高考数学大纲分析
2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。
一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。
2. 立方根:立方根的概念、立方根的计算、立方根的性质。
3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。
二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。
2. 一次函数:一次函数的定义、一次函数的图象与性质。
3. 二次函数:二次函数的定义、二次函数的图象与性质。
4. 分式函数:分式函数的定义、分式函数的图象与性质。
5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。
6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。
三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。
2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。
3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。
4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。
四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。
2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。
3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。
4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。
2023全国高考数学考试大纲及重点内容

2023全国高考数学考试大纲及重点内容一、考试大纲概述2023年全国高考数学考试大纲是根据普通高等学校对新生素质的要求以及《普通高中课程标准》制定的。
相较于以往,2023年的高考数学大纲更加注重对学生德智体美劳全面发展的考查,体现了立德树人的鲜明导向和素质教育的发展要求。
在考试范围和要求方面,大纲延续了以往的指导思想,强调基础性、综合性、应用性和创新性的考查。
二、重点内容解析1.数学基础知识:大纲要求对数学基础知识进行全面且突出重点的考查,增加支撑学科知识体系的重点内容。
这包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
2.立体几何:考查四面体、球体、平面等立体几何知识,强化空间想象能力和抽象思维能力。
3.解析几何:涉及解析几何中的相关知识,如直线、曲线、方程等,考查学生的几何运算和解析能力。
4. 不等式解集:考查学生对一元二次不等式、绝对值不等式、不等式组等解集的求解方法。
5.排列组合:掌握排列组合的基本概念和计算方法,理解排列组合在实际问题中的应用。
6.参数、极限、数学归纳法:了解参数方程、数列极限、函数极限等基本概念,掌握数学归纳法的证明方法。
7.高等数学:高等数学部分主要包括微积分、线性代数、概率论等内容,考查学生的抽象思维、逻辑推理和运算能力。
8.三角函数与反三角函数:理科考生需要掌握三角函数和反三角函数的性质、公式、图像及其应用,而文科考生只需了解三角函数的基本概念和性质。
三、备考建议1.立足教材:高考数学考试大纲以高一和高二数学教材为主,考生应全面掌握教材中的知识点,强化基础。
2.强化训练:通过大量练习,熟练掌握各类题型和解题方法,提高解题速度和准确率。
3.综合应用:注重知识之间的内在联系,提高知识综合运用能力,善于挖掘问题背后的数学思想。
4.培养创新意识:在解题过程中,尝试使用不同的方法,培养创新思维和解决问题的能力。
5.查漏补缺:针对自己的薄弱环节,有针对性地进行复习,确保知识体系的完整性。
2024高考数学大纲

2024高考数学大纲好的,以下是对2024高考数学大纲的详细分析:一、考试性质高考数学大纲是教育部组织专家在充分调研、广泛听取意见的基础上,根据新课程标准要求和高考的指导性精神,对高考数学命题原则、命题方向、内容要求、难度要求等进行的规范性文件。
二、考试要求数学试题的考查要求主要包括知识、能力、方法和素养等方面。
2024年高考数学考试将继续考查考生对数学基础知识与基本技能的掌握情况,注重考查考生的思维能力、运算能力和空间想象能力,同时注重考查考生的数学核心素养,如抽象概括、推理论证、运算求解、数据处理等。
此外,考生还需具备数学应用与创新能力,能够运用数学知识和方法解决实际问题。
三、考试内容根据考试要求,高考数学考试内容将涵盖函数、数列、三角函数、平面向量、不等式、解析几何、立体几何、概率统计等基础数学知识,以及数学思想方法、数学运算、逻辑推理、数据处理与分析等数学核心素养。
同时,还会适当增加一些与现代生产生活相关的应用问题,以考查考生的数学应用与创新能力。
四、考试形式和难度考试形式将采用闭卷笔试,试卷分为选择题和解答题,其中选择题占50分,解答题占70分。
试卷难度将控制在中等偏难的水平,以适应不同地区和不同层次考生的需求。
同时,试卷还将设置一定数量的创新题目,以考查考生的数学核心素养和数学思维能力。
五、备考建议对于即将参加2024年高考的考生来说,首先需要全面掌握数学基础知识与基本技能,注重思维能力的培养和训练。
其次,要多关注数学应用问题的解决,尝试运用数学知识与方法解决实际问题。
最后,要注重积累数学知识与方法的总结归纳,不断提升自己的数学核心素养和思维能力。
希望以上回答对您有所帮助。
2024年高考数学几何题目大纲全解

