第二章 光束传播法基本原理

第二章 光束传播法基本原理
第二章 光束传播法基本原理

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

光束法平差-基本原理

1. 光束法平差模型: 在解析摄影测量中,将外方位元素和模型点坐标的计算放在一个整体内进行,此时称其为光束法。光束法平差是以共线方程式作为数学模型,像点的像平面坐标观测值是未知数的非线性函数,经过线性化后按照最小二乘法原理进行计算。该计算也是在提供一个近似解的基础上,逐次迭代来达到趋近于最佳值的。 ①.共线方程式的表达: 设S 为摄影中心,在世界坐标系下的坐标为(S X ,S Y ,S Z );M 为空间一点,在世界坐标系下的坐标为(X,Y,Z ),m 是M 在影像上的构象,其像平面和像空间辅助坐标分别为(x ,y ,-f ),(m m m Z Y X ,,),此时可知S 、m 、M 三点共线。可得(式3-5) λ===---ZS Z Zm YS Y Ym XS X Xm ……(式3-5) 再根据像平面坐标和像空间辅助坐标的关系有(式3-6) ???? ? ???????????????=??????????=??????????-m m m m m m T Z Y X c b a c b a c b a Z Y X f y x R *333222111 …… (式3-6) 由式3-5和式3-6可解得共线方程式为(式3-7) ) (3)(3)(3) (2)(2)(20) (3)(3)(3) (1)(1)(10ZS Z YS Y Xs X ZS Z YS Y Xs X ZS Z YS Y Xs X ZS Z YS Y Xs X c b a c b a f y y c b a c b a f x x -+-+--+-+--+-+--+-+--=--=- ……(式3-7) 其中,0x 、0y 、f 是影像内方位元素;表示像平面中心坐标和摄像机主距。 ②.共线方程式的线性化: 该方程式一次项展开式为(式3-8) Z Y X Zs Ys Xs Z Y X Zs Ys Xs d d d d d d d d d F F d d d d d d d d d F F Z Fy Y Fy X Fy Fy Fy Fy Zs Fy Ys Fy Xs Fy y y Z Fx Y Fx X Fx Fx Fx Fx Zs Fx Ys Fx Xs Fx X X ????????????????????????????????????+ + + + + + + + + =+++++++++=κω?κω?κ ω ? κω?00…(式3-8) 式中0X F 、0y F 为共线方程函数近似值,Xs d 、Ys d 、Zs d 、?d 、ωd 、κd 为外方位元素改正数,X d 、Y d 、Z d 为待定点的坐标改正数。 在保证共线条件下有: Zs Fy Z Fy Ys Fy Y Fy Xs Fy X Fy Zs Fx Z Fx Ys Fx Y Fx Xs Fx X Fx ????????????????????????-=-=-=-=-=-=,,,, ……(式3-9) 此时,根据式3-7以及旋转矩阵可得到(式3-10): )(31111 Fx a f a a z Xs Fx +==?? )(31121Fx b f b a z Ys Fx +==?? )(31131 Fx c f c a z Zs Fx +==?? )(32211Fy a f a a z Xs Fy +==?? )(32221Fy b f b a z Ys Fy +== ?? )(32231Fy c f c a z Zs Fy +==?? ωκκκω?cos ]cos )sin cos ([sin 14f y x y a f x Fx +--== ?? …… (式3-10)

摄影测量程序汇总(后方交会+前方交会+单模型光束法平差)

程序运行环境为Visual Studio2010.运行前请先将坐标数据放在debug 下。 1.单像空间后方交会 C语言程序: #include #include #include double *readdata(); void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa); void transpose(double *m1,double *m2,int m,int n); void inverse(double *a,int n); void multi(double *mat1,double * mat2,double * result,int a,int b,int c); void inverse(double *a,int n)/*正定矩阵求逆*/ { int i,j,k; for(k=0;k

阴影(正投影中加绘阴影的基本原理与画法)汇总

土建图学教程 阴影(正投影中加绘阴影的基本原理与画法)

