流体力学7-6水面曲线分析讲解

合集下载

流体力学6,7,8章课后题答案

流体力学6,7,8章课后题答案

第六章 6-1解:层流状态下雷诺数Re 2000< 60.1Re 6.710vdv υ-⨯==⨯ ⇒60.120006.710v -⨯<⨯⇒62000 6.710/0.10.134(/)v m s -<⨯⨯= 即max 0.134/v m s =223max max max 0.13.140.1340.00105/ 1.05/44d Q Av v ms L sπ===⨯⨯≈=6-2解:层流状态下雷诺数Re 2000<3Re 20000.910120000.0450.1()vd d m d ρυ-=<⨯⨯⨯⇒<⇒<6-3解:3221.66100.21(/)0.13.1444Q v m s d π-⨯==≈⨯临界状态时Re 2000=52533Re Re0.210.1 1.0510(/)20001.05100.88109.2410()vd vd m s Pa s υυυμυρ---=⇒=⨯⇒==⨯⇒==⨯⨯⨯=⨯⋅ 6-4解:当输送的介质为水时:32210101270131444.(/)..Q v m s d π-⨯===⨯ 612701838632000151910..Re .vd υ-⨯===>⨯水 3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力粗糙。

当输送的介质为石油时:质量流量与水相等3310101010(/)Q kg s -=⨯⨯=31000118850.(/)Q m s == 2200118150********..(/)..Q v m s d π===⨯ 415030113184200011410..Re .vd υ-⨯===>⨯水3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力光滑。

6-5解:判断流态需先求出雷诺数()2900036009000088023144./..Re Q v m s Avd υ÷===⨯=冬季:421101./m s υ-⨯=40088021608820001110..Re ..vd υ-⨯===<⨯ ⇒ 流态为层流。

《水面曲线分析定》PPT课件

《水面曲线分析定》PPT课件
定性分析基本步骤:
1、首先看渠道、水流是否满足定性分析的前提条件;
2、用铅垂线将渠道分段,绘出渠道各段临界水深K-K线和正 常水深N-N线,将渠道流动空间分区;
3、选择已知水深的断面作为控制断面;
4、由控制断面处的已知水深确定所在流区的水面线型 式,并标明水面线类型。
精选ppt
13
补充:
五、棱柱体明渠恒定渐变流12种水面曲线的共同特点
6.6 棱柱体明渠中恒定非均匀渐变流水面曲线分析
一、定性分析的前提、依据:
前提:
1.长直的棱柱体明渠,且糙率n沿程不变; 2.水流为恒定流,流量Q沿程不变;
依据:棱柱体明渠恒定非均匀渐变流微分方程:
dh
i
Q2 K2
ds 1 Fr2
dh f (i, Fr) ds
精选ppt
1
前面相关内容回顾
1.明渠非均匀渐变流水力现象类型 壅水: (dh/ds)>0 ,水深沿程逐渐增加 降水: (dh/ds)<0 ,水深沿程逐渐减小
上游端 hh0,ddK hs 0K,0 水面线以N-N线为渐近线;
下游端 h, Kd hi ,即水面线是水平线。 ds
0i ik
0i ik
0i ik
精选ppt
8
b1:
dh 0 ds
降水曲线
dh
i
1
K0 K
2
ds
1 Fr2
上游端 hh0,ddK hs 0K0,水面线以N-N线为渐近线;
下游端 h hK, dK dhs 定 ,值 有与K-K线正交的趋势。
2.渐变流水面曲线的底坡类型
1——缓坡 2——陡坡 3——临界坡 0——平坡 ’——逆坡
精选ppt

水力学常用知识讲解(笔记)

水力学常用知识讲解(笔记)

