典型系统动态性能和稳定性分析

合集下载

5-5稳定裕度和稳定性能分析

5-5稳定裕度和稳定性能分析

-1
0
1
临界稳定
相角裕度的含义:保持系统稳定的前提下,开环 频率特性允许增加的滞后相角。 幅值裕度的含义:保持系统稳定的前提下,开环 频率特性的幅值允许增加到的倍数。
j 1/h j
-1
ωx
b a
ω =∞
0
γ <0
1
ωc
-1 b 0 a
ωx
ω =∞
1
γ >0
ωc
1/h
ω =0
ω =0
γ >0 稳定系统 h > 1 ω < ω x c
转折频率:0.5 斜率: -40
-20 -40
L(ω)曲线 曲线
L(ω)
[-20] 40db [-40] 20db 0db 0.1 -20db --40db 0.5 1 2
40 (0.5s + 1) G ( s ) H (s ) = 1 s ( 2s + 1)( s + 1) 30
[-20] 10
20
25
30
K=6
Nyquist Diagram 0.5 0 -0.5 Imaginary Axis -1 -1.5 -2 -2.5 -3 -3 0 Amplitude 1.5 2 Step Response
1
0.5
-2
-1
0 Real Axis
1
2
3
0
5
10
15
20
25
30
35
Time (sec)
已知单位反馈系统开环传函如下,绘制闭 环系统的频率特性图:
11.7 G ( s) = s (1 + 0.05s )(1 + 0.1s )

《典型Ⅱ型系统》课件

《典型Ⅱ型系统》课件

控制参数调整:通过实验或仿 真调整控制参数,使系统达到
最佳性能
控制算法验证:通过实验或仿 真验证控制算法的有效性和稳
定性
系统实现与调试
软件设计:编写系统软件, 包括操作系统、应用软件等
硬件设计:选择合适的硬件设 备,如处理器、内存、存储等
集成测试:将硬件和软件集成 在一起进行测试,确保系统正
常运行
开环控制原理
开环控制原理:通过反馈信号控制输出,实现系统稳定 开环控制特点:简单、易于实现,但稳定性较差 开环控制应用:在简单系统中,如温度控制、压力控制等
开环控制优缺点:优点是简单、易于实现,缺点是稳定性较差,容易受到干扰影响
控制算法的实现
控制算法:PID控制算法 控制原理:通过调整PID参数实现系统的稳定控制 控制过程:设定目标值,比较实际值与目标值,计算误差,调整PID参数 控制效果:实现系统的稳定控制,提高系统的性能和稳定性
Ⅱ型系统的特点
输入信号:正弦信号 输出信号:正弦信号 频率响应:线性 相位响应:线性 稳定性:稳定 动态性能:良好
Ⅱ型系统的应用场景
工业自动化:用于生产线的自动控制和优化 智能家居:用于家庭设备的智能控制和节能 交通管理:用于交通信号灯的控制和交通流量的优化 医疗设备:用于医疗设备的智能控制和诊断 环境监测:用于环境数据的采集和分析 农业自动化:用于农业生产的自动化和优化
添加标题
添加标题
添加标题
添加标题
稳态性能分析方法:包括时域分析 法、频域分析法、根轨迹法等
稳态性能分析结果:分析系统在不 同工况下的稳态性能,为系统优化 提供依据
典型Ⅱ型系统的 设计方法
确定系统参数
确定系统输入和输出参数 确定系统内部参数 确定系统外部参数 确定系统参数之间的关系和约束条件

华南农业大学自动控制实验三典型三阶系统动态性能和稳定性分析

华南农业大学自动控制实验三典型三阶系统动态性能和稳定性分析

题 目实验三 典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期实验三 典型三阶系统动态性能和稳定性分析一、实验目的1.学习和掌握三阶系统动态性能指标的测试方法。

2.观察不同参数下典型三阶系统的阶跃响应曲线。

3. 研究典型系统参数对系统动态性能和稳定性的影响。

二、实验内容观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方框图连接起来,就得到控制系统的模拟电路图。

