粉末的制备-电解法

合集下载

粉末冶金生产的基本工艺流程

粉末冶金生产的基本工艺流程

转贴]粉末冶金生产的基本工艺流程标签:转贴粉末冶金生产基本工艺流程时间:2008-11-26 21:23:53 点击:2803 回帖:0上一篇:[转贴]金属磨损自修复抗磨剂的性下一篇:金相显微镜的外形尺寸图(图)粉末冶金生产的基本工艺流程包括:粉末制备、粉末混合、压制成形、烧结及后续处理等。

用简图表示于图7-1中。

陶瓷制品的生产过程与粉末冶金有许多相似之处,其工艺过程包括粉末制备、成形和致密化三个阶段。

2.1 粉末制备2.1.1 粉末制备粉末是制造烧结零件的基本原料。

粉末的制备方法有很多种,归纳起来可分为机械法和物理化学法两大类。

(1)机械法机械法有机械破碎法与液态雾化法。

机械破碎法中最常用的是球磨法。

该法用直径10~20mm钢球或硬质合金对金属进行球磨,适用于制备一些脆性的金属粉末(如铁合金粉)。

对于软金属粉,采用旋涡研磨法。

雾化法也是目前用得比较多的一种机械制粉方法,特别有利于制造合金粉,如低合金钢粉、不锈钢粉等。

将熔化的金属液体通过小孔缓慢下流,用高压气体(如压缩空气)或液体(如水)喷射,通过机械力与急冷作用使金属熔液雾化。

结果获得颗粒大小不同的金属粉末。

图7-2为粉末气体雾化示意图。

雾化法工艺简单,可连续、大量生产,而被广泛采用。

(2)物理化学法常见的物理方法有气相与液相沉积法。

如锌、铅的金属气体冷凝而获得低熔点金属粉末。

又如金属羰基物Fe(CO)5、Ni(CO)4等液体经180~250℃加热的热离解法,能够获得纯度高的超细铁与镍粉末,称为羰基铁与羰基镍。

化学法主要有电解法与还原法。

电解法是生产工业铜粉的主要方法,即采用硫酸铜水溶液电解析出纯高的铜。

还原法是生产工业铁粉的主要方法,采用固体碳还原铁磷或铁矿石粉的方法。

还原后得到得到海绵铁,经过破碎后的铁粉在氢气气氛下退火,最后筛分便制得所需要的铁粉。

图7-2 粉末气体雾化示意图2.1.2 粉末性能粉末的性能对其成形和烧结过程,及制品的性能都有重大影响,因而对粉末的性能必须加以了解。

制备金属粉末的方法

制备金属粉末的方法

制备金属粉末的方法
制备金属粉末的方法主要有以下几种:
1. 机械研磨法:将金属块通过球磨机、环磨机等设备进行研磨,使其破碎成粉末。

2. 化学还原法:通过将金属盐溶液与还原剂反应,使金属离子还原为金属粉末。

3. 电解法:将金属盐溶液用作电解质,通过电解反应将金属离子还原为金属粉末。

4. 车削法:使用机床将金属块切削成细小的金属粉末。

5. 雾化法:将金属块加热至熔点,然后通过高速气流将熔融金属喷雾,使其迅速冷却成粉末。

这些方法根据金属的性质和需求的粉末质量可选择不同的方法进行制备。

粉末冶金原理知识要点

粉末冶金原理知识要点

粉末冶⾦原理知识要点1粉末冶⾦的特点:粉末冶⾦在技术上和经济上具有⼀系列的特点。

从制取材料⽅⾯来看,粉末冶⾦⽅法能⽣产具有特殊性能的结构材料、功能材料和复合材料。

(1)粉末冶⾦⽅法能⽣产普通熔炼法⽆法⽣产的具有特殊性能的材料:1)能控制制品的孔隙度;2)能利⽤⾦属和⾦属、⾦属和⾮⾦属的组合效果,⽣产各种特殊性能的材料;3)能⽣产各种复合材料;(2)粉末冶⾦⽅法⽣产的某些材料,与普通熔炼法相⽐,性能优越:1)⾼合⾦粉末冶⾦材料的性能⽐熔铸法⽣产的好;2)⽣产难熔⾦属材料和制品,⼀般要依靠粉末冶⾦法;从制造机械零件⽅⾯来看,粉末冶⾦法制造的机械零件时⼀种少切削、⽆切削的新⼯艺,可以⼤量减少机加⼯量,节约⾦属材料,提⾼劳动⽣产率。

