(完整版)应用时间序列分析习题答案解析
第7章时间序列分析习题解答

第七章时间序列分析思考与练习一、选择题1.已知2000-2006年某银行的年末存款余额,要计算各年平均存款余额,该平均数是:( b )a. 几何序时平均数;b.“首末折半法”序时平均数;c. 时期数列的平均数;d.时点数列的平均数。
2.某地区粮食增长量1990—1995年为12万吨,1996—2000年也为12万吨。
那么,1990—2000年期间,该地区粮食环比增长速度( d )a.逐年上升b.逐年下降c.保持不变d.不能做结论上表资料中,是总量时期数列的有( d )a. 1、2、3b. 1、3、4c. 2、4d. 1、34.利用上题资料计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为(a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续12个月逐期增长量之和等于年距增长量。
2.计算固定资产投资额的年平均发展速度应采用几何平均法。
3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。
4.计算平均发展速度的水平法只适合时点指标时间序列。
5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其125126环比增长速度为0.14%。
正确答案:(1)错;(2)错;(3)对;(4)错;(5)错。
三、计算题:1.某企业2000年8月几次员工数变动登记如下表:试计算该企业8月份平均员工数。
解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用y 来表示,则: 1122n 12y y ...y y=...nnf f f f f f ++++++121010124051300151270311260()⨯+⨯+⨯+=≈人 该企业8月份平均员工数为1260人。
2. 某地区“十五”期间年末居民存款余额如下表:试计算该地区“十五”期间居民年平均存款余额。
解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。
应用统计学时间序列习题及答案

计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。
应用时间序列分析 第三版 王燕 课后答案

1 1.3738
2 -0.8736
(2) | 2 | 0.3 1 , 2 1 0.8 1 , 2 1 1.4 1,模型平稳。
1 0.6
2 0.5
(3) | 2 | 0.3 1 , 2 1 0.6 1 , 2 1 1.2 1 ,模型可逆。
2、解:对于 AR(2)模型:
22 0
1 1 0 2 1 1 2 1 0.5 2 1 1 2 0 1 1 2 0.3
解得:
1 7 / 15 2 1 / 15
3、解:根据该 AR(2)模型的形式,易得: E ( xt ) 0 原模型可变为: xt 0.8xt 1 0.15xt 2 t
j
eT (3) G0 t 3 G1 t 2 G2 t 1 t 3 1 t 2 12 t 1
第二章 P34 1、 (1)因为序列具有明显的趋势,所以序列非平稳。 (2)样本自相关系数:
(k ) ˆk (0)
(x
t 1
nk
t
x )( x t k x )
t
(x
t 1
n
x) 2
1 n 1 x xt (1 2 20) 10.5 n t 1 20
(4)=17.25
(5)=12.4167
(6)=7.25
1 =0.85(0.85)
2 =0.7405(0.702)
3 =0.6214(0.556)
4 =0.4929(0.415) 5 =0.3548(0.280)
注:括号内的结果为近似公式所计算。 (3)样本自相关图: Autocorrelation Partial Correlation . |*******| . |***** | . |**** . |*** . |**. . |* . . | . . *| . . *| . | | | | | | | . |*******| . *| . | . *| . . *| . . *| . . *| . . *| . . *| . . *| . | | | | | | |
人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
应用时间序列习题