典型三阶系统的结构图如图25所示:图25 典型三阶系统的结构图其开环传递函数为23()(1)(1)K G s S T s T s =++,其中1234K K KK T =,三阶系统的模拟电路如图26所示:题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期图26三阶闭环系统模拟电路图模拟电路的各环节参数代入G(s)中,该电路的开环传递函数为:SSSKSSSKSG++=++=236.005.0)15.0)(11.0()(该电路的闭环传递函数为:KSSSKKSSSKS+++=+++=236.005.0)15.0)(11.0()(φ闭环系统的特征方程为:06.005.0,0)(123=+++⇒=+KSSSSG特征方程标准式:032213=+++aSaSaSa根据特征方程的系数,建立得Routh行列表为:6.005.06.06.0105.012331321131223KSKSKSSaSaaaaaSaaSaaS-⇒-为了保证系统稳定,劳斯表中的第一列的系数的符号都应相同,所以由ROUTH 稳定判据判断,得系统的临界稳定增益K=12。

⎪⎩⎪⎨⎧>>-6.005.06.0KK题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期即:⎪⎩⎪⎨⎧<⇒>=⇒=Ω>⇒<<系统不稳定系统临界稳定系统稳定41.7KΩR12K41.7KΩR12K7.4112KKR三、实验步骤1、按照实验原理图接线,设计三阶系统的模拟电路2、改变RX的取值,利用上位机软件仿真功能,获取三阶系统各种工况阶跃响应曲线。

机械工程控制基础实验指导书

机械工程控制基础实验指导书

《机械工程控制基础》实验指导书青岛科技大学前言机械工程控制基础是针对过程装备与控制工程专业而开设的一门专业基础课,主要讲解自动控制原理的主要内容,是一门理论性较强的课程,为了帮助学生学好这门课,能够更好的理解理论知识,在课堂教学的基础上增加了该实验环节。

《机械工程控制基础》实验指导书共编写了4个实验,有实验一、典型环节模拟研究实验二、典型系统动态性能和稳定性分析实验三、控制系统的频率特性分析实验四、调节器参数对系统调节质量的影响《机械工程控制基础》实验指导书的编写主要依据“控制工程基础”教材的内容,结合本课程教学大纲的要求进行编写。

利用计算机和MATLAB程序完成实验。

注:1)每个实验的实验报告均由5部分组成,最后一部分“实验数据分析”或“思考题”必须写。

2)每个实验所记录的图形均需标出横轴和纵轴上的关键坐标点。

目录实验一典型环节模拟研究 (4)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验二典型系统动态性能和稳定性分析 (7)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验三控制系统的频率特性分析 (9)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验四调节器参数对系统调节质量的影响 (11)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求附录一:MATLAB6.5的使用 (13)实验一典型环节模拟研究一、实验目的1.熟悉各种典型环节的阶跃响应曲线2.了解参数变化对典型环节动态特性的影响。

二、实验要求1.观测并记录各种典型环节的阶跃响应曲线2.观测参数变化对典型环节阶跃响应的影响,测试并记录相应的曲线三、实验原理1.惯性环节(一阶环节),如图1-1所示。

(a) 只观测输出曲线(b) 可观测输入、输出两条曲线图1-1 惯性环节原理图2.二阶环节,如图1-2所示。

或图1-2 二阶环节原理图3.积分环节,如图1-3所示。

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析系统动态性能和稳定性是指在外部扰动下,系统的响应速度和稳态特性。