总之,粉末冶⾦法既是⼀种能⽣产具有特殊性能材料的技术,⼜是⼀种制造廉价优质机械零件的⼯艺。

2粉末冶⾦的⼯艺过程(1)⽣产粉末。

粉末的⽣产过程包括粉末的制取、粉料的混合等步骤。

为改善粉末的成型性和可塑性通常加⼊汽油、橡胶或⽯蜡等增塑剂。

(2)压制成型。

粉末在500~600MPa压⼒下,压成所需形状。

(3)烧结。

在保护⽓氛的⾼温炉或真空炉中进⾏。

烧结不同于⾦属熔化,烧结时⾄少有⼀种元素仍处于固态。

烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等⼀系列的物理化学过程,成为具有⼀定孔隙度的冶⾦产品。

(4)后处理。

⼀般情况下,烧结好的制件可直接使⽤。

但对于某些尺⼨要求精度⾼并且有⾼的硬度、耐磨性的制件还要进⾏烧结后处理。

后处理包括精压、滚压、挤压、淬⽕、表⾯淬⽕、浸油、及熔渗等。

现代粉末冶⾦的主要⼯艺过程⽣产粉末制坯烧结3、粉末冶⾦发展中的三个重要标志:第⼀是克服了难熔⾦属(如钨、钼等)熔铸过程中产⽣的困难第⼆是本世纪30年代⽤粉末冶⾦⽅法制取多孔含油轴承取得成功第三是向更⾼级的新材料新⼯艺发展。

4、怎样理解“粉末冶⾦技术既古⽼⼜年轻”?粉末冶⾦是⼀项新兴技术,但也是⼀项古⽼技术。

第二章粉末制备

第二章粉末制备
内容
粉末粒度/μm 颗粒形状 聚集状况 表观密度% 冷却速度/K· s -1 偏析程度 氧化物/10
-6
气雾化
100 球形 有一些 55 10
4
水雾化
150 不规则 很少 35 10
5
轻微 120
可忽略 3000
流体压力/MPa
流体速度/m· s 雾化效率
-1
3
100 低
14
100 中等
2)影响二流雾化性能的因素
从制备过程的实质来分:机械破碎法、物 理化学法

固态
粉末
1、金属(合金)→金属粉末:机械粉碎,电化腐蚀 2、金属氧化物(盐类)→金属粉末:还原法 3、金属+非金属化合物 →金属化合物粉末:还原-化合法
金属氧化物+非金属化合物
3 常用的粉末制备方法 3、1 机械粉碎法
碾碎 碾碎机 双辊滚碎机
机 械 粉 碎 法
雾化粉末性能的表征 a.粉末的粒度:平均粒度、粒度分布、可用粉 末收得率 b.粉末形状:松装密度、流动性、压坯密度、 比表面积 c.粉末纯度和结构:化学成分、氧化度、均匀 性、颗粒微观组织结构
A.雾化介质
空气 气体 雾化介质 影响 液体 水 惰性 气体 油
对氧化不严重或再进行还原处理的合 金。(铜、铁、碳钢) 对易氧化的金属粉末制备,含锰、硅、 钒、钛、锆的合金或镍基、钴超合金 能较好地控制颗粒形状和表面氧化 对含有易被还原的氧化物金属合金, 铁、低碳钢、合金钢(由于金属冷却 速度快粉末表面烟花大大减少)
3.2.2离心雾化
离心雾化法—利用机械旋转离心力将金属液流 击碎成细液滴,然后冷却凝结成 粉末 离心雾化法分类:旋转圆盘、旋转坩埚、旋转 电极、旋转网
1)旋转圆盘法