正投影图的阴影 7.1 阴影的基本知识 7.1.1 阴影的形成与作用 7.1.2 常用光线 7.1.3 点和直线的落影 7.2 基本几何体的阴影 7.2.1 长方体的阴影 7.2.2 圆柱的阴影 7.3 建筑形体的阴影 7.3.1 窗洞的阴影 7.3.2 门洞的阴影 7.3.3 台阶的阴影 7.3.4 屋面的阴影

7.1 阴影的基本知识 在建筑设计的表现图中,如果画上了阴影,不仅丰富了图形的表现力,同时也增加了图面的美感。但这里所说的阴影,仅是在理论上探讨在光线照射下物体表面哪些是受光的,哪些是背光的,落影的位置和形状又该如何。为学习相关的后续课程打好基础。

7.1.1 阴影的形成与作用 一、阴影的形成 物体在光线的照射下,迎光的表面显得明亮,称为阳面;背光的表面显得阴暗,称为阴面。阳面和阴面的分界线称为阴线;由于物体通常是不透明的,所以照射在阳面上的光线受阻,以致在其后方的其他阳面上出现了落影。我们把落影的轮廓称为影线;落影所在的表面称为承影面。从次页例图可见,阴影是相互对应的,影线正好是阴线在承影面上的落影。

阴影的基本概念图7-1 阴影的形成、概念

二、阴影的作用 采用透视图表现建筑形象固然很好,但由于其绘图程序较复杂,因此作建筑设计方案时,也经常采用正投影图加阴影的表现形式,如次页例图所示。其中图 a是未加绘阴影前的线条图,图b是加绘阴影及经润饰、配景后的效果图。 从图b可见,在立面图中加绘了阴影,由于阴影区的形状、大小、位置与建筑物的体量有着对应的关系,在一定程度上表现了原立面图中未能表示出的建筑物前后之间的尺度关系。即把建筑物立面的凹凸、曲折、空间层次反映了出来,给人以特有的空间感。所以说,阴影的理论与实践在建筑设计过程有着十分重要的作用。

脉宽调制(PWM)的基本原理及其应用实例

脉宽调制(PWM)的基本原理及其应用实例 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 模拟电路 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 数字控制 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM 输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。 图2是一个可以使用PWM进行驱动的简单电路。图中使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并象连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%,调制频率为10Hz。 大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz。设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开……。占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭。要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短。要想取得调光灯(但保持点亮)的效果,必须提高调制频率。在其他PWM应用场合也有同样的要求。通常调制频率为1kHz到200kHz之间。

正投影的基本原理

正投影的基本原理 威海职业学院教案 单元三正投影的基本原理 第一讲投影的基本知识 计划教学课题投影的基本知识 2 课时 1. 投影法的基本知识 2. 投影法的概念 3. 投影法的种类及应用 4. 机械工程上常用的图样简介 教学目标 5. 正投影的基本性质 6. 点的投影 7. 点在两面投影体系中的投影 8. 点在三面投影体系中的投影 教学重点掌握点的三面投影 教学难点掌握点的投影规律 教学方法多媒体教学和在黑板上画图讲解相结合。 教学手段通过课件多媒体教学和在黑板上画图讲解相结合。本讲主题 1. 投影法的基本知识 2. 投影法的概念 3. 投影法的种类及应用 4. 机械工程上常用的图样简介 5. 正投影的基本性质

6. 点的投影 7. 点在两面投影体系中的投影 8. 点在三面投影体系中的投影 9. 点的三面投影与直角坐标 10. 特殊位置点的投影 11. 两点的相对位置 所用环节方式教学内容时间 幻灯片演示投影过程,动态分析投影。 5分钟 教一、模型演示 学 1. 投影法的基本知识 20分过 2. 投影法的概念钟程 二、分析讲解 3. 投影法的种类及应用 4. 机械工程上常用的图样简介 威海职业学院教案 5分钟 三、练习 幻灯片演示投影过程,动态分析投影。 10分 四、模型演示钟 5. 正投影的基本性质 60分 6. 点的投影钟 7. 点在两面投影体系中的投影 8. 点在三面投影体系中的投影五、分析讲解 9. 点的三面投影与直角坐标10. 特殊位置点的投影