《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。

描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。

4.表面张力特性:进行模型试验时需要考虑。

下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。

2.理想液体:忽略粘滞性的液体。

(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。

通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。

(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。

1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。

(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。

4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。

要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。

1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。

计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。

流体力学辅导材料7-第七章-明渠恒定流-【教学基本要求】-1

流体力学辅导材料7-第七章-明渠恒定流-【教学基本要求】-1

流体力学辅导材料7第七章 明渠恒定流【教学基本要求】1、理解明渠分类,掌握梯形渠道和矩形渠道过流断面的水力要素计算。

2、理解明渠恒定均匀流形成条件,,掌握明渠恒定均匀流水力特征。

3、掌握明渠恒定均匀流水力计算基本公式。

4、理解水力最优断面与允许流速的概念。

5、会进行明渠恒定均匀流水力计算(求流量、底坡、断面尺寸的确定等)。

6、理解明渠恒定非均匀流形成条件及明渠恒定非均匀流水力特征。

6、理解明渠水流的流态(缓流、临界流、急流),掌握其判别标准。

7、理解断面单位能量s E 、临界水深K h 、临界底坡K i 等概念。

8、了解弗劳德数Fr 的物理意义,熟悉其数学表达式。

9、了解水跃、跌水现象和流动特征,知道水跃方程、共轭水深、水跃能量损失和跃的计算。

10、知道明渠恒定非均匀渐变流微分方程。

11、会进行棱柱形渠道水面曲线定性分析。

12、会进行棱柱形渠道恒定非均匀渐变流水面曲线计算(分段求和法)。

【学 习 重 点】1、明渠的分类,明渠恒定均匀流的水流特征,及其形成条件。

2、明渠恒定均匀流计算基本公式。

3、明渠断面形状、尺寸,底坡的设计及其水力计算。

4、缓流、急流、临界流及其判别标准。

5、断面单位能量、临界水深、临界底坡等概念。

6、跌水、水跃水流特征,共轭水深等概念。

7、棱柱形渠道恒定非均匀渐变流水面曲线的变化规律及其定性分析。

8、棱柱形渠道恒定非均匀渐变流水面曲线的计算(分段求和法)。

【内容提要和学习指导】一.概述明渠水流是指河道或渠道中水流,其自由表面为大气压,相对压强为0,亦称无压流。

本章介绍明渠的分类,明渠水流特征,及其水力计算。

本章分为两大部分:第一部分为明渠恒定均匀流。

第二部分为明渠恒定非均匀流。

这一章的基本概念较多,要多从物理意义上加以理解。

有些水力计算比较繁,如梯形断面渠道的断面尺寸的设计、共轭水深、水面曲线的计算,要求掌握其计算方法,利用相关资料会进行计算。

考核内容为基本概念和矩形断面渠道的水力计算。

流体力学7-6水面曲线分析

流体力学7-6水面曲线分析
第六节
一、概述
棱柱形渠道恒定非均匀渐变流 水面曲线的分析
明渠非均匀流水深沿程变化,自由水面线是和渠底不 h f (s) 平行的曲线,称为水面曲线
1、根据沿程v、h变化程度不同 非均匀渐变流
非均匀急变流
2、定性分析
壅水曲线:h沿程增加,dh/ds>0 降水曲线:h沿程减少,dh/ds<0 均匀流: h沿程不变,dh/ds=0
dh Q dh i B J 0 3 ds gA ds
2
3
棱柱形渠道非均匀渐 变流微分方程
dh ds
iJ 1
Q2
gA
3
B
iJ 1 Fr
上式是在顺坡(i>0)的情况下得出的,是分析计
算水面曲线的理论基础。
三、水面曲线分析的二线三区
水面曲线的变化决定于式中分子、分母的正负变化。 分子i-J=0 对应两条直线将水面曲线 分成变化规律不同三个曲域 分母1-Fr =0 分析i-J/(1-Fr)的正负(单调增减性),便可得到水面 曲线沿程变化的趋势及两端极限情况
2
3 曲线 S1
S2
S3
hc > h> h0 急流
hc >h0 > h 急流
+ - -
+
下凹的降水曲线
上凸的壅水曲线
S2
S3
上游渐近线 下游渐近线 工程实例 水跃h→hc 水平线h→∞ 修挡水建筑物 dh/ds→∞正交 dh/ds→i 静止 水跌h→hc N-N线h→h0 dh/ds→-∞正交 dh/ds→0 均匀流 由缓坡入急坡 受出流条件限制 挡水建筑物下泄 同上
4
1、分界线h0、hc 正常水深线:N-N(分子为零)

工程流体力学第7章明渠恒定流动

工程流体力学第7章明渠恒定流动

水力最优断面一般适合于中小型渠道
§7-2 明渠均匀流
2 .允许流速
vmin v vmax
不淤积 不冲刷
其中:vmax为免遭冲刷的最大允许流速,表7-1、7-2给出了 各种渠道免遭冲刷的最大允许流速; vmin为免遭淤积的最小允许流速,一般在0.5m/s左右, 也可采用经验公式计算:
vmin h0.64
断面形状、尺寸及底 坡沿程不变,同时又无弯 曲的渠道,称为棱柱体渠 道(重点掌握)。
§7-1 明渠的分类
按渠底坡度分 ☆平坡渠道 i 0 ☆顺坡渠道 i 0 ☆逆坡渠道 i 0
§7-2 明渠均匀流
一、明渠均匀流的特征及形成条件
v 0 (等速流) 1 .据均匀流定义 s
db dA ( b mh ) h ( m) 0 dh dh d db 2 1 m 2 0 dh dh
db 消去 dh
,则
h
b 2 h


1 m2 m

(h m)h
Rh
h
Ah
(b mh)h b 2h 1 m2
或定义:当i、n、Q一定时,使 A Amin 的渠道断面形状, 称为明渠水力最优断面。 ★说明:上述两种定义是等价的。 ★下面以第1种定义为例,寻求优化目标函数。
§7-2 明渠均匀流
Q Av AC Ri (引入v C Ri ) 1 1/ 6 1 2 / 3 1/ 2 AR i (引入C R ) n n 5/ 3 A 1 A 1/ 2 i (引入R ) 2/3 n
§7-2 明渠均匀流
或 其中
y f R, n 2.5 n 0.13 0.75 R ( n 0.1)