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理摘要简要介绍了金属粉末的制备方法。

由机械法和物理化学法两大类方向具体介绍。

同时简述了各种金属粉末制备方法的基本原理。

关键词金属粉末;制备;分类;原理1 引言:金属及其化合物的粉末制备目前已发展了很多方法,对于这些方法的分类也有若干种。

根据原料的状态可分为固体法、液体法和气体法;根据反应物的状态可分为湿法和干法;根据生产原理可分为物理化学法和机械法。

一般来说在物理化学方法中最重要的方法为还原法、还原-化合法和电解法;在机械法中最主要的方法则是雾化法和机械粉碎法。

金属粉末的生产方法的选择取决于原材料、粉末类型、粉末材料的性能要求和粉末的生产效率等。

随着粉末冶金产品的应用越来越广泛,对粉末颗粒的尺寸形状和性能的要求越来越高,因此粉末制备技术也在不断地发展和创新,以适应颗粒尺寸和性能的要求。

2 金属粉末的制备方法:2.1 物理化学法:2.1.1 还原法:金属氧化物及盐类的还原法是一种应用最广泛的粉末制备方法。

可以采用固体碳还原铁粉和钨粉,用氢或分解氨制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气和煤气可以制取铁粉等,用纳、钙、镁等金属作还原剂可以制取钽、铌、钛、锆、钍、铀等稀有金属粉末。

金属氧化物及盐类的还原法基本原理为,所使用的还原剂对氧的亲和力比氧化物和所用盐类中相应金属对氧的亲和力大,因而能够夺取金属氧化物或盐类中的氧而使金属被还原出来。

由于不同的金属元素对氧的作用情况不同,因此生成氧化物的稳定性也不大一样。

可以用氧化反应过程中的△G的大小来表征氧化物的稳定程度。

如反应过程中的△G值越小,则表示其氧化物的稳定性就越高,即其对氧的亲和力越大。

其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。

2.1.2 金属热还原和还原化合法:金属热还原是,被还原的原料可以是固态的、气态的,也可以是熔盐。

后二者相应的又具有气相还原和液相沉淀的特点。

粉末冶金工艺的基本工序(三篇)

粉末冶金工艺的基本工序(三篇)

粉末冶金工艺的基本工序1、原料粉末的制备。

现有的制粉方法大体可分为两类:机械法和物理化学法。

而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。

其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。

成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。

成型的方法基本上分为加压成型和无压成型。

加压成型中应用最多的是模压成型。

3、坯块的烧结。

烧结是粉末冶金工艺中的关键性工序。

成型后的压坯通过烧结使其得到所要求的最终物理机械性能。

烧结又分为单元系烧结和多元系烧结。

对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。

除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。

烧结后的处理,可以根据产品要求的不同,采取多种方式。

如精整、浸油、机加工、热处理及电镀。

此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金工艺的基本工序(二)粉末冶金是一种利用粉末作为原料,通过压制、成型、烧结等工艺制备制品的工艺方法。