2024年高考数学几何题目大纲全解高考数学中的几何部分一直是许多考生重点关注和努力攻克的板块。
几何题目不仅考查学生的空间想象能力、逻辑推理能力,还对学生的数学运算和图形分析能力有较高要求。
为了帮助同学们更好地应对2024 年高考数学中的几何题目,我们来对其大纲进行全面解读。
首先,我们要明确高考数学几何部分所涵盖的主要知识领域。
这包括平面几何和立体几何两个大的方面。
在平面几何中,三角形是重中之重。
三角形的性质,如内角和定理、边角关系定理等,都是常见的考点。
相似三角形和全等三角形的判定及性质更是经常出现在各类题目中。
此外,圆的相关知识也是不可忽视的一部分。
圆的方程、圆与直线的位置关系、圆与圆的位置关系等内容,需要同学们熟练掌握。
多边形的内角和、外角和公式,以及一些特殊四边形,如平行四边形、矩形、菱形、正方形的性质和判定定理,也是平面几何中的重要知识点。
立体几何方面,常见的几何体如棱柱、棱锥、圆柱、圆锥、球等的结构特征、表面积和体积公式是必须牢记的内容。
空间直线与平面的位置关系,包括线线平行、线面平行、面面平行,以及线线垂直、线面垂直、面面垂直的判定和性质定理,是解题的关键。
空间向量在立体几何中的应用也越来越受到重视,利用空间向量求空间角(异面直线所成角、线面角、二面角)和距离,能够将复杂的几何问题转化为代数运算,降低解题难度。
了解了知识领域,我们再来看看高考几何题目的常见题型。
选择题和填空题中,往往会考查一些基本的几何概念、定理和公式的应用,以及对图形的简单分析和计算。
比如,给出一个三角形的部分边长和角度,求其他边长或角度;或者给出一个几何体的部分数据,求其体积或表面积等。
解答题中,通常会综合考查多个几何知识点。
例如,要求证明线面平行或垂直关系,计算几何体的体积或表面积,或者求解空间角的大小等。
这类题目往往需要同学们具备较强的逻辑推理能力和运算能力,能够清晰地写出解题过程和步骤。
对于高考几何题目的解题方法,我们需要掌握一些基本的技巧。
高考数学立体几何题目大纲解析

高考数学立体几何题目大纲解析关键信息项:1、立体几何题目类型:____________________________2、常见考点:____________________________3、解题方法分类:____________________________4、易错点汇总:____________________________5、重要公式总结:____________________________11 立体几何题目类型111 空间几何体的结构特征1111 棱柱、棱锥、棱台的结构特征1112 圆柱、圆锥、圆台、球的结构特征112 空间几何体的三视图和直观图1121 三视图的画法与识图1122 直观图的画法与还原113 空间几何体的表面积与体积1131 柱体、锥体、台体的表面积与体积公式1132 球的表面积与体积公式1133 组合体的表面积与体积计算114 空间点、直线、平面的位置关系1141 平面的基本性质1142 空间中直线与直线的位置关系1143 空间中直线与平面的位置关系1144 空间中平面与平面的位置关系12 常见考点121 线面平行与垂直的判定与性质1211 线面平行的判定定理与性质定理1212 线面垂直的判定定理与性质定理122 面面平行与垂直的判定与性质1221 面面平行的判定定理与性质定理1222 面面垂直的判定定理与性质定理123 空间角的计算1231 异面直线所成角的计算1232 直线与平面所成角的计算1233 二面角的计算124 空间距离的计算1241 点到直线的距离1242 点到平面的距离1243 平行直线间的距离1244 平行平面间的距离13 解题方法分类131 几何法1311 利用定义、定理直接推理证明1312 构建辅助线、辅助面解题1313 空间向量法的适用条件与优势132 空间向量法1321 建立空间直角坐标系1322 求点的坐标1323 求向量的坐标1324 利用向量的数量积计算夹角和距离14 易错点汇总141 概念理解不清1411 对线面平行、垂直的概念模糊1412 对空间角和距离的定义理解错误142 定理运用错误1421 判定定理和性质定理混淆1422 漏用定理条件143 计算失误1431 求角度时三角函数值计算错误1432 向量运算错误1433 体积和表面积计算错误144 忽视隐含条件1441 题目中未给出但需自行挖掘的条件1442 图形中的特殊位置关系未注意15 重要公式总结151 线面平行、垂直的判定定理和性质定理公式152 面面平行、垂直的判定定理和性质定理公式153 空间角的计算公式154 空间距离的计算公式155 向量的数量积公式及相关变形公式以上是对高考数学立体几何题目大纲的详细解析,希望能对您有所帮助。
2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。
二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。
2、培养数学思维和解决问题的能力。
3、检测学生对数学知识的理解和应用能力。
三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。
考试时间为120分钟。
2、题型结构:选择题、填空题、解答题。
其中选择题和填空题占60%,解答题占40%。
3、分值分布:总分为150分。
代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。
五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。
2、计算能力:能够准确、快速地进行基本的数学运算。
3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。
4、问题解决能力:能够运用所学知识解决实际问题或数学问题。
5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。
以上是一个简略的2024年高中数学高考考纲草案。
在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。
同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。
2024年上海高考数学大纲

2024年上海高考数学大纲2024年上海高考数学大纲在总体上保持稳定,但在部分内容和要求上有所调整和更新。
具体来说,数学科目的高考将依旧考查考生的基础知识和基本能力,注重数学思想方法的运用,加强了对数学思维和解决问题能力的考查。
以下是关于2024年上海高考数学大纲的详细说明:一、知识内容与考试要求1.集合与命题考试要求:理解集合的概念,掌握集合的表示方法;了解命题的概念、真值和类型,掌握简单的命题推理。
2.函数与方程考试要求:理解函数的概念,掌握函数的表示方法和性质;理解函数的图象,能根据函数的性质解决简单的问题;理解方程的概念,掌握方程的解法;了解函数与方程的关系,能解决与函数和方程有关的问题。
3.不等式考试要求:理解不等式的概念和性质,掌握不等式的解法;能解决与不等式有关的问题。
4.数列与数学归纳法考试要求:理解数列的概念,掌握数列的表示方法和性质;能解决与数列有关的问题;理解数学归纳法的概念和原理,掌握数学归纳法的应用。
5.复数考试要求:理解复数的概念和性质,掌握复数的表示方法和运算;能解决与复数有关的问题。
6.排列组合与概率初步知识考试要求:理解排列组合的概念和原理,能进行简单的排列组合计算;理解概率的概念和计算方法,能解决简单的概率问题。
7.三角函数和平面向量考试要求:理解三角函数的概念和性质,掌握三角函数的图象和变换;能解决与三角函数有关的问题;理解平面向量的概念和表示方法,掌握向量的运算和向量的应用。
8.解析几何考试要求:理解直线、圆、圆锥曲线、坐标系等概念和性质,掌握它们的图象和变换;能解决与这些图形有关的问题。
9.立体几何初步知识考试要求:理解空间几何体的概念和性质,掌握空间几何体的表面积和体积的计算方法;能解决与空间几何体有关的问题。
10.参数方程和极坐标考试要求:理解参数方程的概念和表示方法,掌握参数方程的解法;理解极坐标的概念和表示方法,掌握极坐标的运算和应用。
二、考试形式与试卷结构1.考试形式:数学科目采用闭卷笔试形式,考试时间为150分钟,满分150分。
2024年高考数学考试大纲全解析

