(0,4)到直线y=-2x-6的距离为:d=20-2-46102551(2)⨯-==+-(), 因为直线y=-2x+4与y=-2x-6平行, 所以这两条直线之间的距离为25. 【点睛】本题考查了一次函数的综合题:熟练掌握一次函数图象上点的坐标特征、切线的判定方法和两平行线间的距离的定义. 3.(1)266663535+=⨯;(2)211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++,证明见解析.【解析】 【分析】(1)根据提供的算式写出第5个算式即可; (2)根据规律写出通项公式然后证明即可. 【详解】解:(1)根据已知规律,第5个等式为266663535+=⨯, 故应填:266663535+=⨯; (2)根据题意,第n 个等式为211(1)(1)(2)(2)n n n n n n n n ++++=+⋅++证明:左边[](1)(2)1(1)(2)1(1)(2)(1)(2)(2)(2)(2)n n n n n n n n n n n n n n n n n n n ++++++++++=+==++++()222(1)21(1)(1)1(1)(2)(2)(2)n n n n n n n n n n n n n ++++++===+⋅=+++右边,⊙等式成立. 【点睛】本题考查规律探索问题,从特殊的、简单的问题推理到普通的、复杂的问题,从中归纳问题的规律,体现了逻辑推理与数学运算的核心素养.4.(1)第6个:221512327-=⨯,第n 个:()()()22232343n n n +-=+;(2)证明见解析 【解析】 【分析】(1仿照⊙⊙⊙写出第6和第n 个等式即可;(2)结合(1)发现的规律,并运用整式的四则混合运算证明即可. 【详解】解:(1)⊙ 52-22=3×7;⊙72-42=3×11;⊙ 92-62=3×11;…; 所以第6个等式为:152-122=3×27:所以第n 个等式为:(2n+3)2-(2n )2=3(4n+3) (2)证明:左边=(2n+3+2n )(2n+3-2n ) =3(4n+3) =右边所以第n 个等式正确. 【点睛】本题考查了规律型中的数字的变化类,观察数字的变化、寻找规律是解答本题的关键. 5.(1)21161187⎛⎫⨯ ⎪+⎭=⎝÷;(2)()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷,证明见解析【解析】 【分析】(1)根据所给等式的特点,写出第⊙个等式即可;(2)由所给等式可知:等号左边的被除数是1,括号内的两个分数的分子都是1,第一个分数的分母和序数相同,第二个分数的分母比序数大2,然后再加1,而等号右边是比序数大1的数的平方,据此可写出第n 个等式,然后根据分式的混合运算法则进行证明. 【详解】解:(1)2111123⎛⎫÷⨯+= ⎪⎝⎭21111324⎛⎫÷⨯+= ⎪⎝⎭21111435⎛⎫÷⨯+= ⎪⎝⎭21111546⎛⎫÷⨯+= ⎪⎝⎭∴第⊙个等式为:()2211681161=7⎛⎫⨯ ⎪⎝⎭÷+=+;(2)由分析可猜想第n 个等式为:()2121111n n n ⎛⎫⨯ ⎪+⎭=⎝++÷, 证明:左边()()221112112n n n n n =÷+=++=+=+右边, 故等式成立. 【点睛】本题考查了数字类规律探索、分式的混合运算,根据所给式子,分析变化的部分与不变的部分,正确得出规律是解题的关键.6.56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【解析】 【分析】(1)观察前3个加数即可写出第4个加数;通过前4个加数即可发现规律写出第n 个加数;(2)根据(1)中的规律进行化简即可计算.【详解】解:(1)因为第1个加数:223111221222=-⨯⨯⨯⨯;第2个加数:3234112322232=-⨯⨯⨯⨯;第3个加数:4345113423242=-⨯⨯⨯⨯;所以第4个加数:5456114524252=-⨯⨯⨯⨯总结规律:所以第n 个加数:()()1121112212n nn n n n n n +++=-⨯+⨯⨯+⨯.解决问题: 原式=223342019202011111111...1222223232422019220202-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯ =202011220202-⨯ =2020202010102120202⨯-⨯故答案为:56452⨯⨯;12(1)2n n n n ++⨯+⨯,12n n ⨯,11(1)2n n ++⨯;2020202010102120202⨯-⨯ 【点睛】本题考查数的规律,根据已知条件找出数字规律是解题关键. 7.(1)17,12,29;(2)(4n+5)+4n =8n+5,证明见解析 【解析】 【分析】(1)观察图形的变化写出前两个个图形与等式的关系,进而可得第三个等式; (2)结合(1)总结规律即可得第n 个等式. 