它具有高效率、高精度和可靠性好等特点,广泛应用于各个领域,包括汽车、航空航天、电子等。

粉末冶金工艺的基本工序包括粉末选料、混合、成型、烧结等。

首先是粉末选料。

粉末冶金工艺中所用的粉末要求颗粒细小、纯度高、形状均匀。

常见的粉末材料包括金属、陶瓷和合金等。

粉末选料的过程中需要考虑到材料的物理化学性质,并进行相应的测试和分析。

接下来是粉末的混合。

混合是将不同种类的粉末按一定比例混合在一起,以获得所需的材料性能。

混合可以通过机械混合、化学方法和物理方法等进行。

在混合过程中,需要控制混合时间和混合速度,以保证混合的均匀性。

然后是成型。

成型是将混合好的粉末放入模具中进行压制或注塑成型。

粉末冶金材料概述

粉末冶金材料概述

粉末冶金材料概述引言粉末冶金材料是一类通过粉末冶金工艺制备的新型材料。

粉末冶金是指通过粉末冶金工艺将金属或非金属粉末压制成型,经过烧结或其他处理方法得到所需材料的一种制备方法。

粉末冶金材料因其独特的结构和性能,在许多工业和科研领域受到广泛关注。

本文将对粉末冶金材料进行概述,包括其制备方法、特点和应用领域等方面。

粉末冶金材料的制备方法粉末冶金材料的制备方法主要包括粉末制备、成型和烧结等步骤。

粉末制备粉末制备是粉末冶金材料制备的第一步。

粉末制备方法有很多种,包括物理方法和化学方法两大类。

物理方法主要包括气雾法、机械法、电解法和溅射法等。

其中,气雾法是指通过气体或喷雾器产生粉末颗粒,例如高温气雾法和超声气雾法。

机械法是指通过机械力使原料产生破碎、研磨或合金化的方法,常见的机械法有球磨法和挤压法等。

电解法是指通过电解原理将金属溶液电解析出粉末。

溅射法是将金属或合金靶材置于真空或较低压力下,在被轰击时产生粉末颗粒。

化学方法主要包括沉积法和还原法等。

沉积法是将金属盐溶液注入电化学池中,通过电解原理在电极上析出粉末。

还原法是指通过还原反应将金属离子还原成金属粉末。

成型是将粉末加工成所需形状的步骤。

常见的成型方法有压制、注射成型和挤压等。

压制是将粉末放入模具中,在一定压力下使其成型。

注射成型是将粉末与有机绑定剂混合,通过注射机将混合物喷射到模具中,经过固化后得到成型件。

挤压是将粉末放入带有孔的金属筒子中,在压力下挤出形状。

烧结是粉末冶金材料制备的最后一步,通过加热使粉末颗粒之间的结合力增强,形成致密的材料。

烧结温度和时间根据材料的要求进行选择,一般在金属的熔点以下,同时需要保证烧结后的材料具有所需的物理和化学性质。

粉末冶金材料的特点粉末冶金材料具有许多独特的特点,使其在许多领域具有广泛的应用前景。

高纯度由于粉末冶金材料可以通过粉末制备方法获得,因此可以获得高纯度的材料。

在制备过程中,可以通过选择合适的原料和控制工艺参数,减少杂质的含量,从而获得高纯度的材料。

粉末冶金期末复习题-155

粉末冶金期末复习题-155

P/M 题库填空题1.工业上三大制粉方法分别是:雾化法、还原法、电解法。

2.粉末制备的唯一性提现在:用特殊方法才能制备获得特定性能的粉末。

3.金属氧化物还原法是应用最广的制取金属粉末的方法。

4.氧化物的ΔG-T图是以含1mol 氧的金属氧化物的生成反应的ΔG作直线而绘制成的。

5.ΔG-T关系线在相变温度处发生明显的转折。

6.金属氧化物还原,最常见的还原反应类型是:气-固多相反应。

7.低温时反应过程由化学反应环节控制,高温时由扩散环节控制。

8.化学反应动力学一般分为均相反应动力学和多相反应动力学。