2024年高考数学考试大纲全解析高考,对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的重要科目,其考试大纲的变化更是备受关注。
2024 年的高考数学考试大纲,在继承了以往的基础上,又有了一些新的调整和要求。
接下来,让我们一起深入剖析这份大纲,为广大考生和家长提供一个全面而清晰的解读。
首先,我们来看考试大纲中的知识范围。
2024 年高考数学依然涵盖了代数、几何、概率统计等主要板块。
代数部分,函数的性质、图像以及各种类型的函数(如一次函数、二次函数、指数函数、对数函数等)依旧是重点。
考生需要熟练掌握函数的定义域、值域、单调性、奇偶性等性质,并能运用函数解决实际问题。
方程与不等式也是代数中的重要内容,包括一元二次方程的求解、不等式的解法和应用。
几何方面,平面几何中的三角形、四边形等基本图形的性质和定理需要牢记。
空间几何中,直线与平面、平面与平面的位置关系,以及几何体的表面积和体积计算是常考的知识点。
解析几何则侧重于直线与圆、圆锥曲线(椭圆、双曲线、抛物线)的方程和性质,要求考生能够通过建立坐标系,运用代数方法解决几何问题。
概率统计部分,概率的基本概念、常见概率分布(如二项分布、正态分布等)以及统计中的数据处理和分析方法都是考查的重点。
考生要能够理解随机事件的概率,运用概率知识解决实际问题,并能对数据进行收集、整理、分析和解释。
在能力要求方面,大纲强调了考生的数学思维能力、运算能力、空间想象能力、逻辑推理能力以及应用数学知识解决实际问题的能力。
数学思维能力要求考生能够从数学的角度观察问题、分析问题,通过抽象、概括、归纳等方法找出问题的本质和规律。
运算能力不仅包括基本的四则运算,还包括代数式的化简、方程的求解、函数的运算等复杂运算。
空间想象能力主要体现在对空间几何体的结构和位置关系的理解和想象上。
逻辑推理能力则要求考生能够根据已知条件,进行合理的推理和论证,得出正确的结论。
而应用能力则是考查考生能否将数学知识与实际生活中的问题相结合,建立数学模型,解决实际问题。
高中数学高考大纲及知识点讲解

高中数学高考大纲及知识点讲解高中数学重点知识与结论分类解析一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性。
2.在求集合的交集时,必须注意到“极端”情况:当A或B 为空集时,它们的交集也为空集。
在求集合的子集时,也要注意到空集是任何集合的子集,而且是任何非空集合的真子集。
3.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数分别为2,2^n-2,2^n-1,n。
4.交的补等于补的并,即C∪(A∩B) = (C∪A)∩(C∪B);并的补等于补的交,即C∩(A∪B) = (C∩A)∪(C∩B)。
5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。
7.四种命题中,“逆”者“交换”也,“否”者“否定”也。
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。
反证法分为三步:假设、推矛、得果。
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”。
8.充要条件。
二、函数1.指数式、对数式,a^m×a^n = a^(m+n),m/n = logaN,a^a = N ⇔ loga N = a (a>0.a≠1.N>0),a = 1,loga 1 = 0,loga a = 1,lg2 + lg5 = 1,loge x = ln x,loga b = logc b / logc a,logam n = n loga m。
2.(1) 映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合A中的元素必有像,但第二个集合B中的元素不一定有原像(A中元素的像有且仅有下一个,但B中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集B的子集”。
数学高考大纲完全解析