应用时间序列习题(含答案)一、单项选择题1.时间数列与变量数列( )A都是根据时间顺序排列的 B都是根据变量值大小排列的 C前者是根据时间顺序排列的,后者是根据变量值大小排列的D前者是根据变量值大小排列的,后者是根据时间顺序排列的2.时间数列中,数值大小与时间长短有直接关系的是( )A平均数时间数列 B时期数列 C时点数列 D相对数时间数列3.发展速度属于( )A比例相对数 B比较相对数 C动态相对数 D强度相对数 4.计算发展速度的分母是( )A报告期水平 B基期水平 C实际水平 D计划水平5.某车间月初工人人数资料如下:月份 1 2 3 4 5 6 7月初人数(人) 280 284 280 300 302 304 320则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D无法确定7.由一个9项的时间数列可以计算的环比发展速度( )A有8个 B有9个 C有10个 D有7个8.采用几何平均法计算平均发展速度的依据是( )A各年环比发展速度之积等于总速度 B各年环比发展速度之和等于总速度C各年环比增长速度之积等于总速度 D各年环比增长速度之和等于总速度9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A B C D10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A简单平均法 B几何平均法 C加权序时平均法 D首末折半法11、时间序列在一年内重复出现的周期性波动称为()A、长期趋势B、季节变动C、循环变动D、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B二、多项选择题1.对于时间数列,下列说法正确的有( )A数列是按数值大小顺序排列的 B数列是按时间顺序排列的C数列中的数值都有可加性 D数列是进行动态分析的基础E编制时应注意数值间的可比性2.时点数列的特点有( )A数值大小与间隔长短有关 B数值大小与间隔长短无关C数值相加有实际意义 D数值相加没有实际意义 E数值是连续登记得到的3.下列说法正确的有( )A平均增长速度大于平均发展速度 B平均增长速度小于平均发展速度C平均增长速度=平均发展速度-1 D平均发展速度=平均增长速度-1E平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A BC增长速度= 发展速度—100%DE5.采用几何平均法计算平均发展速度的公式有( )A BC D E6.某公司连续五年的销售额资料如下:时间第一年第二年第三年第四年第销售额(万元) 1000 1100 1300 1350 1400根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度=定基增长速度=10%B第三年的累计增长量=逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法 B方程法 C最小平方法 D移动平均法 E 几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D 总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。
【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验学习成果起着至关重要的作用。
今天,我就来和大家分享一下我所整理的应用时间序列分析课后答案,希望能对正在学习这门课程的同学们有所帮助。
首先,我们来谈谈为什么时间序列分析如此重要。
在现实生活中,许多现象都随着时间的推移而发生变化,比如股票价格的波动、气温的变化、销售量的起伏等等。
通过对这些时间序列数据的分析,我们可以揭示隐藏在数据背后的规律和趋势,从而做出更准确的预测和决策。
接下来,让我们直接进入课后答案的分享。
在第一章的课后习题中,有一道关于时间序列平稳性检验的题目。
对于这道题,我们需要先计算序列的均值和方差,如果均值和方差不随时间变化,那么初步可以判断该序列是平稳的。
然后,再通过自相关函数(ACF)和偏自相关函数(PACF)来进一步确定平稳性。
具体的计算过程和判断方法,答案中都有详细的步骤和解释。
再来看第二章关于模型识别的课后题。
在这部分,我们要根据给定的时间序列数据的自相关和偏自相关函数的特征,来判断适合的模型类型。
比如,如果 ACF 呈现拖尾,PACF 截尾,那么可能适合的模型是 AR 模型;反之,如果 ACF 截尾,PACF 拖尾,则可能是 MA 模型。
而当 ACF 和 PACF 都呈现拖尾时,就需要考虑 ARMA 模型了。
在第三章关于参数估计的习题中,涉及到了最小二乘法、极大似然估计等方法。
答案中会给出具体的计算公式和推导过程,帮助我们理解如何通过数据来估计模型的参数。
这部分的内容相对较难,需要我们认真思考和反复练习。
第四章的课后作业主要是关于模型诊断和检验。
我们需要通过残差分析来判断模型的拟合效果,如果残差是白噪声,说明模型拟合较好;否则,就需要对模型进行进一步的改进和调整。
答案中会有关于如何进行残差分析的详细示例和判断标准。
第五章则侧重于时间序列的预测。
这部分的课后题会让我们运用所建立的模型对未来的值进行预测,并计算预测误差。
(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
应用时间序列分析习题答案解析

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=-229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)0)(=t x E3.4 解:原模型可变形为:由此可知c即当-1<c<0时,该AR(2)模型平稳。
时间序列习题答案

时间序列习题答案时间序列习题答案时间序列分析是一种用来研究随时间变化的数据模式和趋势的方法。
它在经济学、金融学、统计学等领域中被广泛应用。
下面我将给出一些时间序列分析的习题,并附上详细的答案解析。
习题一:某公司过去一年的销售额如下:100, 120, 130, 140, 150, 160, 170, 180, 190, 200。
请计算该公司的平均销售额和年度增长率。
答案解析:首先,计算平均销售额的方法是将所有销售额相加,然后除以销售额的个数。
在这个例子中,销售额的个数为10,总销售额为100+120+130+140+150+160+170+180+190+200=1540。
因此,平均销售额为1540/10=154。
接下来,计算年度增长率的方法是将最后一年的销售额减去第一年的销售额,然后除以第一年的销售额,并乘以100%。
在这个例子中,最后一年的销售额为200,第一年的销售额为100。
因此,年度增长率为(200-100)/100*100%=100%。
习题二:某股票的每日收盘价如下:10.2, 10.5, 10.7, 10.9, 11.1, 11.3, 11.5, 11.7, 11.9, 12.1。
请计算该股票的平均收盘价和收益率。
答案解析:计算平均收盘价的方法与计算平均销售额的方法相同。
将所有收盘价相加,然后除以收盘价的个数。
在这个例子中,收盘价的个数为10,总收盘价为10.2+10.5+10.7+10.9+11.1+11.3+11.5+11.7+11.9+12.1=113.9。
因此,平均收盘价为113.9/10=11.39。
计算收益率的方法是将每日的收盘价减去前一日的收盘价,然后除以前一日的收盘价,并乘以100%。
在这个例子中,第二天的收盘价为10.5,第一天的收盘价为10.2。
因此,第二天的收益率为(10.5-10.2)/10.2*100%=2.94%。
习题三:某城市过去十年的月度平均气温如下:15, 18, 20, 22, 25, 28, 30, 29, 26, 23。
应用时间序列习题(含答案)