【详解】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5, 第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5, 第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5, … 发现规律:第n 个等式为:(4n+5)+4n =8n+5; 故答案为:17,12,29; (2)由(1)发现的规律:所以第n 个等式为:(4n+5)+4n =8n+5; 证明:左边=4n+5+4n =8n+5=右边. 所以等式成立. 【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律,总结规律.8.(1)3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明见解析.【解析】 【分析】(1)根据前三个等式归纳总结出规律即可得;(2)先归纳总结出一般规律,得出第n 个等式,再利用因式分解的方法分别计算等式的两边即可得证. 【详解】(1)由前三个等式可得:第4个等式为3232554544-=+⨯+ 故答案为:3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明如下:等式的左边[]3222(1)(1)(1)(1)1(1)n n n n n n =+-+=++-=+等式的右边()32222(1)(1)21(1)n n n n n n n n n n n n n ⎡⎤=+++=+++=++=+⎣⎦则等式的左边=等式的右边 所以等式成立. 【点睛】本题考查了因式分解的实际应用,理解题意,正确归纳类推出一般规律是解题关键.。
备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)

专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
中考数学题型归纳——探究题参考答案

中考数学题型归纳——探究题中考真题(2005-2014)(2005·青岛)22、(本小题满分12分)等腰三角形是我们熟悉的图形之一,下面介绍一种等分等腰三角形面积的方法:在 △ABC 中,AB AC ,把底边BC 分成m 等份,连接顶点A和底边各等分点的线段,即可把这个三角形的面积m 等分.问题的提出:任意给定一个正n边形,你能把它的面积m 等分吗? 探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正 三角形的中心(正多边形的各对称轴的交点,又称为正多边形的中心) 引线段,才能将这个正三角形的面积m 等分?如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图①,这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图②,这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图③).这样就能把正三角形的面积四等分.① ② ③实验与验证:仿照上述方法,利用刻度尺,在图④中画出一种将正三角形的面积五等分的示意简图.猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m 等分?叙述你的分法并说明理由. 答:B CB ④ BBB拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m 等分?(叙述分法即可,不需说明理由) 答:问题解决:怎样从正n 边形的中心引线段,才能将这个正n 边形的面积m 等分?(叙述分法即可,不需说明理由)答:22、(本小题满分12分)(1)实验与验证:图(略) ··················· 3分 (2)猜想与证明:先连接正三角形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的三个小三角形拼合在一起,即可把正三角形的面积m 等分.······························ 5分 理由:正三角形被中心和各顶点连线分成三个全等的等腰三角形,所以这三个等腰三角形的底和高都相等;这个等腰三角形的底边被m 等分,所以所得到的每个小三角形的底和高都相等,即其面积都相等,因此,依次把相邻的三个小三角形拼合在一起合成的图形的面积也相等,即可把此正三角形的面积m 等分. ············· 8分(3)拓展与延伸:先连接正方形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的四个小三角形拼合在一起,即可把正方形的面积m 等分.························· 10分 (4)问题解决:先连接正多边形的中心和各顶点,再把所得的每个等腰三角形的底边m 等分,连接中心和各等分点,依次把相邻的n 个小三角形拼合在一起,即可把正多边形的面积m 等分.······························· 12分A D BCA 34A 5 6(2006·青岛)23.(本小题满分 10 分)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为21)(+nn,即1+2+3+4+…+n=21)(+nn.