数学高考大纲完全解析数学一直被认为是一门重要且难以理解的学科。
对于许多学生而言,高考数学无疑是一个巨大的挑战。
然而,只要我们理解并熟悉数学高考大纲,充分准备,就能够应对各种难题。
在本文中,我们将对数学高考大纲进行全面解析。
一、数与式数学高考大纲的第一部分是“数与式”。
这一部分主要包括数的性质与关系、式子的运算等内容。
在数的性质与关系方面,我们需要了解数的分类、数的运算性质、数的整除性质等知识点。
在式子的运算方面,我们需要掌握加减乘除、分式的运算、带有绝对值的计算等技巧。
此外,我们还需要注意解决问题时的合理估算与四舍五入等方法。
二、函数与方程数学高考大纲的第二部分是“函数与方程”。
函数是现代数学的重要概念,对于高考数学也有很大的分量。
在这一部分中,我们需要了解函数的概念与性质、函数的图像与性质等内容。
另外,我们还需要掌握函数的运算、函数的应用以及方程的解法等技巧。
三、几何与变换数学高考大纲的第三部分是“几何与变换”。
在几何方面,我们需要了解平面图形的基本性质、空间图形的基本性质、平面图形的相似与全等性质等知识点。
在变换方面,我们需要了解平移、旋转、翻折、放缩等基本变换的概念与性质,以及在平面图形与坐标系中的运用。
四、概率与统计数学高考大纲的第四部分是“概率与统计”。
在这一部分中,我们需要了解概率的基本概念与性质,掌握简单事件的概率计算方法,熟悉几何概型和加法定理等。
另外,我们还需要了解统计学的基本概念与性质,包括样本调查、数据的整理与分析等。
总结起来,数学高考大纲涵盖了数与式、函数与方程、几何与变换以及概率与统计等四个部分。
我们需要对每个部分的知识点进行深入理解与掌握。
在备考过程中,我们应该注重基础知识的打牢,掌握解题技巧和应试策略,进行系统的练习和总结。
只有通过不断的学习和实践,才能够在高考中取得满意的成绩。
希望这篇文章能够对你理解数学高考大纲有所帮助。
祝你在高考中取得优异的成绩!。
2024年高考数学考试大纲详解

2024年高考数学考试大纲详解随着社会的不断发展,高考作为选拔人才的重要手段,对于学生们来说具有极大的意义。
数学作为高考的一门重要科目,也备受关注。
为了帮助考生更好地应对2024年高考数学考试,下面将对数学考试大纲进行详细解析。
一、考试内容概述2024年高考数学考试涵盖了基础数学和选修数学两个部分。
其中,基础数学包括数与代数、函数与方程、几何与变换等内容;选修数学则提供了数理方法与建模、统计与概率等多个选修模块。
二、基础数学1. 数与代数数与代数是数学学科的基础,也是高考数学的核心内容之一。
考生需要熟练掌握数的四则运算、数的性质以及各种数的表示方法。
代数部分包括代数式的化简、方程的解法、不等式的求解等。
2. 函数与方程函数与方程是高中数学中的重要内容,对于考生来说至关重要。
考生需要掌握函数的性质、图像与性质以及各种类型的方程解法。
特别需要强调的是,对于常用函数如一次函数、二次函数、指数函数和对数函数等,考生要了解其基本特点和图像变化规律。
3. 几何与变换几何与变换是高考数学中的另一个重点。
考生需要了解几何元素的定义、性质以及各种几何定理的应用。
此外,对于平面图形的变换,考生需要熟悉平移、旋转、翻折和对称等几何变换的基本概念与特点。
三、选修数学1. 数理方法与建模数理方法与建模是2024年高考数学的新选修模块。
这一模块旨在培养学生的数学建模能力和解决实际问题的能力。
考生需要掌握建模过程中的数学方法和技巧,能够将实际问题转化为数学问题,并运用相应的数学方法进行求解。
2. 统计与概率统计与概率是高中数学中的常见内容,也是选修数学中的一项重要内容。
考生需要熟悉统计学的基本概念和方法,能够对数据进行整理和分析。
概率部分主要涉及事件的概率计算和概率模型的应用,考生需要了解基本概率规律及其应用。
四、备考建议1. 熟悉考试大纲考生需要仔细阅读和理解2024年高考数学考试大纲,了解各个模块的要求和重点。
只有全面掌握考试大纲,才能有针对性地进行复习和备考。
2024年数学高考大纲

2024年数学高考大纲一、引言作为高考的重要组成部分,数学考试一直备受关注。
为了更好地指导未来的数学教育,教育部发布了《2024年数学高考大纲》(以下简称“大纲”),旨在进一步提高学生的数学素养,培养其数学思维能力,以及适应未来社会发展的需要。
本篇文档将围绕大纲内容,深入解读高考数学考试的方向和重点。
二、大纲内容解读1. 考试性质高考数学考试旨在考查学生对数学知识的掌握程度、运用能力和创新意识。
考试范围包括代数、几何、三角学、概率统计等基本内容,以及一些较高级的数学概念和思想方法。
2. 考试要求根据大纲,高考数学考试将分为三个层次:了解、理解和掌握。
了解是指对数学概念和方法的认知水平;理解是指在理解的基础上,能够运用所学知识解决一些简单的问题;掌握则是指能够灵活运用所学知识解决综合性问题。
3. 考试内容与形式考试内容主要包括基础知识和基本技能、问题解决能力、数学思想和方法等。
考试形式将采用闭卷、笔试,考试时间为150分钟。
试卷结构将注重试题的梯度和区分度,确保不同水平的学生都能在考试中得到合理的评价。
三、重点内容分析1. 基础知识与基本技能:大纲强调了对数学基础知识的掌握和运用能力。
考生需要熟练掌握数学概念、公式、定理和法则等基础知识,并能够灵活运用这些知识解决实际问题。
2. 问题解决能力:大纲注重对学生问题解决能力的培养。
考生需要具备分析问题、解决问题的能力,能够运用所学知识解决综合性问题。
3. 数学思想和方法:大纲强调了对数学思想和方法的理解和运用。
考生需要掌握常见的数学思想和方法,如函数与方程思想、数形结合思想、分类讨论思想等,并能够运用这些思想和方法解决实际问题。
4. 创新意识和实践能力:大纲鼓励考生具备创新意识和实践能力。
考生需要具备独立思考和解决问题的能力,能够运用所学知识进行探索和创新,解决实际问题。
四、备考建议1. 系统学习数学知识:考生需要系统地学习数学基础知识,掌握各个知识点和技能点,形成完整的知识体系。
2024年高考四川数学考纲