应用时间序列习题(含答案)一、单项选择题1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58 D6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的 3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A%100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx B 0a a n x n =C1a a nx n= D n R x = En x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度=定基增长速度=10%B第三年的累计增长量=逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法 B方程法 C最小平方法 D移动平均法 E几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE 8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。
应用时间序列分析报告习题问题详解解析汇报

第二幸习题答案 2. 1 (1) 非平稳 (2) 0.01730.7000.4120. 148-0.079(3) 典型的具有单调趋彷的时间序列样本自相关图Autocorrelat i ons2.2(1) 非平稳,时序图如下(2) - (3)样本自相关系数及自相关图如下:典型的同时具有周期和趁势序列的样本自相 关图1.00000il|iils iHtin aHinipf|iqi0.70000 0山 »1/ »1» 山山 »1» »1> •”』»1» »1> «1> 心 仃・0^仃・仃<|««|«<|e<|• <|««|«f|«0.41212 • EE 用用EE 示示 ■0.14848 ■出榊• -.07879 •删■-.25758 ■qi•-.37576■ 1 >i 1 >11 • al* > 1 >i f >11 >ti>B-1 9 S 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1T marks two standard errors-0. 258-0. 376Cor reI at ionAutocorrelat ionsCorrelation -1987654321012345678911.00000 •ljir|*l|ll|l ljlf|*l|lin 伍0.90751 ■ihHjdiih ibHfdiih ihHfdiih ihH|diih ibHf QI0.72171 •qiijiqifji qir|ii|ii|i ipip0.51252 ■•X»• 1»• 1 ••!»• !>• 1 •0.349820.24690<!•0.20309 榊榊•0.21021 榊榊■0.26429 ibHfiliHf di0.36433 ijir[ii|iiji qirpi|i .0.48472 ■Hjihdiih ihH|diih ihib0.58456 ■qirPi|ii|i qif|ii|ii|i qinif|iiji0.60198 ■• 1»• 1»• 1 • • 1»•1»• 1»il»• 1 •0.51841 qirpi|i<|i qirpi|ii|i i|if|i .0.36856 •1»• 1»• 1 • •!»0.20671 榊榊・0.08138 出捲t0.00135-.03248-.02710 ・农0.011240.08275 艸:0.17011 脚布・0.24320 • In为0.25252qirpi|ii|i ip .marks two standard errors2.3(1)自相关系数为:0. 2023 0.013 0. 042 -0. 043 -0. 179 -0. 251 -0. 094 0. 0248 -0. 068 -0. 072 0.014 0. 109 0.217 0.3160. 0070 -0. 025 0.075 -0. 141 -0. 204 -0・245 0.066 0. 0062-0. 139 -0. 034 0. 206 -0.010 0. 080 0. 118(2)平稳序列(3)白噪声序列2.4LB=4. 83, LB统计董对应的分位点为0. 9634, P值为0.0363。
(完整版)应用时间序列第四章第5题答案