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)23.(本小题满分10分)解:(1)………………………………………………………3′因为组成此平行四边形的小圆圈共有n 行,每行有[(2n -1)+1]个,即2n 个,所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.∴1+3+5+7+…+(2n-1)=21 12〕)—〔(+⨯nn=n2.………………6′(2)…………………………………………………………………9′因为组成此正方形的小圆圈共有n 行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.………………………………………10′(2007·青岛)23.(本小题满分10分)提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=12AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD .∵PD=AD-AP=12AD,△CDP和△CDA的高相等,∴S△CDP=12S△CDA .∴S△PBC =S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-12S△ABD-12S△CDA=S四边形ABCD-12(S四边形ABCD-S△DBC)-12(S四边形ABCD-S△ABC)=12S△DBC+12S△ABC .(2)当AP=13AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;解:(3)当AP=16AD时,S△PBC与S△ABC和S△DBC之间的关系式为:_____________________________________________________;(4)一般地,当AP=1nAD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;解:问题解决:当AP=mnAD(0≤mn≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________________________________________.解:(2)∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=,又∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=,∴ S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC∴S△PBC=S△DBC+S△ABC;(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD又∵PD=AD-AP=AD ,△CDP 和△CDA 的高相等, ∴S △CDP =S △CDA , ∴S △PBC =S 四边形ABCD -S △ABP -S △CDP =S 四边形ABCD -S △ABD -S △CDA=S 四边形ABCD -(S 四边形ABCD -S △DBC )-(S 四边形ABCD -S △ABC ) =S △DBC +S △ABC , ∴S △PBC =S △DBC +S △ABC问题解决:S △PBC =S △DBC +S △ABC 。
二、解答重难题型突破+题型6 几何综合探究问题+课件+2025年九年级中考数学总复习人教版(山东)

∵AC⊥AB,∴OD∥AC,
∵DE∥BC,∴四边形DOCE是平行四边形,
由(1)知,OD=OC,∴四边形DOCE为菱形;
20
(3)如图,
在OC上截取OE=1,连接DE,作AF⊥BC于F,
∵OD=OB=3,OC=BC-OB=9,
∴ = = ,
∴∠DOE=∠CDO,
∵△HCG是等腰直角三角形,∴CG= GH=8,∴GD=8-5=3;
16
当E在BC延长线上时,延长GH,使HQ=HF,连接FQ,
则△HFQ是等腰直角三角形,
∴∠Q=45°,FQ= FH,GQ=HG+HQ=HC+HF=CF,∠QGF=90°-∠GFH=∠CFE,
∴△QGF≌△CFE(ASA),
∴GF=EF=AE=
∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN'=30°,
=
∵在△OCN和△OAN'中 ∠ = ∠′ ,
′ =
7
∴△OCN≌△OAN'(SAS),
∴ON=ON',∠CON=∠AON',
∴∠N'ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON'=60°,
法:有直角,作垂线,找全等或相似;有中点,作倍长,通过全等转移边和角;有平行,找
相似,转比例等.
3
类型1
动点、动线类探究
【例1】(2024·烟台招远市模拟)已知:等边△ABC中,点O是边AC,BC的垂直平分线
的交点,M,N分别在直线AC,BC上,且∠MON=60°.