2024年高考四川数学考纲摘要:1.2024年四川高考数学考纲概述2.数学试卷结构与题型分布3.考试要求与难度等级4.备考策略与建议正文:一、2024年四川高考数学考纲概述根据教育部颁布的《2024年普通高等学校招生全国统一考试大纲》,四川高考数学试卷分为理科数学和文科数学两个类别。
本文将对2024年四川高考数学考纲进行详细解析,以帮助广大考生更好地备战高考。
二、数学试卷结构与题型分布1.理科数学:(1)选择题:12题,每题6分,共计72分。
(2)填空题:10题,每题6分,共计60分。
(3)解答题:8题,每题20分,共计160分。
2.文科数学:(1)选择题:10题,每题6分,共计60分。
(2)填空题:8题,每题6分,共计48分。
(3)解答题:6题,每题20分,共计120分。
三、考试要求与难度等级1.理科数学:(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。
(2)解题能力:能运用数学公式、定理、性质解决题目,具备一定的数学思维能力。
(3)计算能力:熟练掌握各类计算方法,保证计算准确率。
2.文科数学:(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。
(2)解题能力:能运用数学公式、定理、性质解决简单题目,具备一定的数学思维能力。
(3)计算能力:熟练掌握基本计算方法,保证计算准确率。
四、备考策略与建议1.制定合理的学习计划,确保复习进度。
2.立足教材,打牢基础知识。
3.针对性地进行题型训练,提高解题速度和准确率。
4.定期进行模拟考试,检验复习成果,调整学习方法。
5.保持良好的心态,积极面对高考挑战。
总之,了解2024年四川高考数学考纲对于考生至关重要。
通过掌握考纲要求,合理制定备考策略,相信广大考生定能取得优异的成绩。
2024年全新数学大纲详细解读

2024年全新数学大纲详细解读前言本文档旨在深入解读2024年的全新数学大纲,为广大考生提供详尽、全面的指导。
我们将对大纲中的各个部分进行详细解析,以帮助考生更好地理解考试要求,把握考试方向。
一、大纲概述2024年数学大纲相较于以往有了较大的调整,充分体现了对学生综合能力的重视。
大纲分为两个部分:高中数学和大学数学。
1.1 高中数学高中数学部分主要包括:- 集合与函数概念- 实数与函数- 立体几何- 解析几何- 概率与统计- 算法与程序设计1.2 大学数学大学数学部分主要包括:- 高等数学- 线性代数- 概率论与数理统计- 离散数学二、考试要求2.1 高中数学高中数学考试要求学生掌握基本概念、公式、定理和方法,具备较强的运算能力和解决问题的能力。
具体要求如下:- 集合与函数概念:理解集合的基本运算,掌握函数的定义、性质及应用。
- 实数与函数:掌握实数的基本性质,理解函数的单调性、奇偶性、周期性等。
- 立体几何:熟悉空间几何的基本概念,掌握计算公式,能解决实际问题。
- 解析几何:理解坐标系下的几何图形,掌握方程式的变换和应用。
- 概率与统计:了解概率的基本原理,掌握统计方法及其应用。
- 算法与程序设计:掌握基本算法,能运用程序设计解决数学问题。
2.2 大学数学大学数学考试要求学生具备较强的抽象思维能力和逻辑推理能力,能运用数学知识解决实际问题。
具体要求如下:- 高等数学:理解极限、导数、积分等基本概念,掌握计算方法和应用。
- 线性代数:熟悉矩阵、向量、线性方程组等基本概念,掌握运算规则及应用。
- 概率论与数理统计:了解概率分布、随机变量、数理统计等基本概念,掌握计算方法和应用。
- 离散数学:理解图论、组合数学等基本概念,掌握计算方法和应用。
三、考试形式及评分标准3.1 考试形式考试形式分为选择题、填空题、解答题三种,题型丰富,考查学生的综合能力。
3.2 评分标准评分标准根据题目难度和答题正确程度进行评分,遵循公平、公正的原则。
2024年高考数学考试大纲

2024年高考数学考试大纲本部分包括必考内容和选考内容两部分,必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。
(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩(Venn)图表达集合的关系及运算。
2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图像理解和研究函数的性质。
(2) 指数函数①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。
④知道指数函数是一类重要的函数模型。
(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。
③知道对数函数是一类重要的函数模型。
④了解指数函数与对数函数互为反函数(a>0,且a≠1 )。
(4) 幂函数①了解幂函数的概念。
2024新高考数学考纲