第四章5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。
data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;proc autoreg data=wangbao4_5;model x=time; output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay;symbol2c=red v=none i=join w=2l=3;run;proc forecast data=wangbao4_5 method=stepar trend=2 lead=5 out=out outfull outest=est;id time;var x;proc gplot data=out;plot x*time=_type_/href=2008;symbol1i=none v=star c=black;symbol2i=join v=none c=red;symbol3i=join v=none c=black l=2;symbol4i=join v=none c=black l=2;run;分析过程:1、时序图通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时可以用线性模型拟合序列的发展:Xt=a+bt+It t=1,2,3,…,60E(It)=0,var(It)=σ2其中,It为随机波动;Xt=a+b就是消除随机波动的影响之后该序列的长期趋势。
应用时间序列第四章习题解答1-4

t x x x x x t 1 t (1 ) t 1 (1 ) t 1 (1 ) t 1 ……○ t t t t t t
令 A lim
t
t x t
1 式两端取极限,得: ○
lim
t
(2)
ˆ21 x 20 x20 (1 ) x19 (1 )2 x18 … (1 )19 x1 x
0.4 13 0.4 0.6 11 0.4 0.62 10 … 0.4 0.619 10 11.79240287
t x x lim (1 ) lim t 1 t t t t
即 A (1 ) A
lim
t
xt A 1。 t
另解:根据指数平滑的定义有(1)式成立, (1)式等号两边同乘 (1 ) 有(2)式成立
t t (t 1) (1 ) (t 2) (1 ) 2 (t 2) (1 )3 (1) x t (1 ) x t (1 ) (t 1) (1 ) 2 (t 2) (1 )3 (2)
1 1 ˆ21 ( x20 x19 x18 x17 x16 ) (13 11 10 10 12) 11.2 解:(1) x 5 5
1 1 ˆ22 ( x ˆ21 x20 x19 x18 x17 ) (11.2 13 11 10 10) 11.04 x 5 5
a
6 25 6 4 0.16 。 25 25
b a 0.4
4. 现有序列 xt t , t 1, 2,… ,使用平滑系数为 的指数平滑法
应用时间序列分析第章答案