(1)如图1,当CM=CN时,M,N分别在边AC,BC上时,请写出AM,CN,MN三者之间的数
(完整版)中考数学题型归纳——探究题参考答案

s in t h e i r e g o o d f o 2)仿照上述数形结合的思想方法,设计相关图形,求1+3+.(本小题满分10分))………………………………………………………3′)∵AP=AD=,又∵PD=AD-AP=AD=,领航教育中学辅导专用∴ S△PBC=S四边形ABCD-S △ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC∴S△PBC=S △DBC+S△ABC;(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD又∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA,∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC,∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC。
in th ei r be i n g a r e g o o df o r s o领航教育中学辅导专用问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.解:用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.(1分)验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为和.(3分)结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.(5分)猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?(6分)验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,可以找到惟一一组适合方程的正整数解为.(:镶嵌平面时,在一个顶点周围围绕着1个正三角形、garegoodfora t i m e a n d A l l th i n g s i n th e(2012·青岛)23.(10分)问题提出:以n 边形的n 个顶点和它内部的(m+n )个点作为顶点,可把原n 边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC 的三个顶点和它内部的1个点P ,共4个点为顶点,可把e a n d Al l th i n gs in th ei r b e i n g a r e g o o d f o r s o 领航教育中学辅导专用实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分,故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2(1﹣1),三角形内部2个点时,共分割成5部分,5=3+2(2﹣1),三角形内部3个点时,共分割成7部分,7=3+2(3﹣1),…,所以,三角形内部有m 个点时,3+2(m ﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m 个点,则分割成的不重叠的三角形的个数为:4+2(m ﹣1)或2m+2;…6分问题解决:n+2(m ﹣1)或2m+n ﹣2;…8分实际应用:把n=8,m=2012代入上述代数式,得2m+n ﹣2,=2×2012+8﹣2,=4024+8﹣2,=4030.…10分atimengsintheirt h ei r be i ng ar eg oo d f o r s o 领航教育中学辅导专用几何建模:(1)变形:x (x+2)=35.(2)画四个长为x+2,宽为x 的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x 的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x (x+2)+22∵x (x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x >0∴x=5归纳提炼:求关于x 的一元二次方程x (x+b )=c (x >0,b >0,c >0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y >0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a >2,b >2时,表示ab 与a+b 的大小关系.根据题意,设a=2+m ,b=2+n (m >0,n >0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)be i n g a r e g o o df o r s o 解:【研究速算】归纳提炼:十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果.【研究方程】归纳提炼:画四个长为x+b ,宽为x 的矩形,构造答图1,则图中的大正方形面积可以有两种不同的表达方式:(x+x+b )2或四个长为x+b ,宽为x 的矩形面积之和,加上中间边长为b 的小正方形面积.即:(x+x+b )2=4x (x+b )+b 2∵x (x+b )=c ,∴(x+x+b )2=4c+b 2∴(2x+b )2=4c+b 2∵x >0,∴x=.e an d Al l th i n gs in th ei r be i ng a r e g o o d f o r so 【研究不等关系】归纳提炼:(1)画长为2+m ,宽为2+n 的矩形,并按答图2方式分割.(2)变形:a+b=(2+m )+(2+n )(3)分析:图中大矩形面积可表示为(2+m )(2+n ),阴影部分面积可表示为2+m与2+n 的和.由图形的部分与整体的关系可知,(2+m )(2+n )>(2+m )+(2+n ),即ab >a+b .(2014·青岛)23.