流体力学7 6水面曲线分析讲解

流体力学7 6水面曲线分析讲解
水跃 h→hc dh/ds→∞ 正交
工程实例 修挡水建筑物
末端跌坎
挡水建筑物下泄
7
h0
hc
水平线 M1
N-N M2
C-C
M3
i<ic
水平线
hc h0 i>ic
S1 C-C S2 N-N S3
8
2、急坡渠道 i>ic h0<hc
分区 曲线 水深h 流态 i-J 1-Fr dh/ds 曲线形状
1 S1 h> hc > h 0 缓流 + + + 上凸的壅水曲线 2 S2 hc > h> h0 急流 + - - 下凹的降水曲线 3 S3 hc >h 0 > h 急流 - - + 上凸的壅水曲线
?分析i-J/(1-Fr) 的正负(单调增减性 ),便可得到水面 曲线沿程变化的趋势及两端极限情况
4
1、分界线h0、hc
?正常水深线:N-N(分子为零) i-J=0
J=i
h=h 0 (渐近线)
?临界水深线:c-c(分子为零) 1-Fr =0
h=h c (正交)
2、流动分区
? 1区: N-N 、c-c线之上 ? 2区: N-N 、c-c线之间 ? 3区: N-N 、c-c线之下
时,最终都要趋于水平线 8、急流状态水面线控制水深在上游,缓流状态水面线控
制水深在下游,是由于微幅干扰波的影响 9、共有12条水面曲线,其中缓坡、急坡各 3条,临界坡、
平坡、逆坡各 2条,常用 M1、M2、M3、S2四条曲线
13
七、水面曲线的定性绘制步骤
1、绘出N-N线和C-C 线,将流动空间分成1、2、3三区,每个区域 只相应一种水面曲线。

第七章 明渠流动

第七章 明渠流动

画出h-K曲线,在K=40.82处找出 对应点h,h=0.83m。
【例7-2】土质为细砂土的梯形断面渠道,流量Q = 3.5 m3 /s , 底坡i = 0.005,边坡因数m= 1.5,粗糙系数n =0.025,免冲 允许流速υmax =0.32m/s 。 解 现分别就允许流速和 水力最优两种方案进行设计与比较。 第一方案 按允许流速υmax 进行设计 将A 、R 代入梯形断面几何尺寸表达式,得 A=(b+mh)h (a)
(2) 按渠道底坡的不同,分 为顺坡、平坡和逆坡渠道。 明渠底面一般是个倾斜平 面,它与渠道纵剖面的交 线称为渠底线,如图 7-2所 示。
渠底线与水平线交角θ的正弦称为渠底坡度,用i表示 。
z1 z2 z i sin i tan lx
第二方案 按水力最优条件进行设计
h 2( 1 m 2 m )
=0.61
即 b=0.61h A = (b + mh) h = 2 . 11 h2 又水力最优时 R= 0.5 h 将A 、R 代入流量公式得
Q AC Ri A 2 / 3 1/ 2 R i 3.77 h8 / 3 n
A b 2h 1 m
2
R
(b)
两式联立,可求得b和h 值。
【例7-1】有一梯形断面渠道,己知底坡i=0.0006,边坡系 数m=1.0,粗糙系数n=0.03,底宽b=1.5m,求通过流量 Q=1 m3/s 时的正常水深h。 解
K Q 1 =40.82 m3/s i 0.0006
1 K [bh mh 2 ]5 / 3 [b 2h 1 m 2 ] 2 / 3 n 1 [1.5h 1.0h 2 ]5 / 3 [1.5 2h 1 1.0 2 ] 2 / 3 0.03 33 .33[1.5h 1.0h 2 ]5 / 3 [1.5 2.83h] 2 / 3

流体力学 第七章 波浪理论

流体力学  第七章  波浪理论

第七章波浪理论课堂提问:为什么海面上“无风三尺浪”船舶与海洋工程中:船舶摇摆和拍击,船舶稳性,兴波阻力。

沿岸工程中:波浪对港口、防波堤的作用。

离岸工程中:钻井平台,海工建筑、海底油管等水波起制约作用的物理因素是重力,粘性力可略而不计,因此可用理想流体的势流理论来研究波浪运动的规律。

本章内容:着重介绍小振幅波(线性波)理论,相关内容为:1.小振幅波的基本方程和边界条件2.波浪运动的有关概念(波速、波长、周期、波数、频率、深水波、浅水波等)3. 流体质点的轨道运动4. 前进水波中的压力分布5. 波群与波群速6. 船波7. 波能传递与兴波阻力7-1 微振幅波的基本方程与边界条件§一简谐前进波沿x轴正向移动,h—水深(从平均水平面到底部的距离)η(x , t)—自由面在平均水面以上的瞬时垂直距离a—振幅H—波高,对于小振幅波 H = 2aL—波长(两相邻波峰或波谷间的距离)T—周期(固定点处重复出现波峰(或波谷)的时间间隔,或波形传播一个波长所需的间。