河南大学:姓名:汪宝班级:七班学号:1122314451 班级序号:685:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。
解:具体解题过程如下:(本题代码我是做一问写一问的)1:观察时序图:data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展.X t=a+b t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ2其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。
2:进行线性模型拟合:proc autoreg data=wangbao4_5;model x=time;output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay ;symbol2c=red v=none i=join w=2l=3;run;分析:由上面输出结果可知:两个参数的p值明显小于0.05,即这两个参数都是具有显著非零,4:模型检验又因为Regress R-square=total R-square=0.9931,即拟合度达到99.31%所以用这个模型拟合的非常好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。
由此可知c 应满足:1||<c ,11<-c 且11<+c 即当-1<c<0时,该AR(2)模型平稳。
3.5证明:已知原模型可变形为:t t x cB cB B ε=+--)1(32其特征方程为:0))(1(223=-+-=+--c c c λλλλλλ 不论c 取何值,都会有一特征根等于1,因此模型非平稳。
3.6 解:(1)错,)1/()(2201θσγε-==t x Var 。
(2)错,)1/()])([(21210111θσθγργμμε-===---t t x x E 。
(3)错,T lT x l x1)(ˆθ=。
(4)错,112211)(+--+-++++++=T l l T l T l T T G G G l e εεεε =11122111+--+-++++++T l l T l T l T εθεθεθε(5)错,22122121111]1[1lim )]([lim )](ˆ[lim εεσθσθθ-=--==-∞→∞→+∞→l l T l T lT l l e Var l x x Var 。
3.7解:12411112112111-=-+-=⇒+-=ρρθθθρ MA(1)模型的表达式为:1-+=t t t x εε。
3.8解法1:由1122=+t t t t x μεθεθε----,得111223=+t t t t x μεθεθε------,则111212230.5=0.5+(0.5)(0.5)+0.5t t t t t t x x μεθεθθεθε------+--,与123=10+0.5+0.8+t t t t t x x C εεε----对照系数得12120.510,0.500.50.80.5Cμθθθθ=⎧⎪+=⎪⎨-=⎪⎪=⎩,故1220,0.5,0.55,0.275C μθθ=⎧⎪=-⎪⎨=⎪⎪=⎩。
解法2:将123100.50.8t t t t t x x C εεε---=++-+等价表达为()2323223310.82010.510.8(10.50.50.5)t ttB CB x BB CB B B B εε-+-=-=-+++++展开等号右边的多项式,整理为22334423243410.50.50.50.50.80.80.50.80.50.5B B B B B B B CB CB +++++--⨯-⨯-+++合并同类项,原模型等价表达为233020[10.50.550.5(0.50.4)]k k t t k x B B C B ε∞+=-=+-+-+∑当30.50.40C -+=时,该模型为(2)MA 模型,解出0.275C =。
3.9解::0)(=t x E22222165.1)1()(εεσσθθ=++=t x Var5939.065.198.0122212111-=-=+++-=θθθθθρ 2424.065.14.01222122==++-=θθθρ 30≥=k k ,ρ。
3.10解法1:(1))(21 +++=--t t t t C x εεε)(3211 +++=----t t t t C x εεε11111)1(------++=⎪⎭⎫⎝⎛+-+=t t t t t t t t C x C x C x εεεεε即 t t B C x B ε])1(1[)1(--=-显然模型的AR 部分的特征根是1,模型非平稳。
(2) 11)1(---+=-=t t t t t C x x y εε为MA(1)模型,平稳。
221122111+--=+-=C C C θθρ 解法2:(1)因为22()lim(1)t k Var x kC εσ→∞=+=∞,所以该序列为非平稳序列。
(2)11(1)t t t t t y x x C εε--=-=+-,该序列均值、方差为常数,()0t E y =,22()1(1)t Var y C εσ⎡⎤=+-⎣⎦自相关系数只与时间间隔长度有关,与起始时间无关121,0,21(1)k C k C ρρ-==≥+-所以该差分序列为平稳序列。
3.11解:(1)12.1||2>=φ,模型非平稳;=1λ 1.3738 =2λ-0.8736(2)13.0||2<=φ,18.012<=+φφ,14.112<-=-φφ,模型平稳。
=1λ0.6 =2λ0.5(3)13.0||2<=θ,16.012<=+θθ,12.112<-=-θθ,模型可逆。
=1λ0.45+0.2693i =2λ0.45-0.2693i(4)14.0||2<=θ,19.012<-=+θθ,17.112>=-θθ,模型不可逆。
=1λ0.2569 =2λ-1.5569 (5)17.0||1<=φ,模型平稳;=1λ0.7 16.0||1<=θ,模型可逆;=1λ0.6(6)15.0||2<=φ,13.012<-=+φφ,13.112>=-φφ,模型非平稳。
=1λ0.4124 =2λ-1.2124 11.1||1>=θ,模型不可逆;=1λ 1.1。
3.12 解法1: 01G =,11010.60.30.3G G φθ=-=-=,1111110.30.6,2k k k k G G G k φφ---===⨯≥所以该模型可以等价表示为:100.30.6kt t t k k x εε∞--==+⨯∑。
解法2:t t B x B ε)3.01()6.01(-=-t t B B B x ε)6.06.01)(3.01(22 +++-= t B B B ε)6.0*3.06.0*3.03.01(322 ++++= j t j j t -∞=-∑+=εε116.0*3.010=G ,16.0*3.0-=j j G3.13解:3)()5.01(])(3[])([2=-⇒Θ+=Φt t t x E B E x B E ε12)(=t x E 。
3.14 证明:已知112φ=,114θ=,根据(1,1)ARMA 模型Green 函数的递推公式得:01G =,2110110.50.25G G φθφ=-=-=,1111111,2k k k k G G G k φφφ-+-===≥01ρ=52232111112245011111142422(1)11112011170.27126111j jj j j j jj j G GGφφφφφφφφρφφφφφ∞∞++==∞∞+==++--+======-+++-∑∑∑∑ ()11111122200,2jj kjj k jj k j j j k k jjjj j j G G G GG Gk GGGφρφφρ∞∞∞++-+-===-∞∞∞=======≥∑∑∑∑∑∑3.15 (1)成立 (2)成立 (3)成立 (4)不成立3.16 解:(1)t t t x x ε+-=--)10(*3.0101, 6.9=T x88.9])10(*3.010[)()1(ˆ11=+-+==++T T t T x E x E xε 964.9])10(*3.010[)()2(ˆ212=+-+==+++T T t T x E x E xε 9892.9])10(*3.010[)()3(ˆ323=+-+==+++T T t T x E x E xε 已知AR(1)模型的Green 函数为:j j G 1φ=, ,,21=j121213122130)3(++++++++=++=t t t t t t T G G G e εφεφεεεε 8829.99*)09.03.01()]3([22=++=T e Var3+t x %的置信区间:的95[9.9892-1.96*8829.9,9.9892+1.96*8829.9] 即[3.8275,16.1509](2)62.088.95.10)1(ˆ11=-=-=++T T T xx ε 15.10964.962.0*3.0)()1(ˆ21=+==++t T x E x045.109892.962.0*09.0)()2(ˆ31=+==++t T x E x81.99*)3.01()]2([22=+=+T e Var3+t x %的置信区间:的95[10.045-1.96×81.9,10.045+1.96*81.9] 即[3.9061,16.1839]。