11. 两点的相对位置 布置 课后练习 P9 1~2 作业 2.1投影的基本知识 2.1.1投影法概念:是投射线通过物体向预定投影面进行投影而得到图形的方法。 2.1.2投影法的分类: ,、中心投影法:投射线从投影中心出发的投影方法称为中心投影法,所得的投影称为中心投影。 ,、平行投影法:用相互平行的投射线对物体进行投影的方法称为平行投影法,所得的 投影称为平行投影。 斜投影法:投射线倾斜于投影面的投影方法称为斜投影法, 所得的投影称为斜投影。 平行投影法又可分为 正投影法:投射线垂直于投影面的投影方法称为正投影法, 所得的投影称为正投影。以后无特殊说明,投影均指正 投影。 2.1.3机械工程上常用的图样简介 1、轴测投影图 2、多面正投影图 2.1.4正投影的基本性质 1、真实性 2、积聚性 3、类似性

双向解析光束法

双向解析光束法 光束法程序有问题,在Getelement这个函数里便出现索引超限,这个问题一直解决不了 光束法的流程: 1.根据同名像点对对相交理论求系数阵A,系数阵B和常数阵L a11=(a1f+a3x)/Z; a12=(b1f+b3x)/Z; a13=(c1f+c3x)/Z; a14=ysin(omega)-[x/f(xcos(kappa)-ysin(kappa))+fcos(kappa)]cos(omega); a15=-fsin(kappa)-x/f(xsin(kappa)+ycos(kappa)); a16=y; a21=(a2f+a3y)/Z; a22=(b2f+b3y)/Z; a23=(c2f+c3y); a24=-xsin(omega)-[x/f(xcos(kappa)-ysin(kappa))-fsin(kappa)]cos(omega) a25=-fcos(kappa)-y/f(xsin(kappa)+ycos(kappa)); a26=-x; 2.求方程的改化法方程求出外方位元素和物方坐标改正数 3.判断改正数的值,如果小于限差则输出结果 光束法是最严密的一种方法的原因: 在一张相片中,待定点与控制点的像点与摄影中心及相应地面点均构成一条光束,该方法是以每张相片所组成的一束光线作为平差的基本单元,已共线条件方程作为平差的基础方程,通过各个光束在空间中的旋转和平移,使模型之间公共点的光线实现最佳交汇,并使整个区域纳入到已知的地面控制点坐标系中,所以要建立全区域统一的误差方程,整体解求全区域内每张相片的六个外方位元素及所有待定点坐标,光束法区域网平差是基于摄影时像点,物点和摄站点三点共线提出来的。由单张相片构成区域,其平差的数学模型是共线条件方程,平差单元是单个光束,像点坐标是观测值,未知数是每张相片的外方位元素及所有待定点坐标。误差方程直接由像点坐标的观测值列出,能对像点坐标进行系统误差改正。

ASK调制原理

ASK调制电路 第一章引言 通信技术,特别是数字通信技术近年来发展非常迅速,他的应用越来越广泛。通信的最终目的是远距离传递信息。虽然基带数字信号可以在传输距离不远的情况下直接传送,但如果要进行远距离传输时,特别是在无线信道上传输时,则必须经过调制将信号频谱搬移到高频处才能在信道中传输。为了使数字信号在有限带宽的高频信道中传输,必须对数字信号进行载波调制。如同模拟信号的频带传输时一样,传输数字信号时也有三种基本的调制方式:振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。它们分别对应于利用载波(正弦波)的幅度、频率和相位来承载数字基带信号,可以看作是模拟线性调制和角度调制的特殊情况。 理论上数字调制与模拟调制在本质上没有什么不同,它们都属于正弦波调制。但是,数字调制是源信号为离散型的正弦波调制,而模拟调制则是源信号为连续型的正弦波调制,因而,数字调制具有由数字信号带来的一些特点。这些特点主要包括两个方面:第一,数字调制信号的产生,除把数字的调制信号当作模拟信号的特例而直接采用模拟调制方式产生数字调制信号外,还可以采用键控载波的方法。第二,对于数字调制信号的解调,为提高系统的抗噪声性能,通常采用与模拟调制系统中不同的解调方式。振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制,即源信号为“1”时,发送载波,源信号为“0”时,发送0电平。所以也称这种调制为通、断键控(OOK)。当数字基带信号为二进制时,也称为二进制振幅键控(2ASK),2ASK信号的调制方法有模拟幅度调制方法和键控方法两种。 理论上受到调制的载波波形可以是任意的,只要使得已调信号适合传输信道的特性就可以了。但实际数字通信系统大都选择正弦波作为载波,这是因为正弦信号形式简单,便于产生和接收。由于数字调制是用载波信号的默