C—波速,或相速度(波阵面的传播速度) C = L/T (7-2)k—波数(2π距离内波的数目)K = 2π/L (7-3)σ—圆频率(2π时间内波振动的次数)σ=2π/T (7-4)微振幅波理论的基本假设1.理想不可压缩流体,重力不能忽略;2.运动是无旋的,具有速度势;3.波浪是微振幅波(线性波),即H<<L (7-5) 速度势φ(x ,z ,t ),满足xz v x v z ϕϕ∂=∂∂=∂ (7-6)且满足Laplace 方程:22220x zϕϕ∂∂+=∂∂(, )h z x η-<<-∞<<+∞ (7-7)底部条件(不可穿透条件):0z v z ϕ∂==∂( z = -h ) (7-8)自由表面边界条件:1z g t ηϕη=∂=-∂(7-10)令z=η,自由表面上相对压力p=0。

为使边界条件线性化,假定速度平方v 2→0 而得到。

水面

水面

z 从 12 种典型的水面线可以看出,对非均匀流而言,陡坡上可能形成缓流,缓坡上可能 形成急流。
z 矩形断面的临界水深和临界坡度可用公式:
=
g αCc2
Pc b
计算,其中q为单宽流量,Cc为临界流时的谢才系数,Pc为临界流时湿周,b为槽宽,α 可
取 1.0-1.1 .
同时根据上槽、下槽的底坡大小与闸门开度的大小,判别上下游水面线的衔接型式,与 实测结果相比较。 z 对上述比较中有不一致的情况,应进行分析并说明影响因素。
分析思考问题
1. 在图 4 中无水跃发生,而在图 5 中则有两个水跃出现,为什么? 2. 图 6 所示i1=0 和i2<0 的底坡情况下,有没有正常水深线N1-N1和N2-N2?为什么? 3. 影响临界水深hc的因素有哪些? 4. 根据实测流量、槽宽,应用分段法计算M1型S2型水面线数据。并与实测值进行比较,并
水面-1
图 1 非均匀渐变流水面曲线图
z 图中N-N线为正常水深h0线,C-C线为临界水深hc线。根据实际水深h与h0、hc的关系分为 1、2、3 区。水面曲线的型式和名称列如下表:
水槽底坡
与水流临界 坡度 i 比较
i > 0 正坡 i = 0 平底
i < iC 缓坡 i =iC 临界坡 i > iC 陡坡
图3
2. 调整上下游槽底坡度,使i1<ic(为缓坡)和i2>ic(为陡坡),流量Q不变。此时在水槽上 游段下部出现M2型降水曲线,在下游段的上部出现S2降水曲线,M2和S2二段曲线通过hc 相衔接。M2曲线的上游趋向明槽上游段正常水深h01,S2曲线的下游趋向明槽下游段正常 水深h02 . 沿流程用测针量测S2型曲线中不同断面的水深hi及各断面的距离Δs,并作详细 记录。

流体力学讲义-第十章-堰流

流体力学讲义-第十章-堰流

第十章堰流堰流是明渠缓流由于流动边界急剧变化而引起的明渠急变流现象.本章主要介绍各类堰流的水力特征、基本公式、应用特点及水力计算方法.概述一、堰和堰流堰:在明渠缓流中设置障壁,它既能壅高渠中的水位,又能自然溢流,这障壁就称为堰。

堰流(weir flow):缓流越过阻水的堰墙溢出流动的局部水流现象称为堰流。

选择:堰流特定的局部现象是: A。

缓流通过障壁; B.缓流溢过障壁; C。

急流通过障壁; D.急流溢过障壁.研究堰流的主要目的:探讨流经堰的流量Q及与堰流有关的特征量之间的关系.堰流的基本特征量(图10—1)1。

堰顶水头H;2。

堰宽b;3.上游堰高P、下游堰高P1;图10—14.堰顶厚度δ;5。

上、下水位差Z;6.堰前行近流速υ0.二、堰的分类1.根据堰壁厚度d与水头H的关系,如图10—2:图10-2图10-32。

根据上游渠道宽度B与堰宽b的关系,图10-4:3.根据堰与水流方向的交角:图10-44.按下游水位是否影响堰流性质:5。

按堰口的形状:堰可分为矩形堰、梯形堰、三角堰.三、堰流及孔流的界限1。

堰流:当闸门启出水面,不影响闸坝泄流量时。

孔流:当闸门未启出水面,以致影响闸坝泄流量时。

2。

堰流和孔流的判别式(1)宽顶堰式闸坝堰流:e/H ≥0。

65 孔流:e/H <0.65(2)实用堰式闸坝(闸门位于堰顶最高点时)堰流:e/H ≥0.75 孔流: e/H 〈0.75式中:e——闸门开启高度; H—-堰孔水头。

判断:从能量角度看,堰流和闸孔出流的过程都是一种势能转化为动能的过程。

对第一节堰流的基本公式一、堰流基本公式推导(图10-7)由大孔口的流量公式(7-6)及,并考虑上游行近流速的影响,令图10—6得堰流的基本公式:(10-1)式中:m-—堰流流量系数,m=。