(10分)数学问题:计算+++…+(其中m ,n 都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.eandAllthingsintheirbeingaregoodforso领航教育中学辅导专用根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+ ++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)a ti m e dAl l th 解决问题:计算+++…+.次分割图,在图上标注阴影部分面积,并完成以下填空)次分割图可得等式: 所以,+++…+= +++…+.其中阴影部分的面积为;次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;次分割,把上次分割图中空白部分的面积继续四等分,次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,次分割图可得等式:+++…+=1﹣,l l thi n g s i n t h ei r b e i n ga r e g o o d f o r s o 领航教育中学辅导专用两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+ (1),=n ﹣(+++…+),=n ﹣(﹣),=n ﹣+.。
中考数学复习之项目式探究学习综合题-学生版

几何、函数与实际应用实际应用题一直以为是中考数学的热点题型,甚至可以说是必考题型.深圳中考数学对实际应用的考查尤其突出,此类题贴合实际,产生的问题源于生活,同时又与数学中的几何、函数结合.问题的解决一般需要用到几何知识和函数的相关知识.题目文字较多,对多数同学而言,难点在于文字的理解与问题的解决方法,文字的理解主要是了解实际问题,而解决方法则考查同学们的数学基本功底.例1(2023深圳中考21题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图1,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中AB =3m ,BC =4m ,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图2,抛物线AED 的顶点E (0,4),求抛物线的解析式;(2)如图3,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若FL =NR =0.75m ,求两个正方形装置的间距GM 的长;(3)如图4,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为CK ,求CK 的长.解:(1)∵AB =3m ,AD =BC =4m ,E (0,4),∴A (﹣2,3),B (﹣2,0),C (2,0),D (2,3),设抛物线表达式为y =ax 2+bx +c ,将A 、D 、E 三点坐标代入表达式,得4−2+=34+2+=3=4,解得=−14=0=4.∴抛物线表达式为=−142+4.(2)设G (﹣t ,3),则L (﹣t −34,3+34),∴3+34=−14(−−34)2+4,解得=14(负值舍去),∴GM =2t =12.(3)取最右侧光线与抛物线切点为F ,如图4,设直线AC 的解析式为y =kx +b ,∴−2+=32+=0,解得=−34=32,∴直线AC 的解析式为y =−34x +32,∵FK ∥AC ,设F :=−34+,∴=−34+=−142+4,得−142+34+4−=0,∴=(34)2−4×(−14)(4−p =0,解得m =7316,∴直线FK 的解析式为=−34+7316,令y =0,得x =7312,∴F =7312+2=9712.∴CK =BK ﹣BC =9712−4=4912例2(2024南山育才中考模拟)【项目式学习】项目主题:设计浇地窗的遮阳篷项目背景:小明家的窗户朝南,窗户的高度AB=2m ,为了遮挡太阳光,小明做了遮阳篷的设计方案,请根据不同的设计方案完成以下任务.方案1:直角形遮阳篷如图1:小明设计的第一个方案为直角遮阳篷BCD ,点C 在AB 的延长线上CD ⊥AC.(1)若BC=0.5m ,CD=1m ,则支撑杆BD=________m.(2)小明发现上述方案不能很好发挥遮阳作用,如图2,他观察到此地一年中的正午时刻,太阳光与地平面的最小夹角为α,最大夹角为β,小明查阅资料,计算出tanα=31,tanβ=34,为了让遮阳篷既能最大限度的使冬天温暖的阳光射入室内(太阳光与BD 平行),又能最大限度的遮挡夏天火热的阳光(太阳光与AD 平行),请求出图2中的BC 、CD 的长度.方案2:抛物线形遮阳篷(3)如图3,为了美观及实用性,小明在(2)的基础上将CD 边改为抛物线形可伸缩的遮阳篷(F 为抛物线的顶点,DF 段可伸缩),且∠CFD=90°,BC 、CD 的长保持不变,若以C 为原点,CD 方向为x 轴,BC 方向为y 轴,①求该二次函数的表达式;②若某时刻太阳光与水平地面夹角的正切值tan θ=32,使阳光最大限度的射入室内,求遮阳篷点D 上长升的高度的最小值(即点D'到CD 的距离)解:(1)由勾股定理直接计算BD=25(2)如图所示,设EF=m ,则AE=3m,DE=4m ,故2+m=4m 得m=32,故BC=32,CD=2m ;(3)①易知点F(1,1)设二次函数解析式为1)1(2+-=x a y ,将(0,0)代入得a=-1,故二次函数的解析式为xx y 22+-=②如图,设光线恰好经过点B ,与x 轴交于点I ,与抛物线交于点D,则易知BI 的解析式为3232-=x y ,与抛物线x x y 22+-=联立得x 1=9102+,x 2=9102-(舍去),此时y =92102-,故上升的最小高度为92102-全真模拟练习1.根据以下素材,探索完成任务如何探测弹射飞机的轨道设计素材1:图1是某科技兴趣小组的同学们制作出的一款弹射飞机,为验证飞机的一些性能,通过测试收集了飞机相对于出发点的飞行水平距离s与飞行时间t的函数关系式为:x=3t,飞行高度y(单位:m)随飞机时间t(单位:s)的变化满足二次函数关系,数据如表所示飞行时间t/s02468...飞行高度y/m010161816...