2024年新高考数学考纲一、数学基础知识数学基础知识是高考数学考试的重要内容,涵盖了代数、几何、概率与统计等多个方面。
考生需要掌握以下内容:1. 代数部分:(1)函数:包括函数的定义、函数的性质(单调性、奇偶性、周期性等)、函数的应用等。
(2)数列:包括等差数列、等比数列的通项公式、求和公式等。
(3)不等式:包括不等式的性质、不等式的解法、不等式的证明等。
(4)解析几何:包括直线、圆、椭圆、双曲线的方程和性质等。
2. 几何部分:(1)平面几何:包括三角形、四边形、圆等图形的性质和判定等。
(2)立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。
3. 概率与统计部分:(1)概率:包括事件的概率、独立事件的概率、条件概率等。
(2)统计:包括数据的收集、整理、分析、描述等。
二、几何与空间几何与空间部分主要考察考生的空间想象能力和逻辑推理能力,考生需要掌握以下内容:1. 平面几何:包括三角形的重心坐标、四边形的对角线长度相等、圆的半径相等等基本性质。
2. 立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。
在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。
3. 解析几何:包括直线与圆的位置关系,椭圆、双曲线和抛物线的方程和性质等。
在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。
4. 空间向量:包括空间向量的加减运算、数乘运算、数量积运算等基本运算规则。
在解题过程中,考生需要能够运用空间向量的运算规则解决空间位置关系问题。
5. 图形变换:包括平移变换、旋转变换等基本变换规则。
在解题过程中,考生需要能够运用图形变换的规则解决几何作图和判断问题。
6. 圆的性质:包括圆的标准方程、一般方程和参数方程的求法,直线与圆的位置关系等。
在解题过程中,考生需要能够运用圆的性质解决直线与圆的位置关系问题。
高考数学必考题大纲解析

高考数学必考题大纲解析一、协议关键信息1、高考数学考试范围2、必考题的主要知识点3、各知识点的难度层次4、常见题型及解题技巧5、历年高考真题分析6、备考策略与时间规划二、高考数学考试范围1、集合与常用逻辑用语集合的概念、运算充分必要条件2、函数函数的概念、性质(单调性、奇偶性、周期性等)基本初等函数(指数函数、对数函数、幂函数)函数的图像函数的零点函数的最值与值域3、导数及其应用导数的定义、几何意义导数在研究函数单调性、极值、最值中的应用4、三角函数三角函数的定义、诱导公式同角三角函数的基本关系三角函数的图像和性质两角和与差的三角函数公式正余弦定理5、平面向量平面向量的概念、线性运算平面向量的数量积平面向量的坐标运算6、数列数列的概念、通项公式等差数列、等比数列的通项公式、求和公式数列求和的方法(裂项相消法、错位相减法等)7、不等式不等式的性质一元二次不等式的解法基本不等式线性规划8、立体几何空间几何体的结构、表面积和体积空间点、线、面的位置关系直线与平面、平面与平面的平行、垂直的判定与性质9、解析几何直线方程圆的方程椭圆、双曲线、抛物线的标准方程和性质直线与圆锥曲线的位置关系10、概率与统计随机事件的概率古典概型、几何概型抽样方法用样本估计总体变量的相关性统计案例三、必考题的主要知识点1、函数与导数利用导数研究函数的单调性、极值和最值是高考的重点和热点。
函数的奇偶性、周期性等性质的综合应用也经常考查。
复合函数的求导及应用。
2、三角函数三角函数的化简求值、图像和性质是必考点。
解三角形中正弦定理、余弦定理的应用。
3、数列等差数列和等比数列的通项公式、求和公式的应用。
数列递推关系的处理。
4、立体几何证明空间线面的平行、垂直关系。
求空间几何体的体积和表面积。
5、解析几何圆锥曲线的方程和性质。
直线与圆锥曲线的位置关系,涉及弦长、中点弦等问题。
6、概率与统计古典概型和几何概型的概率计算。
统计图表的分析和数据处理。
高考数学立体几何题考试大纲解读

高考数学立体几何题考试大纲解读在高考数学中,立体几何题一直是重点和难点之一。
对于考生来说,深入理解考试大纲中关于立体几何的要求,是备考过程中至关重要的一环。
本文将对高考数学立体几何题的考试大纲进行详细解读,帮助考生更好地把握这部分内容。
一、考试大纲对立体几何知识的要求1、空间几何体考生需要掌握柱、锥、台、球及其简单组合体的结构特征,能够画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能够识别上述的三视图所表示的立体模型。
同时,还应会用斜二侧法画出它们的直观图,了解空间图形的不同表示形式以及它们之间的相互转化。
2、点、直线、平面之间的位置关系理解空间直线、平面位置关系的定义,了解可以作为推理依据的公理和定理。
比如,公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;公理 2:过不在一条直线上的三点,有且只有一个平面等。
能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。
3、空间向量与立体几何了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
会用空间向量的方法解决立体几何中的一些问题,比如求异面直线所成的角、直线与平面所成的角、二面角等。
二、立体几何题的常见题型1、证明题证明线线平行、线面平行、面面平行,线线垂直、线面垂直、面面垂直等位置关系。
这类题目通常需要考生熟练运用相关的定义、定理和性质,通过逻辑推理来完成证明。
2、计算题计算空间几何体的表面积、体积,以及点到平面的距离、异面直线所成的角、线面角、二面角等。
在计算过程中,往往需要考生建立合适的空间直角坐标系,利用空间向量的方法来求解。
3、综合题将立体几何的知识与其他数学知识(如函数、不等式等)相结合,考查考生的综合运用能力和解决问题的能力。
三、解题方法与技巧1、善于利用图形在解决立体几何问题时,要善于画出准确的图形,通过直观观察来帮助理解和分析问题。
同时,要注意图形的规范性和准确性,避免因图形错误而导致解题失误。
2024年高考数学考试大纲解析