二、堰流公式图10—7若考虑到侧收缩影响及淹没影响,则堰流公式为:(10-2)(10-3)式中:——淹没系数,≤1.0;-—侧收缩系数,≤1。

流体力学第7章不可压缩理想流体的平面运动(简化版)

流体力学第7章不可压缩理想流体的平面运动(简化版)

AB AB dvx x lim t 0 xt dx
把εx叫做线段AB在x轴的线变形速度。
6
对于三维问题则有
v y vx vz x , y , z x y z
下标x,y,z表示变形发生的方向。 对于不可压缩流体,在变形过程中,体积不 发生改变,则有
dy
A
o
dx vx
II
流线
x
在虚线AB上取一微元弧段dl,显然,vxdy是经 dl从区I进入区II的流量, vydx是经dl从II区 进入I 区的流量,那么经dl从I区进入II区的净流量为
33
dq vx dy v y dx
对虚线积分可得到两条流线之间的总流量
q dq vx dy v y dx d B A
15

例:如图一维剪切流动中,流体速度分布为
v x cy, v y 0
其中c为常数。判断流动是否无旋? v0 y x vx
16
由判断条件
1 v y v x 1 z ( ) c0 2 x y 2
故运动是有旋的。
17
例:图示为流体质点绕某一圆心的旋转运动。已知 流体速度分布为
工程上有许多问题可简化为理想流体的
无旋流动问题,如流体机械内的流动。利 用无旋流动的特性,可建立线性运动方程 来求解流体的速度分布,从而避开求解欧 拉方程的困难。
20
7.3.1速度势函数
对于无旋流动,速度的旋度为零,即
v 2 0
此时流体质点都要满足以下条件
v x v y v z v x v y v z , , y x x z z y
39
练习
试求下面不可压缩流场的流函数及速度势:

(完整版)流体力学名词解释

(完整版)流体力学名词解释

第一章绪论物质的三种形态:固体、液体和气体。

液体和气体统称为流体。

流体的基本特征:具有流动性。

所谓流动性,即流体在静止时不能承受剪切力,只要剪切力存在,流体就会流动。

流体无论静止或流动,都不能承受拉力。

连续介质假设:把流体当做是由密集质点构成的、内部无空隙的连续体。

质点:是指大小同所有流动空间相比微不足道,又含有大量分子,具有一定质量的流体微元。

作用在流体上的力按其作用方式可分为:表面力和质量力。

表面力:通过直接接触,作用在所取流体表面上的力(压力、摩擦力),在某一点用应力表示。

质量力:作用于流体的每个质点上且与流体质量成正比的力(重力、惯性力、引力),用单位质量力表示流体的主要物理性质:惯性、粘性、压缩性和膨胀性。

惯性:物体保持原有运动状态的性质,其大小用质量表示。

密度:单位体积的质量,粘性:是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性。

流体粘性大小用粘度度量,粘度包括动力粘度和运动粘度无粘性流体:指无粘性,即=0的流体。

不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。

压缩性:流体受压,分子间距减小,体积缩小的性质。

膨胀性:流体受热,分子压缩系数:在一定的温度下,增加单位压强,液体体积的相对减小值,,体积模量体膨胀系数:在一定的压强下,单位温升,液体体积的相对增加值,(简答)简述气体和液体粘度随压强和温度的变化趋势及不同的原因。

