【人教版】2015年秋季五年级数学上册:第6、7、8单元教案设计及练习题(46页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六单元多边形的面积
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察,拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用表示平行四边形的面积,用表示平行四边形的底,用表示平行四边形的高,那么平行四边形的面积计算公式可以用来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
教学目标:
1.熟练运用平行四边形的面积公式计算平行四边形的面积,解决相关的实际问题。能根据底、高、面积三个量中的任意两个量,用算术方法或方程计算第三个量。
2.通过猜测、验证、比较发现平行四边形的面积与底和高的直接关系。
3.体会数学的应用价值及数学与生活的紧密联系。
教学重点:运用所学知识解决有关平行四边形面积的应用题。
教学难点:逆用平行四边形面积的计算公式。
教学准备:多媒体、一个平行四边形、一个长方形。
教学过程批注
一、基本训练
1.复习回顾:
师:上节课我们一起探究了平行四边形的面积计算公式,谁来说说要求面积必须知道
什么?怎样求?教师板书公式。
2.你能想办法求出下面两个平行四边形的面积吗?(练习十九第4题)
动手操作:画出已知底的高。
指名学生展示自己的作品,请其余学生作点评。
教师在以上图形中填入底和高的数据,学生口答。
3.只列式不计算:选择合适的底和高求平行四边形的面积。
学生先独立解答,再小组交流。
在解答中,教师提醒学生注意找准对应的底和高。
二、指导练习
1.补充题:
一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。
(2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?
学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。
学生边说,教师边课件演示。
教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。
教师:这与前面推导出来的梯形面积计算公式是一样的。
(3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。
学生边说,教师边课件演示。
其中的计算过程稍复杂,可配合教师讲解完成。
教师:这和前面推导出来的结论是一样的。
(4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?
学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。
学生发现两个三角形的底是多少,无法描述,不确定。这时,教师演示课件动画效果,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。
教师边课件演示。
教师:接下来的推导过程和方法④是一样的。
(5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。
教师课件演示。
教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)
三、学以致用
1.出示教材第96页例3。
教师:什么是横截面?
请学生独立解决,全班核对答案。
教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。
2.出示教材第96页“做一做”。
教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。
3.下面图中哪几个梯形的面积是相等的?为什么?
小结:这几个梯形的高相等,所以判断哪几个梯形的面积相等,只要看哪几个梯形的上底与下底的和相等就可以了。
四、回顾反思
教师:回顾本节课所学的容,你最大的收获是什么?
五、布置作业
完成教材第97页第1题到第5题。