这是评估系统质量和优化系统设计的重要指标。

在典型系统设计中,系统通常被建模为一个传递函数,可以用来描述系统的输出响应,其输入是系统输入和一些可能存在的扰动。

传递函数常常是一个复杂的非线性方程,需要使用线性化技术进行分析。

系统动态性能和稳定性可以通过研究系统的极点和零点来评估。

极点是传递函数的根,它们对系统的稳定性和动态响应有很大的影响。

一个系统是稳定的,当且仅当其所有极点的实部都小于零。

如果系统有一个或多个极点实部为正,那么它是不稳定的,并且会发生震荡或失控的行为。

因此,一个良好的系统设计应确保其所有极点都在复平面的左半面。

另一方面,零点是传递函数的根,它们在系统的频率响应和零状态响应中起着重要作用。

零点是传递函数的一个参数,表示在某个频率下传递函数被抵消或消除。

零点分布的位置对于系统的稳定性和响应都有重要的影响。

如果系统有零点,它们会抵消或消除特定频率下的输入信号。

因此,一个良好的系统设计应该尽可能使其零点靠近频率对应的极点,以达到良好的过渡特性和稳态精度。

系统的动态性能和稳定性可以通过研究系统的传递函数和控制策略来优化。

传递函数中的极点和零点分布可以通过调整系统参数或控制器参数来影响。

此外,使用优化方法,如PID控制器优化或系统识别方法,也可以改善系统性能。

这些方法可以帮助设计人员分析和优化系统响应,并提高系统的稳定性和性能。

在实际应用中,为了确保系统响应的快速性和稳定性,设计人员还可以使用高级控制技术,如预测控制、自适应控制和模糊控制。

这些技术可以更精细地控制系统,并通过自适应和智能控制来改善系统性能。

总之,系统的动态性能和稳定性是系统质量的重要指标,设计人员可以通过研究系统的传递函数和控制策略,以及应用高级控制技术来优化系统性能,从而实现快速响应和精确控制。

【自控原理实验】实验二 典型系统动态性能和稳定性分析

【自控原理实验】实验二  典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。

2.研究典型系统参数对系统动态性能和稳定性的影响。

二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。

注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。

信号输出采用U3单元的O1、信号检测采用U3单元的I1、锁零接U3单元的G1。

2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。

4.利用实验箱上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。

5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。

7.分析实验结果,完成实验报告。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t 模式”;选择“T/DIV ”为1s/1HZ 。

自动控制原理实验-典型系统的时域响应和稳定性分析

自动控制原理实验-典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。

系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。

将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。

2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

实验二 典型系统动态性能和稳定性分析

实验二  典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。

2.研究典型系统参数对系统动态性能和稳定性的影响。

二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三.实验步骤1.熟悉实验装置,利用实验装置上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。

注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。

信号输出采用U3单元的O1、信号检测采用U3单元的I1、运放的锁零接U3单元的G1。

2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。

4.利用实验装置上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。

5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。

7.分析实验结果,完成实验报告。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验装置电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ。