答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。

\第二章流体静力学绝对压强pabs:以没有气体分子存在的完全真空为基准起算的压强。

相对压强p:以当地大气压pa为基准起算的压强,各种压力表测得的压强为相对压强,相对压强又称为表压强或计示压强。

真空度pv:绝对压强小于当地大气压的数值。

测量压强做常用的仪器有:液柱式测压计和金属测压表。

流体力学辅导材料7--明渠恒定流-【教学基本要求】-1教学总结

流体力学辅导材料7--明渠恒定流-【教学基本要求】-1教学总结

流体力学辅导材料7第七章明渠恒定流【教学基本要求】1、理解明渠分类,掌握梯形渠道和矩形渠道过流断面的水力要素计算。

2、理解明渠恒定均匀流形成条件,,掌握明渠恒定均匀流水力特征。

3、掌握明渠恒定均匀流水力计算基本公式。

4、理解水力最优断面与允许流速的概念。

5、会进行明渠恒定均匀流水力计算(求流量、底坡、断面尺寸的确定等)。

6、理解明渠恒定非均匀流形成条件及明渠恒定非均匀流水力特征。

6、理解明渠水流的流态(缓流、临界流、急流),掌握其判别标准。

7、理解断面单位能量E s、临界水深h K、临界底坡i K等概念。

8、了解弗劳德数Fr 的物理意义,熟悉其数学表达式。

9、了解水跃、跌水现象和流动特征,知道水跃方程、共轭水深、水跃能量损失和跃的计算。

10、知道明渠恒定非均匀渐变流微分方程。

11、会进行棱柱形渠道水面曲线定性分析。

12、会进行棱柱形渠道恒定非均匀渐变流水面曲线计算(分段求和法)。

【学习重点】1、明渠的分类,明渠恒定均匀流的水流特征,及其形成条件。

2、明渠恒定均匀流计算基本公式。

3、明渠断面形状、尺寸,底坡的设计及其水力计算。

4、缓流、急流、临界流及其判别标准。

5、断面单位能量、临界水深、临界底坡等概念。

6、跌水、水跃水流特征,共轭水深等概念。

7、棱柱形渠道恒定非均匀渐变流水面曲线的变化规律及其定性分析。

8、棱柱形渠道恒定非均匀渐变流水面曲线的计算(分段求和法)。

【内容提要和学习指导】一. 概述明渠水流是指河道或渠道中水流,其自由表面为大气压,相对压强为0,亦称无压流。

本章介绍明渠的分类,明渠水流特征,及其水力计算。

本章分为两大部分:第一部分为明渠恒定均匀流。

第二部分为明渠恒定非均匀流。

这一章的基本概念较多,要多从物理意义上加以理解。

有些水力计算比较繁,如梯形断面渠道的断面尺寸的设计、共轭水深、水面曲线的计算,要求掌握其计算方法,利用相关资料会进行计算。

考核内容为基本概念和矩形断面渠道的水力计算。

水面曲线分析定

水面曲线分析定
前面相关内容回顾
1.明渠非均匀渐变流水力现象类型
壅水: (dh/ds)>0 ,水深沿程逐渐增加 降水: (dh/ds)<0 ,水深沿程逐渐减小
1 3 2
i0
顺坡 2.明渠底坡 类型 缓坡
0 i ik
i0
平坡
i ik
临界坡
i0
逆坡
i ik
陡坡
3.明渠水流状态的判别
水流状态
缓流
a区:在N-N线和K-K线之上的区域
b区:在N-N线和K-K线之间的区域 c区:在N-N线和K-K线之下的区域 1——缓坡 2——陡坡 3——临界坡 0——平坡 ’——逆坡
2.渐变流水面曲线的底坡类型
棱柱体明渠恒定渐变流水面曲线的十二种类型
i>0 i<ik ,h0>hk
Nቤተ መጻሕፍቲ ባይዱK
i>0 i>ik h0<hk
0 i ik
b 1:
dh 0 ds
降水曲线
K0 1 dh K i ds 1 Fr 2
2
上游端 h h0 , dh ,水面线以N-N线为渐近线; 0 K K 0 ds
下游端 h hK ,
dh K 定值 , ds
有与K-K线正交的趋势。
临界流
急流
判别指标
Fr
hk ik(均匀流) Vw dEs/dh
Fr<1
h>hk i<ik V<Vw
Fr=1
h=hk i=ik V=Vw
Fr>1
h<hk i>ik V>Vw
dEs/dh>0 dEs/dh= 0 dEs/dh<0

流体力学重难点分析(4)

流体力学重难点分析(4)

流体力学重难点分析(4)第6章 明槽恒定流动【内容提要和学习指导】这一章是工程水力学部分内容最丰富也是实际应用最广泛的一章。

本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析和计算,这部分也是本章的难点;水跃的特性和共轭水深计算。

学习中应围绕这4个重点,掌握相关的基本概念和计算公式。

这一讲我们讨论前2个问题,后面2个问题将放在第7讲讨论。

明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件和渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。

6.1 明槽和明槽水流的几何特征和分类(1) 明槽水流的分类 明槽恒定均匀流明槽恒定非均匀流明槽非恒定非均匀流明槽非恒定均匀流在自然界是不可能出现的。

明槽非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。

(2) 明槽梯形断面水力要素的计算公式:水面宽度 B = b +2 mh (6—1) 过水断面面积 A =(b + mh )h (6—2) 湿周 (6—3) 水力半径 (6—4) 式中:b 为梯形断面底宽,m 为梯形断面边坡系数,h 为梯形断面水深。

(3)当渠道的断面形状和尺寸沿流程不变的长直渠道我们称为棱柱体渠道。

(4)掌握明渠底坡的定义,明渠有三种底坡:正坡(i >0)平坡(i =0)和逆坡(i <0。

6.2明槽均匀流特性和计算公式(1)明槽均匀流的特征:a )均匀流过水断面的形状、尺寸沿流程不变,特别是水深h 沿程不变,这个水深也称为正常水深。

b )过水断面上的流速分布和断面平均流速沿流程不变。

212m h b x ++=212)(m h b h mh b x A R +++==c )总水头线坡度、水面坡度、渠底坡度三者相等,J = J s = I 。

即水流的总水头线、水面线和渠底线三条线平行。

从力学意义上来说:均匀流在水流方向上的重力分量必须与渠道边界的摩擦阻力相等才能形成均匀流。

工程流体力学试题及答案1.

工程流体力学试题及答案1.