9.1atm的气压下,大于685°C Fe稳定存在;位于650°C-685°C FeO 稳定存在;小于650°C Fe3O4稳定存在。

10.氧化钨存在的四种稳定形式:WO3、WO2.92、WO2.72、WO2。

11.H2还原氧化钨中W粉的长大机制为挥发—沉积。

12.电解法制粉的两种基本方法为:熔盐电解和水溶液电解。

13.电解法制备粉末,粉末的最大的特点为:结晶粉末的形状一般为树枝状。

14.影响二流雾化法的因素有:金属液体、雾化介质、装置设计。

15.粉末的化学成分主要指主要金属的含量、杂质的种类和含量。

16.粉末的物理性能包括:颗粒的形状与结构、颗粒的粒度与分布、颗粒的硬度、密度、电热光学性能、熔点、比表面积。

17.以下制粉方法分别对应何种形状粉末,雾化法:球形粉末还原法:多孔粉末电解法:树枝状粉末研磨法:片状粉末。

18.粉末体中的孔隙包括颗粒内孔隙和颗粒间孔隙。

19.以下粒径基准分布对应何种测量方法,几何学粒径:显微镜法、当量径:重力沉降光透法、比表面积径:气体透过法、光透径:激光衍射法。

20.100目的粉末的粒度为:150微米。

21.粉末体中的孔隙包括一次孔隙、二次孔隙、拱桥效应孔隙。

22.影响压制过程中粉末位移的因素有:颗粒的显微硬度、润滑条件、粉末颗粒之间的摩擦、粉末形状、粉末体间可填充的体积、颗粒表面粗糙度23.颗粒变形的三种主要形式为:塑性变形、脆性断裂、弹性变形24.实际粉末位移变形的复杂性体现在:不同粉末的位移,变形规律不同、位移与变形总是同时发生、模压成形不能得到完全致密压坯25.压制时的总压力可以分为:净压力和压力损失26.减小模具的压力损失可以:添加润滑剂、提高模具硬度和光洁度、改善工艺技术采用双面压制。

粉末冶金

粉末冶金

7.爆炸成形
借助爆炸波的高能量使粉末固结的成形方法。 可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高 合金材料等,且成形密度接近于理论密度。还可压制普通压力机 无法压制的大型压坯。
5.2.4 烧结
按一定的规范加热到规定高温并保温一段时间,使 压坯获得一定物理与力学性能的工序。 1.连续烧结和间歇烧结 (1)连续烧结:待烧结材料连续地或平稳、分段地通过具有脱腊、
预热、烧结或冷却区段的烧结炉进行烧结的方式。 生产效率高,适用于大批、大量生产 (2) 间歇烧结:在炉内分批烧结零件的方式。 通过对炉温控制进行所需的预热,加热及冷却循环 生产效率较低,适用于单件、小批生产
2.固相烧结和液相烧结 (1)固相烧结:烧结速度较慢,制品强度较低 (2) 液相烧结:烧结速度较快,制品强度较高,用于具有特殊性能
5.1.2 粉末冶金的机理
1.压制的机理
压制是在模具或其它容器 中,在外力作用下,将粉末紧 实成具有预定形状和尺寸的工 艺过程。 压缩过程中,从而形成具有一定密度和强度的压 坯。随着粉末的移动和变形,较大的空隙被填充,颗 粒表面的氧化膜被破碎,接触面积增大,使原子间产 生吸引力且颗粒间的机械楔合作用增强。
5.2
粉末冶金工艺
金属粉末的制取→预处理→坯料的成形→烧结→后处理等
5.2.1 粉末的制取 机械法和物理化学法两大类 1.机械法
用机械力将原材料粉碎而 化学成分基本不发生变化的 工艺过程。
球磨法:用于脆性材料及合金
研磨法:用于金属丝或小块边
角料
雾化法:用于熔点较低的金属
a) 高速气流雾化 b) 离心雾化 c) 旋转电极雾化
4.等静压制
对粉末(或压坯)表面或对装粉末(或压坯)的软膜表面施以各 向大致相等的压力的压制方法