自动控制原理二阶系统动态指标

自动控制原理二阶系统动态指标

自动控制原理二阶系统动态指标在自动控制原理中,二阶系统的动态特性对整个控制系统的性能至关重要。

以下是对二阶系统动态指标的详细阐述,主要包含稳定性、快速性、准确性、鲁棒性、抗干扰性、调节时间、超调量、阻尼比和频率响应等方面。

一、系统的稳定性稳定性是评估控制系统性能的重要指标。

对于二阶系统,稳定性通常通过观察系统的极点位置来判断。

如果系统的极点位于复平面的左半部分,则系统是稳定的。

此外,系统的稳定性还与阻尼比有关,阻尼比在0到1之间时,系统是稳定的。

二、系统的快速性快速性表示系统响应速度的快慢。

在二阶系统中,快速性通常通过极点的位置来决定。

极点越接近虚轴,系统的响应速度越快。

但需要注意的是,过快的响应速度可能导致系统超调量增大,因此需要综合考虑快速性和稳定性。

三、系统的准确性准确性表示系统输出与期望输出的接近程度。

对于二阶系统,可以通过调整系统的极点和零点位置来提高准确性。

一般来说,增加阻尼比可以提高准确性。

四、系统的鲁棒性鲁棒性表示系统在参数变化或干扰下保持稳定的能力。

对于二阶系统,鲁棒性可以通过调整系统的极点和零点位置来改善。

一般来说,使极点和零点距离越远,系统的鲁棒性越好。

五、系统的抗干扰性抗干扰性表示系统抵抗外部干扰的能力。

对于二阶系统,可以通过增加阻尼比来提高抗干扰性。

阻尼比增大时,系统对外部干扰的抑制能力增强。

六、系统的调节时间调节时间表示系统从受到干扰到恢复稳态所需的时间。

对于二阶系统,调节时间与阻尼比和系统增益有关。

适当增加阻尼比和系统增益可以缩短调节时间。

七、系统的超调量超调量表示系统响应超过稳态值的最大偏差量。

对于二阶系统,超调量与阻尼比有关。

阻尼比越小,超调量越大。

为了减小超调量,可以适当增加阻尼比。

八、系统的阻尼比阻尼比是衡量系统阻尼程度的参数,其值介于0和1之间。

适当的阻尼比可以保证系统具有良好的稳定性和快速性。

对于二阶系统,阻尼比与调节时间和超调量密切相关。

根据实际需求选择合适的阻尼比是关键。

第3章 系统分析稳定性与稳态误差

第3章 系统分析稳定性与稳态误差

2
3.1.1 S平面到Z平面之间映射关系
s平面与z平面映射关系: z esT s j z e( j )T eT e jT eT / T
R | z | eT
z T
1. s平面虚轴映射为z平面单位圆,左半平面映射在z平面单位圆内
系统稳定必要条件 (z) a0 zn a1zn1 an1z an 0 或者
判断系统稳定性步骤: 1. 判断必要条件是否成立,若不成立则系统不稳定 2. 若必要条件成立,构造朱利表
17
二阶系统稳定性条件
(z) z2 a1z a2 0
必要条件: (1) 0 (1) 0
在z平面
z e e e sT
T cos jT sin z esT e e Tn cos jTn sin
n
n
R eTn cos ,z Tn sin
等自然频率轨迹
图3-10 等 自然频率轨 迹映射
11
12
图形对横轴是对称的:
z平面
j
2 3
5
n ,
cos( ) n
| z | eT enT cos z T
8
9
10
6. 等自然频率轨迹的映射
ωn =常数
在s平面 s j ne j n cos jn sin cot1( /)

lim(1
z 1
z 1 ) 1
1 D(z)G(z)
R(z)
es*s 与输入信号R(z)及系统 D(z)G(z) 结构特性均有关
29
1.输入信号为单位阶跃函数 r(t) 1(t)
R(z) 1/(1 z1)

最新典型系统动态性能和稳定性分析的电路模拟

最新典型系统动态性能和稳定性分析的电路模拟

典型系统动态性能和稳定性分析的电路模拟典型系统动态性能和稳定性分析的电路模拟一、实验目的1、学习和掌握动态性能指标的测试方法。

2、研究典型系统参数对系统动态性能和稳定性的影响。

二、实验内容观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三、实验步骤1、熟悉实验设备,设计并连接一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路;2、利用实验设备观测二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间;3、改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响,并记录不同参数下的系统输出曲线。