一\选择题部分(1在水力学中,单位质量力是指(答案:ca、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。

(2在平衡液体中,质量力与等压面(答案:da、重合;b、平行c、相交;d、正交。

(3液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4水力学中的一维流动是指(答案:da、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。

(5有压管道的管径d与管流水力半径的比值d /R=(答案:ba、8;b、4;c、2;d、1。

(6已知液体流动的沿程水力摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于答案:ca、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区(7突然完全关闭管道末端的阀门,产生直接水击。

已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为答案:ca、1.54m b 、2.0m c 、2.45m d、3.22m(8在明渠中不可以发生的流动是(答案:ca、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。

(9在缓坡明渠中不可以发生的流动是(答案:b。

a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。

(10底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为答案:ba、缓流;b、急流;c、临界流;(11闸孔出流的流量Q与闸前水头的H(答案:d 成正比。

a、1次方b、2次方c、3/2次方d、1/2次方(12渗流研究的对象是(答案:a 的运动规律。

a、重力水;b、毛细水;c、气态水;d、薄膜水。

(13测量水槽中某点水流流速的仪器有答案:ba、文丘里计b、毕托管c、测压管d、薄壁堰(14按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为答案:da、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。

流体力学答案(3,4)

流体力学答案(3,4)

第三、四章 习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。

求流线方程并画出若干条流线。

解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋哪个无旋哪个有角变形哪个无角变形(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。

z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。

解:(1)110 ()()22y xx y z u u a a a x y ωωω∂∂===-=+=∂∂有旋流动xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形(2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。

流体力学6分析

流体力学6分析

图6.5 驻波
驻波的波长 、波数k和圆频率与进行波有相同的关系
2
k
T 2
2.质点速度
质点速度公式如下:
u
x
A0ekz
cos kx cost
w
z
A0ekz
sin kx cost
在峰节或点波谷x 处nk,π u处,0w,w
0 ,u 0 ,质点仅作水平运动;在波 0,质点仅作上下垂直运动;而其
t 2
6.2.3 微幅进行波的基本方程和边界条件
相界对条于件引波 线进长 性微化幅 ,波为从假小而定量在。,求所或解谓A上微0 较幅1为波,简,它单是使。指得波自动由的表振面幅上A边0
对于微幅波可作如下三个假设: (1)质点运动速度很小,12 2 项可以略去;
(2)自由表面对水平面z 0的偏离很小,可用水平面 z 0的物理量来代替自由面 z (x, y,t) 上的物理量;
则利用水中运动物体表面不可穿透条件为
dF d (z ) 0
dt dt
运动学条件为(利用水中运动物体表面不可穿透条件) :
当z x, y,t时,
z t x x y y 自由表面动力学条件(设自由表面上的压强为 pa , 相对压强 p 0 。
当z x, y,t时,
g 1 2 0
次数;
T
(7)波数
k:2π 长度内所包含波的个数,显然
k

(8)波速(相位速度)c:波面向右(或向左)推进的速度
c
Tk
(9)波倾角:波面的倾斜度
tan z
x
(10)圆频率 : 2πf 2π ,它表示单位时间转动的角
度。
T
6.2 波浪运动的基本方程与边界条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分区 曲线 水深h 流态 i-J 1-Fr dh/ds 曲线形状
1 M1 h> h0>hc 缓流 + + + 下凹的壅水曲线
2 M2 h0 > h >hc 缓流 - + - 上凸的降水曲线 3 M3 h0>hc > h 急流 - - + 下凹的壅水曲线
曲线 上游渐近线 M1 Ndh-N/d线s→h→0 均h0匀流
第六节 棱柱形渠道恒定非均匀渐变流 水面曲线的分析
一、概述
明渠非均匀流水深沿程变化,自由水面线是和渠底不
平行的曲线,称为水面曲线 h f (s) 1、根据沿程v、h变化程度不同 非均匀渐变流
非均匀急变流
2、定性分析
壅水曲线:h沿程增加,dh/ds>0 降水曲线:h沿程减少,dh/ds<0 均匀流: h沿程不变,dh/ds=0
0
ds gA3 ds
3
棱柱形渠道非均匀渐 变流微分方程
dh i J i J
ds
Q 2 1 Fr
1 B
gA 3
上式是在顺坡(i>0)的情况下得出的,是分析计 算水面曲线的理论基础。
三、水面曲线分析的二线三区
水面曲线的变化决定于式中分子、分母的正负变化。
对应两条直线将水面曲线 分成变化规律不同三个曲域
2、急坡渠道 i>ic h0<hc
分区 曲线 水深h 流态 i-J 1-Fr dh/ds 曲线形状
1 S1 h> hc > h0 缓流 + + + 上凸的壅水曲线 2 S2 hc > h> h0 急流 + - - 下凹的降水曲线 3 S3 hc >h0 > h 急流 - - + 上凸的壅水曲线
曲线 上游渐近线
分子i-J=0 分母1-Fr =0
分析i-J/(1-Fr)的正负(单调增减性),便可得到水面 曲线沿程变化的趋势及两端极限情况
4
1、分界线h0、hc
正常水深线:N-N(分子为零) i-J=0
J=i
h=h0 (渐近线)
临界水深线:c-c(分子为零) 1-Fr =0
h=hc (正交)
2、流动分区
水力坡度 J = dhf / ds
棱柱形明渠 A f (h) dA dA dh B dh
ds dh ds
ds
d ds
2