光束法平差模型

旋转矩阵四元素法和光束法平差模型 1. 旋转矩阵的四元素表示法: 由于利用传统旋转矩阵表示法解算时,旋转阵中的三角函数存在多值性和奇异性,经常导致迭代计算的次数增加,甚至会出现不收敛情况。Pope 从四维代数出发,提出用四个代数参数d, a, b, c 构成R 矩阵,Hinsken 导出了一整套公式,即pope-hinsken 算法(简称P-H 算法),使pope 参数在实际摄影测量中得到了应用。设四个参数d, a, b, c 服从下列条件(如式3-1): 12 222 =+++c b a d ………………(式3-1) 用这四个参数构造下列矩阵(如式3-2): ????????? ???------=d a b c a d c b b c d a c b a d P ????? ? ??????------=d a b c a d c b b c d a c b a d a Q …………(式3-2) 可以知道P,Q 矩阵都是正交矩阵,从而可知(式3-3): ???? ? ? ??????==0000001R PQ T …………(式3-3) 因 I P Q T X T T T PQ T 44==可知I R X T R 33=,R 为正交矩阵,其形式如(式3-4) : ……(式3-4) 上式就是旋转矩阵R 的四元素表示法,可以表示任何一种旋转状态。 2. 光束法平差模型: 在解析摄影测量中,将外方位元素和模型点坐标的计算放在一个整体内进行,此时称其为光束法。光束法平差是以共线方程式作为数学模型,像点的像平面坐标观测值是未知数的非线性函数,经过线性化后按照最小二乘法原理进行计算。该计算也是在提供一个近似解的基础上,逐次迭代来达到趋近于最佳值的。 ①.共线方程式的表达: 设S 为摄影中心,在世界坐标系下的坐标为(S X ,S Y ,S Z );M 为空间一点,在世界坐标系下的坐标为(X,Y,Z ),m 是M 在影像上的构象,其像平面和像空间辅助坐标分别为(x ,y ,-f ),(m m m Z Y X ,,),此时可知S 、m 、M 三点共线。可得(式3-5) λ===---ZS Z Zm YS Y Ym XS X Xm ……(式3-5) 再根据像平面坐标和像空间辅助坐标的关系有(式3-6)

色谱法分离原理教案

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有

碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。

离子色谱法基本原理

离子色谱法 基本原理 Dionex 中国有限公司应用研究中心 2002年4月15日

目录 第一章引言 (1) 1. 什么是色谱? (1) 2. 色谱的发展 (1) 3. 液相色谱 (1) 第二章色谱柱理论 (3) 1. 分离度 (3) 2. 柱效 (4) 3. 传质影响 (5) 4. 纵向扩散 (5) 5. 溶质传递动力学 (6) 6. 选择性 (6) 7. 保留特性 (7) 8. 总结 (7) 第三章离子色谱的优点 (8) 第四章分离模式 (9) 1. 离子交换 (9) 2. 离子排阻色谱法(ICE) (10) 3. 反相色谱法 (10) 4. 离子对 (11) 5. 离子抑制 (11) 第五章检测方法 (12) 1. 电化学检测 (12) 2. 分光光度检测法 (14) 第六章抑制作用 (16) 第七章分离方式和检测方式的选择 (20) 1. 分离度的改善 (23) 附录 (30) 表1. 电化学检测器测定的组分 (30) 表2. 用于化学抑制的典型淋洗液 (31) 表3. 常见电化学活性化合物的施加电压 (32) 表4. 常见无机阴离子的紫外线吸收波长 (33) 表5. 国际现行的离子色谱标准分析方法(环境与高纯水分析) (34)