素材2:图2是兴趣小组同学在室内操场的水平地面上设置一个高度可以变化的发射平台PQ,当弹射口高度变化时,飞机飞行的轨迹可视为抛物线上下平移得到,线段AB为飞机回收区域,已知AP=42m,AB=(182-24)m,问题解决任务1:确定函数表达式,求y关于t的函数表达式;任务2:探究飞行距离,当飞机落地(高度为0m)时,求飞机飞行的水平距离;任务3:确定弹射口高度,当飞机落到AB内(不包含端点A、B),求发射台弹射口高度(结果为整数)2.利用素材解决:《桥梁的设计》问题驱动某地欲修建一座搭桥,桥的底边两端间的水平宽AB=L,称跨度,桥面最高点到AB的距离CD=h 称拱高,拱桥的轮廓可以设计成是圆弧或抛物线型,若修建拱桥的距离L=32米,拱高h=8米.设计方案方案一方案二设计类型圆弧型抛物线型任务一设计成圆弧型,求该圆弧所在圆的半径设计成抛物线型,以AB所在直线为x轴,AB的垂直平分为y轴建立坐标系,求桥拱的函数表达式任务二如图,一艘船露出水面部分的横截面为矩形EFGH,测得EF=6.1米,EH=16米,请你通过计算说明货船能否分别顺利通过这两座桥梁.3.根据以下素材,探究完成任务设计求碗中面汤液面宽度的方案素材1图1是一个瓷碗,图2是其截面图,碗体DEC呈抛物线状(碗体厚度不计)碗高GF=7cm,碗底宽AB=3cm,当瓷碗中装满面汤时,液面宽CD=12cm,此时面汤最大深度EG=6cm.素材2如图3,把瓷碗绕点B缓缓倾斜倒出部分面汤,当点A离MN距离为1.8cm时停止任务1确定碗体形状在图2中建立合适的直角坐标系,求抛物线的表达式任务2拟定设计方案1根据图2位置,把碗中面汤喝掉一部分,当碗中液面高度(离桌面MN距离)为5cm时,求此时碗中液面宽度.任务3拟定设计方案2如图3,当碗停止倾斜时,求此时碗中液面宽度CH.4.九年级某班级同学进行项目式学习<项目式学习报告>如下:绿化带灌溉车的操作探究项目内容项目素材项目任务【项目一】明确灌溉方式如图1,灌溉车沿着平行于绿化带底部边线I的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m),灌溉车到l的距离OD长度为d(单位:m).“博学小组”经过实际测量,建立如下数学模型:如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象,下边缘抛物线是由上边缘抛物线向左平移得到;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m喷水口离开地面高h=1.5米,上边缘拋物线最高点离喷水口的水平距离为2m,高出喷水口0.5m.【任务一】结合图象和数据,请你求出灌溉车的最大射程OC的长度【项目二】提倡有效灌溉“笃志小组”实地调查发现:为了节约用水,进行有效灌溉,灌溉车在进行行业时,要保证喷出的水能浇灌到整个绿化带(上边缘抛物线不低于点F,点D不在下边缘抛物线内)【任务二】请你求出灌溉车有效灌溉时,灌溉车到绿化带底边缘的距离OD的取值范围.5.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点 E.水面截线CD=63cm,MN//CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.6.某厂家特制了一批高脚杯,分为男士杯和女士杯(如图1),相关信息如下:素材内容素材1如图1,这种高脚杯从下往上分为三部分:杯托,杯脚,杯体.杯托为一个圆,水平放置时候,杯脚经过杯托圆心,并垂直任意直径,杯体的水平横截面都为圆,这些圆的圆心都在杯脚所在直线上.素材2图2坐标系中,特制男士杯可以看作由线段AB,OC,抛物线DCE(实线部分),线段DF,线段EG绕y轴旋转形成的立体图形(不考虑杯子厚度,下同);特制女士杯可以看作由线段AB,OC,抛物线FCG(虚线部分)绕y轴旋转形成的立体图形.素材3已知,图2坐标系中,OC=5cm,记为C(0,5),D(−52,152),E(52,152),F(−52,15),G(52,15).根据以上素材内容,尝试求解以下问题:(1)求抛物线DCE和抛物线FCG的解析式;(2)当杯子水平放置及杯内液体静止时,若男士杯中的液体与女士杯中的液体深度均为4cm,求两者液体最上层表面圆面积之差;(结果保留π)(3)当杯子水平放置及杯内液体静止时,若男士杯中的液体与女士杯中的液体深度相等,两者液体最上层表面圆面积相差4πcm2,求杯中液体的深度.7.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的207C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A(3,10)起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a(x﹣h)2+k(a<0).(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=﹣5x2+40x﹣68,记她训练的入水点的水平距离为d1;比赛当天入水点的水平距离为d2,则d1d2(填“>”“=”或“<”);(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=﹣5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?8.【发现问题】一天放学后,妈妈带小丽到面馆去吃牛肉面,爱思考的小丽仔细观察盛面的碗,如图1,她发现面碗的轴截面(不包含碗足部分)可以近似看成是抛物线的一部分.【提出问题】碗体(碗体的厚度忽略不计)上一点到碗底内部所在平面的距离y(cm)与这一点到碗的中轴线(面碗的上、下两个底面圆的圆心所在直线)m的距离x(cm)之间有怎样的函数关系?【分析问题】小丽从书包里拿出刻度尺、笔和本,向服务员借来一个空的面碗,把面碗正放在桌面上,对面碗进行了简单的测量,并根据测量数据画出面碗的轴截面,如图2,面碗的上口径AB=24cm,碗底直径CD=EF =6cm,面碗的边沿上一点B到桌面EF的距离BG=8cm,碗足高DF=1cm.小丽又进一步建立以CD 所在直线为x轴,以直线m为y轴的平面直角坐标系(如图3),从而求出y与x的关系式.