2g


d ds

Q2
2gA2


Q2
gA3
dA ds

Q2
gA3
B
dh ds
i
Байду номын сангаас
dh
Q2

B
dh
J
C-C(N-N)
C3
C1
i=ic
h0 =hc
10
4、平坡渠道 i=0
C-C
H2
hc
H3
i=0
5、逆坡渠道 i<0
C-C
A2
hc
A3
i<0
11
六、水面曲线分析的总结
棱柱形渠道可能出现的12种渐变流水面曲线,汇总 简图及工程实例见P180表7-7: 1、由一定流量下的正常水深线N-N与临界水深线C-C,将 明渠流动空间分区。此时N-N、C-C不是渠道中的实 际水面线,而是流动空间分区的界线
dz dh d (2 ) dhf 0
ds ds ds 2g ds
2
2g
h z
1
dhf
( d )2
2g
h+dh
ds
z+dz
0-0
2
2
dz dh d ( 2 ) dhf 0
ds ds ds 2g ds
底坡
dz z2 z1 i
ds
ds
M2
同上
M3 受出流条件限制
下游渐近线
水平线h→∞ dh/ds→i 静止 水跌h→hc dh/ds→-∞正交 水跃h→hc dh/ds→∞正交
工程实例 修挡水建筑物
末端跌坎
挡水建筑物下泄
7
h0
hc
水平线 M1
N-N M2
C-C
M3
i<ic
水平线
hc h0 i>ic
S1 C-C S2 N-N S3
8
2、平坡i=0 3、逆坡i<0
H2、H3 A2、A3
M1、M2、M3 C1、C2 S1、S2、S3
共12条
通过dh/ds、 h、h0、hc及i的不同组合,便可形成明 渠非均匀流水面曲线的各种变化
dh ds

0,
dh ds

0,
dh ds

0,
dh ds
i,
dh ds


6
五、水面曲线的分析
1、缓坡渠道 0<i<ic h0>hc
2、微分方程式在每一区域内的解是唯一的,因此每一区 域内的水面线形状可唯一确定
3、壅水曲线在l、3区,降水曲线在2区
4、除C1、C3型外,所有水面线在水深趋于正常水深h0时, 渐近线为N-N,在水深趋于临界水深hc时,与C-C线垂
直正交,发生运动状态的突变,即水跃或水跌;
12
5、临界流特殊,水平趋向C-C线,水平离开C-C线 6、对于均匀流水面曲线最终与N-N线渐进相切,代表h0 7、水深不能无限增加,dh/ds≠∞,当水深向上下游加深
M2 B
C S2
i1<ic
B
End
i2> ic
C N2-N2
14
第七章作业 1~6、8~12
15
时,最终都要趋于水平线 8、急流状态水面线控制水深在上游,缓流状态水面线控
制水深在下游,是由于微幅干扰波的影响 9、共有12条水面曲线,其中缓坡、急坡各3条,临界坡、
平坡、逆坡各2条,常用M1、M2、M3、S2四条曲线
13
七、水面曲线的定性绘制步骤
1、绘出N-N线和C-C线,将流动空间分成1、2、3三区,每个区域 只相应一种水面曲线。
1区:N-N、c-c线之上 2区:N-N、c-c线之间 3区:N-N、c-c线之下
h0 hc
1区 2区 3区
N-N c-c
ic>i>0
不同区域的水面曲线形状不同,只要知道底 坡形状,判断所处区域就可画出水面曲线。
5
四、流动边界(底坡)
缓坡 0<i<ic
1、顺坡i>0 临界坡 i=ic
急坡 i>ic
1
二、棱柱形渠道恒定非均匀渐变流微分方程
取恒定非均匀渐变流段ds列伯诺里方程,运动要素相
差微小量
z
h 2
2g

(z dz) (h dh) ( d)2
2g
dh l
展开(v+dv)2,忽略(dv)2
dz
dh
2
d( 2g
) dhl

0
忽略hm,dhl= dhf,同除ds
2、选择控制断面。应选在水深为已知,且位置确定的断面上,然后 以控制断面为起点进行分析计算,确定水面曲线的类型,并参照 其增深、减深的形状和边界情况
3、如果水面曲线中断,出现了不连续而产生跌水或水跃时,要作 具体分析,一般情况下,水流至跌坎处便形成跌水现象,水流从急 流到缓流,便发生水跃现象。
N1-N1
S1
水跃h→hc dh/ds→∞正交
S2
水跌h→hc dh/ds→-∞正交
S3 受出流条件限制
下游渐近线
工程实例
水平线h→∞ dh/ds→i 静止
修挡水建筑物
Ndh-N/d线s→h→0 均h0匀流 由缓坡入急坡
同上
挡水建筑物下泄
9
3、临界坡渠道 i=ic h0=hc
只存在C1型壅水曲线和C3型壅水曲线
相关文档
最新文档