1.开环传递函数为323()232k W s s s s =+++ den=[1,2,3,2]; roots(den)%开换极点 G=tf(3,[1,2,3,2]);[Gm,Pm,Wcg,Wcp]=margin(G) nyquist(G) bode(G) grid onden=[1,2,3,2]; roots(den)%开换极点ans =-0.5000 + 1.3229i -0.5000 - 1.3229i -1.0000-1.5-1-0.500.51 1.5-1.5-1-0.50.511.5Nyquist DiagramReal AxisI m a g i n a r y A x i sM a g n i t u d e (d B )10-210-110101102P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(3,[1,2,3,2]);[Gm,Pm,Wcg,Wcp]=margin(G)Gm =1.3338Pm =17.1340Wcg =1.7323Wcp =1.5599-3-2-10123-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-80-60-40-20020M a g n i t u d e (d B)10-210-110101102-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(6,[1,2,3,2]);[Gm,Pm,Wcg,Wcp]=margin(G)Warning: The closed-loop system is unstable. > In lti.margin at 89Gm =0.6669Pm =-16.6613Wcg =1.7323Wcp =1.96822.将系统的开环传函改为323()(232)k W s s s s s =+++den=[1,2,3,2,0]; roots(den)%开换极点ans =-0.5000 + 1.3229i -0.5000 - 1.3229i-1.0000-2.5-2-1.5-1-0.500.5-30-20-10102030Nyquist DiagramReal AxisI m a g i n a r y A x i s-150-100-50050100M a g n i t u d e (d B)1010101010-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(3,[1,2,3,2,0]);[Gm,Pm,Wcg,Wcp]=margin(G)Warning: The closed-loop system is unstable.> In lti.margin at 89Gm =0.6667Pm =-43.5555Wcg =1.0000Wcp =1.3325将系统的开环传函改为323()(232)k W s s s s s =+++-4.5-4-3.5-3-2.5-2-1.5-1-0.500.5-60-40-20204060Nyquist DiagramReal AxisI m a g i n a r y A x i s-150-100-50050100M a g n i t u d e (d B)10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(6,[1,2,3,2,0]);[Gm,Pm,Wcg,Wcp]=margin(G)Warning: The closed-loop system is unstable. > In lti.margin at 89Gm =0.3333Pm =-84.3432Wcg =1.0000Wcp =1.6697>> >> 3.2323()(232)k W s s s s s =+++den=[1,2,3,2,0,0]; roots(den)%开换极点ans =0 0-0.5000 + 1.3229i -0.5000 - 1.3229i -1.0000-600-500-400-300-200-1000100-50-40-30-20-1001020304050Nyquist DiagramReal AxisI m a g i n a r y A x i sM a g n i t u d e (d B )10-210-1100101102P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(3,[1,2,3,2,0,0]);[Gm,Pm,Wcg,Wcp]=margin(G)Warning: The closed-loop system is unstable.> In lti.margin at 89Gm =InfPm =-115.6441Wcg =NaNWcp =-1200-1000-800-600-400-2000200-100-80-60-40-20020406080100Nyquist DiagramReal AxisI m a g i n a r y A x i sM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)G=tf(6,[1,2,3,2,0,0]);[Gm,Pm,Wcg,Wcp]=margin(G)Warning: The closed-loop system is unstable.> In lti.margin at 89 Gm =InfPm =-154.5325Wcg =NaNWcp =1.4900>>RFFNVUUH。

稳定性、静态性能和动态性能的分析

稳定性、静态性能和动态性能的分析

朱利稳定判据--——避免直接解根,由D(z)判定系统稳定性。 设闭环系统特征根为:
列朱利矩阵:
行 数 1 2 3 4 5 6 M 2n − 5 2n − 4 2n − 3 2n − 2
D(z) = a0 + a1z + a2 z2 +L+ an zn
z0 a0 an b0 b n −1 c0 cn−2 M p0 p3 q0 q2 z1 a1 a n −1 b1 bn−2 c1 cn−3 M p1 p2 q1 q1 z2 a2 an−2 b2 bn−3 c2 cn−4 M p2 p1 q2 q0 p3 p0 L L L L L L L z
检验稳定性的方法
• 3.1.2 修正的劳斯判据(w变换与劳斯稳定判据的 结合)检验方法:
• 修正的劳斯判据,其基本思想!! • • • 在Z平面内,劳斯判据是不能直接应用到判定系统的 稳定性中,如果将Z平面再复原到S平面,则系统方程中又 将出现超越函数。 所以我们想法再寻找一种新的变换,使Z平面的单位 圆内映射到一个新的平面的虚轴之左。此新的平面我们称 为W平面,在此平面上,我们就可直接应用劳斯稳定判据 了。
− 792 624
− 39 119 = −792 45 - 117
− 504
系统不稳定
离散系统的稳定性判据 (4)
例3 已知离散系统特征方程 ,判定系统稳定性。
D( z ) = 0.002 + 0.08 z + 0.4 z 2 − 1.368 z 3 + z 4 = 0 D(1) = 0.002 + 0.08 + 0.4 − 1.368 + 1 = 0.114 > 0 D( −1) = 0.002 − 0.08 + 0.4 + 1.368 + 1 = 2.69 > 0

实验二 二阶系统的动态特性与稳定性分析.