2024年高考数学考试大纲解析高考,作为我国教育体系中的重要环节,一直备受关注。
而数学作为其中的主要学科之一,其考试大纲的变化更是牵动着无数考生和家长的心。
2024 年的高考数学考试大纲,在继承以往优秀传统的基础上,也有了一些新的调整和侧重点。
接下来,我们就来详细解析一下。
首先,从整体结构上看,2024 年高考数学大纲依然保持了必修课程、选择性必修课程和选修课程的基本框架。
这一框架的稳定性有助于考生在备考过程中有清晰的知识体系和学习路径。
在知识内容方面,函数与导数这一板块依然占据重要地位。
函数作为数学中的核心概念,其性质、图像以及应用的考查贯穿始终。
导数作为研究函数的有力工具,不仅要求考生掌握基本的求导法则,更注重考查其在解决实际问题中的应用,如利用导数求函数的单调性、极值和最值等。
三角函数和平面向量也是高考数学的重点内容。
对于三角函数,考生需要熟练掌握三角函数的基本公式、图像和性质,能够灵活运用它们解决各种与三角形相关的问题。
平面向量则侧重于考查向量的运算、平行与垂直关系,以及向量在几何问题中的应用。
数列部分,等差、等比数列的通项公式、求和公式是基础,同时还会考查数列的递推关系以及数列与不等式的综合应用。
考生需要具备较强的逻辑推理和运算能力。
立体几何方面,对空间几何体的结构特征、表面积和体积的计算要求考生有清晰的空间想象能力。
同时,空间直线与平面的位置关系,以及二面角、线面角等的求解也是考查的重点。
解析几何一直是高考数学中的难点。
椭圆、双曲线、抛物线的方程和性质是必备知识,而且常常与直线方程相结合,考查考生的综合解题能力。
在解决解析几何问题时,考生需要熟练运用代数方法和几何性质,通过联立方程、消元等手段求解。
概率统计部分,随机事件的概率、古典概型、几何概型等基础知识需要扎实掌握。
同时,统计中的抽样方法、数据的数字特征、变量的相关性以及统计案例等内容也在考查范围内。
值得注意的是,2024 年高考数学大纲更加注重对数学思维和能力的考查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:2011年全国卷I高考数学试题分析难度低于去年今年的数学高考试题与新课程改革紧密结合,全卷总体难度低于去年全国卷。
与2010年全国高考数学试题结构相同,分值相同。
具体来说,单项选择题12道,填空题4道,共80分;解答题5道,共60分;唯一不同的是选做题,选做题3道(三选一),分值10分。
试题主要内容分布在函数(含导数)、不等式、数列、立体几何、解析几何、概率统计、三角等主干知识上。
今年数学试题紧扣数学科考试大纲,强调基础与能力并重、知识与能力并举,突出考查了思维、运算、空间等几方面的能力,题目所涉及的知识内容限定在考试大纲的范围内,突出考查了函数、不等式、数列、直线与平面、解析几何、导数与统计等高中数学的重要内容,体现了“重点知识重点考查”的原则。
对教材新增内容的考查全面,且难易适度,既体现了基础知识的与时俱进又有利于中学数学教学。
对数学思想和方法的考查始终贯穿于试卷之中,对旧教材内容的考查和去年相比更注重基础和常规方法。
新课标数学卷有以下几个主要特点:1.保持稳定,亲切平和试题在题型、题量、分值、难度、知识分布与覆盖上保持相对稳定,避免了大起大落。
函数知识约22分,立体几何约22分,圆锥曲线约22分,三角知识约15分,数列12分,概率统计约15分,不等式及其应用约15分,向量、二项展开式、积分、复数及算法各5分。
考生可能感觉题目似曾相识,与此前的模拟练习很类似,因此心情也会比较平静,能把潜力最大限度地发挥出来。
2.重视基础,立足教材试题源于教材,以考查高中基础知识为主线,在基础中考查能力。
理科前6道选择题及第9题都是考查基本概念和公式的题型,相当于课本习题的变式题型。
填空题的难度相对较低,均属常规题型。
解答题的前三道题分别考查等比数列的通项公式,裂项求和,空间线面位置关系,利用空间直角坐标系求二面角,及统计分布列数学期望等基础知识,属中低档难度题。
3.考查全面,强化综合今年数学试题所涉及的知识内容限定在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
在重基础的同时,注重知识综合方面的考查,在知识交汇点处出题。
如理科第10题体现了向量、不等式与三角的综合;(2011年.新课程.理.10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P 【命题意图】本题主要考查向量的数量积运算.【解析】逐个判断.因为,a b 都是单位向量,所以()21211cos 0,23a b a b πθθ⎡⎫+>⇔+>⇔>-⇔∈⎪⎢⎣⎭,命题1p 正确,2p 错误;()2111cos ,23a b a b πθθπ⎛⎤->⇔->⇔<⇔∈ ⎥⎝⎦,命题4p 正确,3p 错误,所以真命题是1p,4p .第16题体现了正弦定理与三角变换及最值问题的综合; (2011年.新课程.理.16)在ABC 中,60,B AC ==2AB BC +的最大值为。
【命题意图】本题主要考查正弦定理的应用,考查三角恒等变换.【解析】在△ABC 中,由正弦定理得22sinAC R B ===,其中R 为△ABC 外接圆的半径,所以()()22sin 4sin 1204sin AB BC C C C C C ϕ+=+-=+=+,20,3C π⎛⎫∈ ⎪⎝⎭,所以2AB BC +的最大值为第20题体现了以向量为载体的轨迹问题,点到直线的距离及基本不等式的综合。
(2011年.新课程.理.20)(本小题满分12分)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA , MA AB MB BA ⋅=⋅,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