表6. 离子色谱法中的中国国家标准(GB) (36)

第一章引言 本文讲述有关离子色谱法的基本知识和分离和检测方面的理论。 1. 什么是色谱? 色谱法是一种物理化学分析方法。它利用混合物中组分在两相间分配系数的差别,当溶质在两相间作相对移动时,各组分在两相间进行多次分配,从而使各组分得到分离。 2. 色谱的发展 色谱这一概念是由俄国植物学家Tswett(茨维特)1903提出的,他在一根细长的玻璃管中装入碳酸钙粉末,然后将植物绿叶的石油醚萃取液倒入管中,萃取液的色素就被吸附在管上部的碳酸钙上,再用纯净的石油醚洗脱这些被吸附的色素,于是在碳酸钙上形成了一圈一圈的色带,这些色带被称为色谱。 经过许多年的发展,“色谱”一词已涵盖许多技术领域。新型固定相的发展和气体、液体以及超临界流体作为可动相的使用,色谱逐渐成为最为有效的分离分析手段。 本文仅限于离子色谱。不过涉及到的概念与所有其他色谱方法是一样的。 3. 液相色谱 液相色谱一词指使用的流动相是液体的色谱方法。可以分为四类: 1.反相色谱:固定相为非极性物质(疏水性),流动相为极性溶液(如 甲醇或乙腈水溶液)。分离方式基于多次吸附-解吸的重复过程,非极性化合物较极性化合物在柱中具有较强的保留。 2.正相色谱:固定相是极性物质,流动相是非极性或弱极性的溶液(如 正己烷或四氢呋喃),如前所述,分离过程也是基于被分离组分在流动相与固定相之间的分配平衡。

近景摄影测量光束法平差报告

近景摄影测量光束法平差报告 2011 年 6 月 4 日

1 作业目的------------------------------------------------------------------------------------ 3 2 外业控制点的观测与解算-------------------------------------------------------- 3 3 近景影像获取---------------------------------------------------------------------------- 4 4 LPS刺点点位------------------------------------------------------------------ 4 5 光束法平差与精度评定------------------------------------------------------------ 5 6 总结--------------------------------------------------------------------------------------------- 11

1 作业目的 以近景摄影测量大实习为基础,对所摄取近景相片解析处理,以外业控制点的解算成果以及内业LPS平差结果为依据,编写光束法平差程序,由22个控制点的像素坐标及5个“已知控制点”的三维坐标求解其余17个控制点的三维坐标,并评定精度。 2 作业条件及数据 点号像素坐标列(J)像素坐标行(I)X Y Z 左片: 2 650.989 2114.9 3 497.4532 353.7473 299.8953 8 2792.491 2259.531 508.8008 342.3524 298.6832 10 2791.483 740.514 508.8138 342.3548 307.0717 16 3928.559 2120.49 520.2969 353.7531 300.1146 21 4890.584 2130.45 527.9857 353.5821 300.1037 1 648.624 2765.58 2 0 0 0 3 660.452 1441.411 0 0 0 4 728.563 816.58 5 0 0 0 5 1965.895 2557.99 6 0 0 0 6 1910.105 1210.0 7 0 0 0 7 2767.455 3044.531 0 0 0 9 2774.059 1493.061 0 0 0 12 3319.011 2665.417 0 0 0 13 3312.286 1986.582 0 0 0 14 3298.468 1284.901 0 0 0 15 4055.052 2705.029 0 0 0 17 3808.985 1539.018 0 0 0 18 3715.006 962.032 0 0 0 19 3836.444 706.426 0 0 0 20 4883.39 2691.651 0 0 0 22 4754 1681 0 0 0 23 4825.409 1018.545 0 0 0 右片: 2 670.948 2129.967 497.4532 353.747 3 299.8953 8 2346.443 2264.542 508.8008 342.3524 298.6832 10 2361.448 691.079 508.8138 342.3548 307.0717 16 4088.419 2115.427 520.2969 353.7531 300.1146 20 5203.441 2736.112 527.9857 353.5821 300.1037 1 666.103 2764.88 2 0 0 0 3 685.403 1472.57 4 0 0 0 4 754.414 860.656 0 0 0 5 1652.431 2568.503 0 0 0