实验二 二阶系统的动态特性与稳定性分析.

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω)()()()(2C C C C s C C 22262154232154232154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

稳定性分析2篇

稳定性分析2篇

稳定性分析2篇稳定性分析是一项重要的技术手段,用于确定系统的稳定性和性能。

它在许多科学和工程领域中都有广泛的应用,如控制工程、机械工程、航空航天工程、化学工程等。

本篇文章将介绍稳定性分析的基本概念和相关原理,以及其在工程实践中的应用。

一、稳定性分析的基本概念稳定性分析是指对系统的反馈特性、动态特性和稳态性能等进行分析和评估的过程。

其目的是为了确定系统是否具有稳定性,并且找出可能存在的问题,进而进行优化和改进。

常见的稳定性分析方法包括时间域分析和频率域分析。

时间域分析通常用于分析系统的动态响应和稳态行为。

频率域分析则用于分析系统对不同频率输入信号的响应,并且可以确定系统的频率响应特性和稳定性。

二、稳定性分析的相关原理稳定性分析通常基于控制论和信号处理理论,这些理论提供了分析系统稳定性和性能的基础。

其中,控制论是研究系统控制的一种理论,主要用于分析闭环控制系统的稳定性和性能。

信号处理理论则是关于数字信号处理和系统分析的方案。

在进行稳定性分析时,通常需要考虑以下几个方面:1.系统的反馈控制方式:系统的反馈控制方式是影响系统稳定性的重要因素之一。

闭环控制系统通常使用负反馈控制,以消除系统的误差和不稳定性。

正反馈控制则会导致系统的震荡和不稳定性。

2.系统的传递函数:系统的传递函数是描述系统输入和输出之间关系的数学函数。

它是稳定性分析的基础,通过计算和分析传递函数可以确定系统的稳定性和频率响应特性。

3.控制系统的稳定性判据:控制系统的稳定性判据是用于确定系统是否稳定的数学条件。

常见的稳定性判据包括罗斯判据、奈奎斯特判据、倍增判据等。

4.控制系统的性能指标:控制系统的性能指标是对系统的性能进行评估的指标。

它们通常包括响应时间、超调量、静态误差等。

通过对这些指标进行分析和优化,可以提高系统的稳定性和性能。

三、稳定性分析的应用稳定性分析在各类工程实践中都有广泛的应用。

下面介绍几个常见的应用场景:1.控制系统设计:稳定性分析是控制系统设计的重要组成部分,它可以帮助工程师确定控制系统的稳定性和性能。

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析

实验二 典型系统动态性能和稳定性分析一.实验目的:l 、学习和掌握动态性能指标的测试方法(如.σ s t p t n 等)。

2、研究典型系统参数对系统动态性能和稳定性的影响。

二. 实验内容:l 、观测不同参数下二阶、三阶系统的阶跃响应,测试出时域性能指标(如.σ s t p t n 等),并分析其参数变化对动态性能和稳定性的影响。

2. 观测增益对三阶系统稳定性的影响,找出临界稳定的增益值。

三. 实验原理:二阶系统,如图(2-1)所示:图(2-1)三阶系统,如图(2-2)所示:图(2-2)四.实验步骤:利用MATLAB 中的Simulink 仿真软件。