粉末冶金重点总结

粉末冶金重点总结

绪论概念:粉末冶金是一种制取金属粉末,以及采用成形和烧结工艺将金属粉末〔或金属粉末与非金属粉末的混合物〕制成制品的工艺。

由于其生产工艺与陶瓷的生产工艺在形式上类似,又被称为金属陶瓷法。

粉末冶金的特点:1. 粉末冶金相对于铸造精细度高,能防止或者减少偏析、机加工大等问题,而且有少、无切屑的特点,节约材料。

2. 粉末冶金能实现一些熔铸难以加工甚至不能加工的材料。

如多空材料、陶瓷、假合金,还有一些高熔点金属。

而且有可能制取高纯度的材料而不给材料带来污染。

3. 粉末本钱较高,制品的大小形状受一定限制,烧结件韧性较差。

1.粉末制备方法的几点知识:① 从过程的实质来看,大体上可以归纳为两大类,即物理机械法和物理化学法② 从工业规模而言,应用最广泛的是复原法、雾化法和电解法,而气相沉淀法和液相沉淀法在特殊应用时亦很重要。

③ 从材质范围来看,不仅使用金属粉末、 也使用合金粉末、金属化合物粉末;④ 从粉末外形来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;⑤ 从粉末粒度来看,要求各种粒度的粉末,从粒度为500~1000um 的粗粉末到粒度小于0.1um 的超细粉末。

2.制粉方法:① 固态下制取粉末的方法包括:〔1〕从固态金属与合金制取金属与合金粉末的 有机械粉碎法和电化腐蚀法〔2〕从固态金属氧化物及盐类制取金属与合金粉末的有复原法;从金属和非金属粉末、金属氧化物和非金属粉末制取金属化合物粉末的有复原-化合法。

.② 在气态制备粉末的方法包括:〔1〕从金属蒸气冷凝制取金属粉末的蒸气〔2〕从气态金属羟基物离解制取金属、合金以及包覆粉末的羟基物热离解法; 冷凝法;③ 在液态下制备粉末的方法包括:〔1〕从液态金属与合金制备金属与合金粉末的雾化法;〔2〕从金属盐溶液置换和复原金属、合金以及包覆粉末的置换法、溶液氢复原法;〔3〕从金属盐溶液电解制金属与合金粉末的水溶液电解法;从金属熔盐电解制金属和金属化合物粉末的熔盐电解法。

粉末冶金基本知识重要

粉末冶金基本知识重要

装球量:球磨筒内磨球的数量。

球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。

松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。

振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。

单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。

一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。

二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。

压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。

多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。

气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。

活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。

氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。

液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。

机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。

热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。

粉末冶金原理第二章

粉末冶金原理第二章
1)均相反应的速度方程式。 2)活化能。
(2)多相反应的特点
1)多相反应的速度方程式。 ① 界面上的化学反应速度比反应剂扩散到界面的速度快得 多,于是ci=0。这种反应是由扩散环节控制的,其速度=(D/δ) A(c-ci)=k1Ac0。 ② 化学反应比扩散过程的速度要慢得多,这种反应是由化 学环节控制的,其速度=,n是反应级数。
1.金属氧化物还原的热力学
3)位于图中最下面的几条关系线所代表的金属如钙、镁等与 氧的亲和力最大,所以,钛、锆、钴、铀等氧化物可以用钙、 镁作还原剂,即所谓的金属热还原。
1.金属氧化物还原的热力学
图2-10 金属氧化物Δ -T
例CO2还-2原就时ApCl2OO/是3生多成少反?应,求在1620℃下,Al2O3被
(2)多相反应的特点
③ 若扩散过程与化学反应的速度相近,这种反应是由中间 环节控制的。这种反应较普遍,在扩散层中具有浓度差,但 ci≠0。其速度=k1A(c-ci)=k2Acn,设n=1,则k1A(c-ci)=,所以c i=k1c/(k1+k2),将ci值代入k1A(c-ci)得:速度=k1k2Ac/(k1+k2)=kA c。如果k2<<k1,则k=k2,即化学反应速度常数比扩散系数小 得多,扩散进行得快,在浓度差较小的条件下能够有足够的 反应剂输送到反应区,整个反应速度取决于化学反应速度, 过程受化学环节控制。如果k1<<k2,则k=k1=D/δ,即化学反 应速度常数比扩散系数大得多,扩散进行得慢,整个反应速 度取决于反应剂通过厚度为δ的扩散层的扩散速度,过程受扩 散环节控制。当过程为扩散环节控制时,化学动力学的结论 很难反映化学反应的机理。 2)多相反应的机理。
图2-11 氧化物的Δ -T图附加的专用坐标解说图