【解决问题】(1)请你帮助小丽求出y与x的关系式;(2)小丽向空面碗中倒入一些水,当水面宽度为20cm时,求此时面碗中水的深度;(3)小丽将(2)中面碗中的水倾倒至如图4所示,水面刚好与BC重合,直接写出此时面碗中水的最大深度.如何调整蔬菜大棚的结构?素材1我国的大棚(如图1)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在墙体OA上,另一端固定在墙体BC上,其横截面有2根支架DE,FG,相关数据如图2所示,其中DE=BC,OF=DF=BD.素材2已知大棚有200根长为DE的支架和200根长为FG的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为60元/米(接口忽略不计),现有改造经费32000元.问题解决任务1确定大棚形状在图2中以点O为原点,OA所在直线为y轴建立平面直角坐标系,求抛物线的函数表达式.任务2尝试改造方案当CC′=1米,只考虑经费情况下,请通过计算说明能否完成改造.任务3拟定最优方案只考虑经费情况下,求出CC′的最大值.素材一太阳光线与地面的夹角叫做太阳高度角.冬至是北半球各地白昼时间最短、黑夜最长的一天;夏至是北半球各地黑夜时间最短、白昼最长的一天.设冬至这天正午时刻太阳高度角为α,夏至这天正午时刻太阳高度角为β.素材二厂家设计了可伸缩抛物线型遮阳棚,其侧面示意图如图1所示.曲线QM为遮阳棚,PQ 为遮阳棚安装在窗户上方的支架,PQ⊥QM,线段QM的长度称为遮阳棚的跨度.已知遮阳棚QM所在的抛物线与抛物线=−142的形状相同.素材三如图2,AB为小明家的朝南窗户,测得Ba=14,∠β=45°,窗户AB的高度为1.5米.为能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内,在安装遮阳棚时,需根据实际计算遮阳棚的跨度(QM的长).素材四春节前期,小明想在遮阳棚顶部挂一盏高为0.3米的灯笼(如图3).如图4,灯笼CD与窗户的水平距离为m米,灯笼的底端(点D)与窗户的上沿(点B)的铅垂高度为n米,灯笼顶端(点C)与悬挂点(点N)的距离为d米.解决问题任务1求小明家所需的遮阳棚的跨度QM.任务2当d=0.16时,求m的值.任务3现要求0.6≤m≤1.5且0.1≤n≤0.2,求d的取值范围.。
中考数学题型训练---规律探究

规律探索题常用技巧:1、观察法,对于比较明显的变化,可直接加以解决,比如呈现周期性变化的题2、一次函数法,通过一组数据,对于n的变化,考察数据是在坐标轴上成直线的变化,可以设此变化规律为y=kx+b,记得解出后要检验。
3、二次函数法,对于n的变化,考察数据在坐标上呈现弧形,可联想到二次函数,设此规律为y=ax2+bx+c,找出三组数据,然后解出来。
记得检验3、(公式法)等差数列:1+2+3+…+n=1+3+5+7+…++15=3+6+9+12+15+18+…+3n=等比数列:2+4+8+…+2n= 3+32+33+…+3n=1、数据规律类1、(2012滨州)求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.2、(2012珠海,20,9分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.a ≤9,写出表示“数字对称等(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤b式”一般规律的式子(含a、b),并证明.3、(2012山东省荷泽市)一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33,和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;……;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是_____.4、(2012·湖北省恩施市,题号16 分值4)观察下表:根据表中数的排列规律,B+D=_________.2、几何变化类 1、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学题型归纳——探究题中考真题(2005-2014)(2005·青岛)22、(本小题满分12分)等腰三角形是我们熟悉的图形之一,下面介绍一种等分等腰三角形面积的方法:在 △ABC 中,AB AC ,把底边BC 分成m 等份,连接顶点A和底边各等分点的线段,即可把这个三角形的面积m 等分.问题的提出:任意给定一个正n 边形,你能把它的面积m 等分吗?探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中心(正多边形的各对称轴的交点,又称为正多边形的中心) 引线段,才能将这个正三角形的面积m 等分?如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图①,这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图②,这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图③).这样就能把正三角形的面积四等分.① ② ③ 实验与验证:仿照上述方法,利用刻度尺,在图④中画出一种将正三角形的面积五等分的示意简图.猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m 等分?叙述你的分法并说明理由.答:C ④ B C B拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m 等分?(叙述分法即可,不需说明理由)答:问题解决:怎样从正n 边形的中心引线段,才能将这个正n 边形的面积m 等分?(叙述分法即可,不需说明理由)答:A DBCA 34A56(2006·青岛)23.(本小题满分10 分)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为21)(+nn,即1+2+3+4+…+n=21)(+nn.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2007·青岛)23.