【命题意图】本题考查向量与解几的结合、轨迹方程的求解.考查导数的几何意义、基本不等式的应用.【参考答案】【点评】向量与解几的结合,要利用向量的坐标运算将向量问题坐标化,同时要注意基本不等式在求最值问题中的应用.4.多考想点,少考算点在以往的考试中,圆锥曲线方面题目的计算繁琐复杂,技巧性很强,对学生计算能力和细心程度都有较高要求,而今年的试题中圆锥曲线的题目不论小题还是解答题运算量都比较小,这有利于考生有一个良好的心态去解决后面的解答题,并充分发挥自己的真实水平。
今年的考题更注重考查数学思维方法,选择题与填空题都不需要过多的复杂计算就可得出结论。
5.着意思维,注重能力本试卷重视对常规思想方法的考查,如理科第12题考查数形结合的数学思想,通过利用两函数图象关于点(1,0)的对称性得出所有交点的横坐标之和;(2011年.新课程.理.12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8【命题意图】本题主要考查函数图象与性质,作出函数图象,利用图象的对称性解决问题是这类问题的常用方法.x【解析】作出两个函数的图象如图,由图象可知,函数11y x=-与 []2sin ,2,4y x x π=∈-的图象有8个交点,两两关于点A (1,0)对称,所以每两个对称点飞横坐标之和为2,故所有交点的横坐标之和为2×4=8. 理科第16题利用正弦定理把问题转化为三角求最值问题; 理科第21题是函数和导数的综合问题,突出考查分类讨论的数学思想。
(2011年.新课程.理.21)(本小题满分12分)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围。
【命题意图】本题考查导数的几何意义、应用导数研究函数的性质,考查分类讨论思想的应用.【参考答案】【点评】导数作为解决函数问题的有力工具,越来越受到重视,应用导数可以求函数单调区间、函数极值与最值,解决步骤一般是先求定义域,再求导,再解不等式或方程,列表得出结论;分离参数是一种重要方法,主要解决不等式恒成立、不等式有解、方程有解问题,通过分离参数转化为求函数最值或值域.试卷对能力的考查全面且重点突出,特别对空间想象能力、推理论证能力、数据处理能力以及应用意识的要求更高。
理科第6题(文科第8题)考查学生对三视图知识的掌握情况,突出考查学生的空间想象能力,要求适度。
(2011年.新课程.理.6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为【命题意图】本题主要考查三视图,考查空间想象能力.【解析】由三视图可知该几何体是一个三棱锥和半个圆锥构成的几何体,所以其侧视图可以是D.理科第15题和文科第16题则对学生的空间想象能力要求较高。
(2011年.新课程.理.15)已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,==则棱锥O ABCDAB BC-的体积为。
【命题意图】本题主要考查椎体的体积计算、多边形与外接圆之间的关系.【解析】因为矩形边长分别是6,=,所以球心0到矩形所在圆面的距离d==,所以棱锥O-ABCD的体积为2162⨯⨯=.3第18题学生完成第一问后,很容易可以建立空间直角坐标系求解,较2010年的新课标卷中的立体几何题要简单一些。
(2011年.新课程.理.18)(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。
【命题意图】本题考查空间直线与平面的位置关系,考查直线与平面垂直的证明、二面角的计算.【参考答案】【点评】立体几何中的证明题都是围绕平行与垂直两种特殊位置关系的证明展开的。
在关于平行的证明中,线面平行、面面平行是常考题型;在关于垂直的证明中,线线垂直、线面垂直、面面垂直都是常考题型,要理解并掌握传统方法和空间向量的方法,两者相互补充.理科第21题的第二问则很好地考查了学生的推理与论证能力。
此题的第一问是要根据已知条件求参数的值,意在考查导数的几何意义,属于基本题。
而第二问是恒成立问题,求参数的取值范围,对学生的推理论证能力有较高要求,有一定难度,想得满分也不容易。
(2011年.新课程.理.21)(本小题满分12分) 已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围。
【命题意图】本题考查导数的几何意义、应用导数研究函数的性质,考查分类讨论思想的应用.【参考答案】试卷还突出对新课程标准中新增的思想和方法的考查,如理科第3题(文科第5题)以程序框图为文本,考查算法的思想和读图的能力;(2011年.新课程.理.3)执行右面的程序框图,如果输入的N 是6,那么输出的p是(A)120(B)720(C)1440(D)5040【命题意图】本题主要考查程序框图、对程序框图的识图和应用.【解析】按照程序框图的顺序逐步执行,可知该程序框图执行6次后结束,所以输出的123456720 p=⨯⨯⨯⨯⨯=.理科第6题(文科第8题)给出了一个几何体的正视图和俯视图,让求此几何体的侧视图,突出考查考生读图、构图、画图的能力等;(2011年.新课程.理.6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为【命题意图】本题主要考查三视图,考查空间想象能力.【解析】由三视图可知该几何体是一个三棱锥和半个圆锥构成的几何体,所以其侧视图可以是D.理科第19题实际上是对概率统计思想以及数据处理能力的重点考查。
(2011年.新课程.理.19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【命题意图】本题考查应用数学知识解决实际问题的能力,考查对频率分布表的理解和应用、用样本估计总体、随机变量的分布列及数学期望.【参考答案】【点评】解决概率的实际应用题,首先要根据题意确定概率模型,选择概率公式,对于离散型随机变量的概率分布,要注意利用分布表中数据的特征进行检验,特殊分布列的期望或方差的计算可以直接应用公式,以简化计算..6.平和朴实,寓含深意部分题目初看都比较朴实、平和,都是考生熟悉的题干,但深入解题后又会发现与过去已做过的题目不同,即考生入手容易完成较难。