粉末的制取方法

粉末的制取方法

六、雾化法


雾化法包括:1)二流雾化法,分气体雾化和水雾化 ;2)离心雾化法,分旋转圆盘雾化、旋转电极雾化 、旋转坩埚雾化等;3)其他雾化法,如转辊雾化、 真空雾化、油雾化等。 二流雾化法是用高速气流或高压水击碎金属液流的 ,离心雾化利用机械旋转的离心力将金属液流击碎 成细的液滴,然后冷却凝结成粉末。
三、气相沉积法



气相沉积法用在粉末冶金中的有以下几种: (1)金属蒸气冷凝,这种方法主要用于制取具有大蒸 气压的金属(如锌、镉等)粉末。这些金属的特点 是有较低的熔点和较高的挥发性,如果将这些金属 蒸气在冷却面上冷凝下来,便可形成很细的球状粉 末。 (2) 羰基物热离解。(3)气相还原,包括气相氢还原和 气相金属热还原。(4)化学气相沉积。
二、还原或还原化合法

金属热还原法主要应用于制取稀有金属(Ta、Nb、Ti 、Zr 、 Th 、U 、Cr等),特别适用于生产无碳金属,也可制取像 Cr-Ni这样的合金粉末。 金属热还原的反应可用一般化学式表示: 式中



根据所讨论的还原过程原理,只有形成化合物的等压位大大
降低的金属才有可能作为金属热还原剂
七、机械粉碎法


(3)球料比 在研磨中还要注意球与料的比例。料太少, 则球与球间碰撞加多,磨损太大;料过多,则磨削面积不够 ,不能很好磨细粉末,需要延长研磨时间,能量消耗增大。 同时,料与球装得过满,使磨筒上部空间太小,球的运动发 生阻碍后球磨效率反而降低。一般在球体的装填系数为 0.4~0.5时,装料量应该以填满球间的空隙稍掩盖住球体表面 为原则。也有建议装料量为磨筒容积的20%的。总之,球与 料不能装得过满。
七、机械粉碎法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电极电位的意义:标准电极电位 ,即离子在 浓度等于克离子/升溶液中的还原电位, 如:
H / H 0V

Ni / Ni 0.25V
2
Ag / Ag 0.799 V

Fe / Fe 0.44V
2
Au / Au 1.50V
3
水溶液电解基本原理——电化学原理
定义:在直流电作用下,在电极上产生 氧化与还原的过程称之为电解。 在阳极(anode)上失去电子,氧化反应, 成为正离子。 在阴极(cathode)上金属正离子获得电 子, 还原成为金属原子。 电解时,电能转化为化学能——作用与 原电池相反。
从上两式可知,提高溶液中铜离子的浓度,会提高 电极电位,即加大电极电位才有Cu粉析出。
2、 电解时,在阳极区, 愈负愈先氧化,此外 在阳极上,OH-失去电子放出氧气。 所以,在电解铜时,同时有Cu,H2(阴极)上, O2(阳极)上析出,这样,电解水可制得H2和O2 气。