第二章 气相色谱分析习题参考答案

第二章 气相色谱分析课后习题参考答案(P 60页) 1、简要说明气相色谱分析的分离原理。 借在两相间分配原理而使混合物中各组分分离。气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2、气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行,管路密闭的气路系统;进样系统包括进样装置和气化室。其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统完成对混合样品的分离过程;温控系统是精确控制进样口、汽化室和检测器的温度;检测和记录系统是对分离得到的各个组分进行精确测量并记录。 3、当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 分配系数只与组分的性质及固定相与流动相的性质有关。所以(1)柱长缩短不会引起分配系数改变;(2)固定相改变会引起分配系数改变;(3)流动相流速增加不会引起分配系数改变;(4)相比减少不会引起分配系数改变。 4、当下列参数改变时:(1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? βK m m k M S == ;而S M V V =β,分配比除了与组分、两相的性质、柱温、柱压有关外,还与相比有关,而与流动相流速、柱长无关。故(1)不变化;(2)增加;(3)不改变;(4)减小。 5、试以塔板高度H 做指标,讨论气相色谱操作条件的选择。 提示:主要从速率理论(范弟姆特Van Deemter )来解释,同时考虑流速的影响,选择最佳载气流速(P 13-24)。(1)选择流动相最佳流速。(2)当流速较小时,可以选择相对分子质量较大的载气(如N 2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H 2,He )同时还应该考虑载气对不同检测器的适应性。(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。(5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大)。(6)进样速度要快,进样量要少,一般液体试样0.1~5 μL ,气体试样0.1~10 mL 。(7)气化温度:气化温度要高于柱温30~70 ℃。 6、试述速率方程中A ,B ,C 三项的物理意义。H –u 曲线有何用途?曲线的形状受哪些主要因素的影响? 参见教材(P 14-16)。A 称为涡流扩散项,B 为分子扩散系数,C 为传质阻力系数。 下面分别讨论各项的意义: (1)涡流扩散项A 。气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱峰的扩张。由于A = 2 λ·d p ,表明A 与填充物的平均颗粒直径d p 的大小和填充的不均匀性λ有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均

sba一个通用的稀疏光束法平差的软件包解析

如果你来到这个页面来寻找一个通用的Levenberg-Marquardt算法的C/C++实现,请看levmar 引言: 本页面是关于sba,一个通用的稀疏光束法平差的C/C++软件包。它基于GNU通用公共许可证GPL分发的。光束法平差(BA)是作为每个基于特征的多视重建视觉算法的最后一步,用来获得最佳的三维结构和运动(如相机矩阵)参数估计。提供初始估计,BA同时精化运动和结构参数,通过最小化观测和预测的图像点之间的投影误差。最小化一般通过Levenberg-Marquardt (LM)算法来辅助完成。然而,由于许多未知的因素作用于最小投影误差,一个通用的LM算法的实现(如MINPACK的lmder)当应用于BA背景下的定义的最小化问题时,会带来极高的计算代价。 幸运的是,在基本的法方程中不同的三维点和相机参数相互之间影响较小,呈现一种稀疏的块结构(如图)。Sba利用这种稀疏的特性,使用LM算法的简化的稀疏变量来降低计算的复杂度。Sba是通用的,因为它保证了用户对于相机和三维结构的描述参数的定义的完全控制。因此,它事实上可以支持任何多视重建问题的显示和参数化。比如任意投影相机,部分的或完全标定的相机,由固定的三维点进行外方位元素(即姿态)的估计,精化本征参数,等等。用户要想在这类问题中使用sba,只需要提供合适的程序对这些问题和参数来计算估计的图像投影和他们的函数行列式(Jacobian)。用来计算解析的函数行列式可以是手头的代码,或者使用支持符号微分的工具(如maple)生成的代码,或者通过自动微分技术获得的代码。也可以使用近似的函数行列式,辅之以有限差分的方法。另外,sba包含了检查用户提供的函数行列式的一致性的程序。就我们的知识之所及,sba是第一个并且也是当前独一无二的的软件包,因为他能够不受版权限制以源代码形式放置在任何工程中。 作为sba的效率的一个指标,我们在这里说明,sba的单次测试已经涉及54台相机和5207三维点,产生了24609个图像投影。相应的最小化问题依赖于15999个变量,sba使用非最优的BLAS在Intel P4@1.8 GHz running Linux机器上大约7秒钟内解决。如果没有BA的稀疏实现,那么这种规模的问题会变得非常棘手。