(本小题满分10分)提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=12AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD .∵PD=AD-AP=12AD,△CDP和△CDA的高相等,∴S△CDP=12S△CDA .∴S△PBC =S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-12S△ABD-12S△CDA=S四边形ABCD-12(S四边形ABCD-S△DBC)-12(S四边形ABCD-S△ABC)=12S△DBC+12S△ABC .(2)当AP=13AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;解:(3)当AP=16AD时,S△PBC与S△ABC和S△DBC之间的关系式为:_____________________________________________________;(4)一般地,当AP=1nAD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;图①PDC BAAB CDP图②解:问题解决:当AP=mnAD(0≤mn≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________________________________________.(2008·青岛)23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 ;(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是 ;(3)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 模型拓展二:在不透明口袋中装有m 种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 .(2)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型; 红 黄 红 红或黄或白 图② 黄 白 白 红 黄 白红或黄或白 图① 红 红 红或黄或白 图③ 红 白 白 白 黄黄 黄红 红 红或黄或白图⑩ 红 白 白 白 黄 黄 黄 白 … 红 黄9个 9个 9个 ...(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.(2009·青岛)23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形.(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形.(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图).(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图).(3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)图① 图② 图③ 图④ 图⑤ 图⑥(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图).图a图b图c图d图e(2010·青岛)23.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.a b图1(2011·青岛)23.(10分)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .问题解决如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 解:由图可知:M =a 2+b 2,N =2ab .∴M -N =a 2+b 2-2ab =(a -b )2. ∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N . 类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克和 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a >c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.图4 图5 图6 图7a bc 图3a +bb +3cb +ca -c图2(2012·青岛)23.(10分)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点可把△ABC分割成个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个顶点可把△ABC分割成个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个顶点可把四边形分割成_________个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个顶点可把△ABC分割成个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)(2013·青岛)23.(10分)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述).【研究方程】提出问题:怎样图解一元二次方程x2+2x﹣35=0(x>0)?几何建模:(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22∵x(x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x>0∴x=5归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)(2014·青岛)23.(10分)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.。