3 、电解的定量关系(法拉第定律)
q(电化当量)=克当量/96500库仑
=克当量/96500安培·秒
=克当量/26.8安培·时
书上用:
w q n 26.8 A h
W
原子量
n
化合价
w/n 克当量 所以q=克当量/26.8安培·小时,电解
产量等于电化当量与电量的乘积;
m q I t或 m q
I -电流强度 t-电解时间
克当量: 克当量=摩尔质量/化合价
电解时,溶液中离子的价数不同,所需电量不同, 如一个电子不能使Cu 2+还原,需要两个电子; H的克当量: 克当量=1.008/1=1.008 氢为一价 O的克当量: 克当量=16.000/2=8.000 氧为二价
电化当量:
对于不同电解液,通过等量电量时,每种物 质量(电解槽中或阴极上形成粉末量)与电化 当量成正比,并通过96500库仑的电量或96500 安培·秒才能析出1克当量的物质; 因此,电化当量为每96500安培·秒电流所析 出的克当量物质,有
Cu-2e 2OH--2e
Cu 2+
即阳极去掉离子,析出氧气。Βιβλιοθήκη 1 H2O+ 2 O2
4)阴极还原反应 铜离子放电而析出金属
Cu 2+ +2e 2H+ +2e

Cu
H2
电解铜时,金属铜[还]=1 ,因此有:
RT 2 = + ln Cu nF


RT + = - ln H PH 2 nF


1、电解区,在阴极区,电极电位正着先还原; 非标准状态下,电极电位与溶液中离子浓度 的关系—奈斯特(Nernst)方程:
RT ln c nF

n -离子价电数, F=96500库仑,法拉第常数 c-溶液的浓度 T=25 ºC R=8.316
对于任意氧化还原反应Nernst公式可表示为 :
m q
g w q F nF
Cu powder on cathodes pick powder 20 min interval
Washing and drying water and vacuum
Milling and screen, Cu powder
一、电解基本原理及规律
当外加电位=原电池电位时,E外=E池, 氧化还原平衡。 当外加电位大于原电池电位时,电解发 生,阳极氧化,阴极 还原。
只有当电流密度足够大,在阴极上附近放电析 出的离子数急剧增多,阳离子浓度急剧下降,经 过很短的时间就达到c0,才有粉末析出,否则析出 的是致密体。因此,要形成粉末,电流密度和金 属离子浓度起着关键的作用。
阴极面积A,在距离A的h远的范围内析出的离子数 为
c c0 A h 2
根据法拉第定律,析出的物质
一些金属的电化当量
4、电解步骤
(1) 扩散,离子扩散到放电沉积区
(2) 电化学反应,获得电子还原,此时如果反 应太慢,晶核形成困难,反而得到大晶粉 末
(3) 晶核析出后,晶粒择优方向长大——枝晶 化(能量低)
5、电流密度与电解液中金属离子浓度的关系
电解时,电解液的浓度如有图所示 C A
C0

h
B
c:溶液中离子的浓度 c0:阴极上离子的浓度 h:到阴极的距离,A:阴极面积
在实际电解过程中,开始时阴极附近 的离子浓度与溶液离子浓度相等,因此 析出的是致密体,只有当阴极区离子的 浓度由 c 降到某一个浓度值 c0 时,才开始 析出松散粉末。
如果电流密度小,阴极区离子通过扩散,得到 补充,很难达到c0值,此时还是不能得到疏松的粉 末。
2.6 电解制粉
水溶液电解:制取Fe、Cu、Ag、Sn、Mo、 Pb、Au
电 解 制 粉
熔盐电解:制取Ti、Zr、Be、Ta、Nb、Th、 稀有金属及合金
An electrolytic cell operation for deposition of metal powders, the raw metal is dissolved at the anode and deposited at the cathode, (Fe, Cu, Au, Ag, Ni, etc.)
Scanning electron micrograph of electrolytic copper powder show typical dendritic shape
Procedure of copper powder production by electrolytic from solution and processing parameters Cathodes CuSO4 sol. Anodes (120-150g/L) Electrolytic deposition,( i=25a/dm2, 1.8V, 50°C)
RT = - ln 还 氧 nF
RT = + ln 氧 [还] nF

电极反应(如Cu 电极)
1. 电化学体系:(-)Cu粉/Cu2+,CuSO4,H2SO4, H2O/Cu粉(+) 1)硫酸铜电离反应 , 2)硫酸电离反应, 3)阳极氧化反应 阳极铜板失去电子,变成离子, 进入溶液,
相关文档
最新文档