基于因子分解和光束法平差的摄像机自标定_胡建才

第38卷第3期 光电工程V ol.38, No.3 2011年3月Opto-Electronic Engineering March, 2011 文章编号:1003-501X(2011)03-0063-07 基于因子分解和光束法平差的摄像机自标定 胡建才1,刘先勇1, 2,邱志强2 ( 1. 西南科技大学信息工程学院,四川绵阳 621010;2. 绵阳铁牛科技有限公司,四川绵阳 621010 ) 摘要:提出一种基于因子分解和光束法平差的摄像机自标定算法,只需手持定焦摄像机围绕物体拍摄3幅以上图像即可估计出摄像机的内参数以及畸变系数。该方法有3个主要特点:一是由于在因子分解重建过程中采用了所有图像的信息,因此具有很好的鲁棒性;二是由于在完成欧式重构后采用光束法平差对摄像机内参数以及畸变系数进行了非线性优化,因此具有较高的标定精度;三是由于对标定物体、摄像机运动没有严格的要求,因此在实际应用中易于实现。仿真和真实实验证明了该方法的可行性,特别适用于基于图像序列的近景摄影测量系统,算法已经成功应用于绵阳铁牛科技有限公司自主研发的特征点拍照测量系统(TN 3DOMS.FP v1.2)。 关键词:摄像机自标定;因子分解;欧式变换;光束法平差 中图分类号:TP391.7 文献标志码:A doi:10.3969/j.issn.1003-501X.2011.03.012 Camera Self-calibration Technique Based on Factorization and Bundle Adjustment HU Jian-cai 1,LIU Xian-yong 1, 2,QIU Zhi-qiang2 ( 1. School of Information Engineering, South West University of Science and Technology, Mianyang 621010, Sichuan Province, China; 2. Saint Buffalo Technologies Limited Company, Mianyang 621010, Sichuan Province, China ) Abstract: A camera self-calibration technique based on factorization and bundle adjustment is proposed. With the hand-held and fix-focus camera undergoing at least three arbitrary motions around the calibration pattern, all the intrinsic parameters and the distortion coefficients can be obtained. The proposed method has three novelties. Firstly, its robustness is markedly increased since all the images are aligned in the factorization process. Secondly, the non-linear optimization algorithm bundle adjustment guarantees high accuracy. Thirdly, the proposed method does not require specialized calibration pattern or rigid camera motion, which makes it be used in a wide range of applications. Both simulation and real images experiments proved the feasibility and applicability of the proposed method, particularly applying to those close-range photogrammetry system based on image sequences. As a result, the new algorithm has been successfully applied to the feature point measurement system TN 3DOMS.FP v1.2 with independent intellectual property right of Saint Buffalo Technology Co., Ltd. Key words: camera self-calibration; factorization; Euclidean transformation; bundle adjustment 0 引 言 摄像机标定是从二维图像获取三维信息必不可少的步骤。传统的标定方法需要使用经过精密加工的标定块来计算摄像机的内参数,在很多实际应用中难以实现。基于主动视觉的标定方法需要控制摄像机做某些特殊运动,如纯旋转[1]或者纯平移[2]等,利用这些运动的特殊性来计算摄像机内参数,这种方法不能适用于摄像机运动未知或无法控制的场合。为了让场景未知和摄像机任意运动情形下的标定成为可能,20世收稿日期:2010-12-15;收到修改稿日期:2011-01-12 基金项目:四川省科技厅国际合作项目:工业产品高精度三维数字化在线监控系统的研究(2009HH0023) 作者简介:胡建才(1986-),男(汉族),四川眉山人。硕士,主要研究工作是摄像机标定、非线性优化。E-mail: hjc1986@https://www.360docs.net/doc/796463455.html,。