l. 典型二阶系统瞬态响应指标的测试。

(1) 参考实验一,建立如图(2-1)所示的实验方块图进行仿真。

(2) 单击工具栏中的 图标,开始仿真,观测在阶跃输入信号下,典型二阶系统的输出值)(0t U 。

根据输出波形)(0t U 调整“Gain ”模块的增益,使)(0t U 的波形呈现衰减比n:1分别为4:1和10:1时的衰减振荡状态。

然后记录超调量σ,峰值时间p t ,上升时间r t ,调节时间s t 及此时的增益值,分析系统参数对动态性能的影响。

(3) 调整“Gain ”模块的增益,使)(0t U 呈现临界振荡时的波形,记录此时“Gain ”模块的增益值,与计算的理论值相比较。

2. 典型三阶系统瞬态响应指标的测试及稳定性分析。

(1) 在典型二阶系统实验方块图的基础上,将对象串联一个惯性环节,重新连接模块,建立如图(2-2)所示的实验方块图进行仿真。

(2) 单击工具栏中的图标,开始仿真,观测阶跃输入信号下典型三阶系统的输出值)(0t U ,根据)(0t U 的波形,调整“Gain ”模块的增益,使)(0t U 的波形呈现2:1衰减振荡状态。

然后记录超调量σ,峰值时间p t ,上升时间r t ,调节时间s t 及此时的“Gain ”模块的增益值,分析系统参数对动态性能的影响。

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

实验⼆-⼆阶系统的动态特性与稳定性分析实验⼆-⼆阶系统的动态特性与稳定性分析⾃动控制原理实验报告实验名称:⼆阶系统的动态特性与稳定性分析班级:姓名:学号:实验⼆⼆阶系统的动态特性与稳定性分析⼀、实验⽬的1、掌握⼆阶系统的电路模拟⽅法及其动态性能指标的测试技术过阻尼、临界阻尼、⽋阻尼状态)对系统动态2、分析⼆阶系统特征参量(ξω,n性能的影响;3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性⾄于其结构和参数有关,与外作⽤⽆关”的性质;4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、学习⼆阶控制系统及其阶跃响应的Matlab 仿真和simulink实现⽅法。

⼆、实验内容1、构成各⼆阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、⽤Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。

3、搭建典型⼆阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型⼆阶系统动态性能和稳定性的影响; 4、搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、将软件仿真结果与模拟电路观测的结果做⽐较。

三、实验步骤1、⼆阶系统的模拟电路实现原理将⼆阶系统:ωωξω22)(22nn s G s s n++=可分解为⼀个⽐例环节,⼀个惯性环节和⼀个积分环节ωωξω221)()()()(2C C C C s C C 22221542322154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、研究特征参量ξ对⼆阶系统性能的影响将⼆阶系统固有频率5.12n=ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,⼆阶系统阻尼系数ξ=0.8 当R6=100K 时,⼆阶系统阻尼系数ξ=0.4 当R6=200K 时,⼆阶系统阻尼系数ξ=0.2(1)⽤Matlab 软件仿真实现⼆阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型系统动态性能和稳定性分析
一·实验目的
1.学习和掌握动态性能指标的测试方法。

2.研究典型系统参数对系统动态性能和稳定性的影响。

二·实验要求
1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三·实验原理
利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由
一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8
连成)。

注意实验接线前必须对运放仔细调零。

接线时要注意对运放锁零的要求。

四·实验所用仪器
PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线
五·实验步骤和方法
1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

具体步骤:
1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如
用U9、U15、U11和U8连成)。

注意实验接线前必须对运放仔细调零。

接线时要注意对运
放锁零的要求。

2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。

4.利用实验箱上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。

5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。

7.分析实验结果,完成实验报告。

注意:以上实验步骤中的2、3与5、6的具体操作方法,请参阅“实验一”的实验步骤2;实验步骤7的具体操作方法,请参阅“实验一”的实验步骤3,这里不再赘述。

附录:
1.典型二阶系统
典型三阶系统的方块结构图如图2.2.1所示:
系统临界稳定K=12
七·实验预习要求
每次实验前必须详细预习实验讲义,明了实验目的、原理方法及操作步骤,并在记录本上拟出简单的实验原理、使用方法及操作室的注意事项。

八·实验报告要求
实验进行时,必须随时把观察到的现象和实验数据,如实地记录在实验报告上,不得记在散页纸上,要养成良好的做原始记录的习惯。

相关文档
最新文档