色谱法的基本原理

色谱法的基本原理:利用样品混合物中各组分理 利用样品混合物中各组分理、化性质的差异,各组分程度不同的分配到互不相溶的两相中。当两相相对运动时,各组分在两相中反复多次重新分配,结果使混合物得到分离。 两相中,固定不动的一相称固定相;移动的一相称流动相。 分类: 根据两相的物态类型,有液-固色谱和液-液色谱两类基本色谱方法。 液-固色谱的固定相是粉末状或颗粒状固体,具有表面吸附活性,流动相是液体。混合物中各组分在固定相表面上的吸附强度不同,当流动相流过时各组分随流动相的移动速度不同而实现分离。柱色谱、薄层色谱大都属于这类色谱。 液-液色谱的固定相是附着于载体的液层,流动相是另一种液体。混合物中各组分在两液相间的分配系数不同,则在两液相中的浓度不同,随流动相移动的速度也不同,从而实现分离。纸色谱和有些薄层色谱属于这类色谱。 一、液-固色谱原理 液-固色谱是基于吸附和溶解性质的分离技术,柱色谱属于液-固吸附色谱。 当混合物溶液加在固定相上,固体表面借各种分子间力(包括范德华力和氢键)作用于混合物中各组分,以不同的作用强度被吸附在固体表面。 柱色谱分离原理 放大浏览 由于吸附剂对各组分的吸附能力不同,当流动相流过固体表面时,混合物各组分在液-固两相间分配。吸附牢固的组分在流动相分配少,吸附弱的组分在流动相分配多。流动相流过时各组分会以不同的速率向下移动,吸附弱的组分以较快的速率向下移动。随着流动相的移动,在新接触的固定相表面上又依这种吸附-溶解过程进行新的分配,新鲜流动相流过已趋平衡的固定相表面时也重复这一过程,结果是吸附弱的组分随着流动相移动在前面,吸附强的组分移动在后面,吸附特别强的组分甚至会不随流动相移动,各种化合物在色谱柱中形成带状分布,实现混合物的分离。 二、柱色谱分离条件 氧化铝对有机物的作用类型 放大浏览 ⑴固定相选择 柱色谱使用的固定相材料又称吸附剂。 吸附剂对有机物的吸附作用有多种形式。以氧化铝作为固定相时,非极性或弱极性有机物只有范德华力与固定相作用,吸附较弱;极性有机物同固定相之间可能有偶极力或氢键作用,有时还有成盐作用。这些作用的强度依次为: 成盐作用> 配位作用> 氢键作用> 偶极作用> 范德华力作用。有机物的极性越强,在氧化铝上的吸附越强。 表1:各种吸附剂对于极性有机物的吸附作用强度 放大浏览 常用吸附剂有氧化铝、硅胶、活性炭等(表1)。 色谱用的氧化铝可分酸性、中性和碱性三种。酸性氧化铝pH约为4-4.5,用于分离羧酸、氨基酸等酸性物质;中性氧化铝pH值为7.5,用于分离中性物质,应用最广;碱性氧化铝pH为9-10,用于分离生物碱、胺和其它碱性化合物等。 吸附剂的活性与其含水量有关。含水量越低,活性越高。脱水的中性氧化铝称为活性氧化铝。 硅胶是中性的吸附剂,可用于分离各种有机物,是应用最为广泛的固定相材料之一。 活性炭常用于分离极性较弱或非极性有机物。

相关文档
最新文档