图论知识及运用举例
图论及其应用
图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
图论知识点
图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。
图由节点(或顶点)和连接这些节点的边组成。
本文将概述图论的基本概念、类型、算法以及在各种领域的应用。
1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。
边可以是有向的(指向一个方向)或无向的(双向连接)。
1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。
环是一条起点和终点相同的路径。
1.3 度数节点的度数是与该节点相连的边的数量。
对于有向图,分为入度和出度。
1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。
2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。
2.2 简单图和多重图简单图是没有多重边或自环的图。
多重图中,可以有多条边连接同一对节点。
2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。
有向图的连通性称为强连通性。
2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。
3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。
3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。
3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。
4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。
4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。
4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。
5. 结论图论是数学中一个非常重要和广泛应用的领域。
它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
随着科技的发展,图论在新的领域中的应用将会不断涌现。
本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。
图论的基本概念和应用
图论的基本概念和应用图论,顾名思义,是研究图的一门数学分支。
在计算机科学、网络科学、物理学等领域都有广泛的应用。
本文将从图的基本概念入手,介绍图论的基础知识和常见应用。
一、图的基本概念1.1 图的定义图是由若干点和若干边构成的。
点也被称为顶点,边也被称为弧或者线。
一个点可以与任意个点相连,而边则是连接两个点的线性对象。
一些有向边可以构成一棵树,而一些无向边则形成了一个回路。
1.2 图的表示图可以用一张二维平面图像表示。
这张图像由若干个点和连接这些点的线组成。
这种表示方式被称为图的平面表示。
图还可以用邻接矩阵、邻接表、关联矩阵等数据结构进行表示。
1.3 图的类型根据图的性质,可以将图分为有向图、无向图、完全图、连通图、欧拉图、哈密顿图等。
有向图:边有方向,表示从一个点到另一个点的某种关系。
无向图:边没有方向,表示两个点之间的某种关系。
完全图:任意两个点之间都有一条边,不存在自环。
\连通图:任意两个点之间都有至少一条通路,没有孤立的点。
欧拉图:一条欧拉通路是一条从一点开始经过所有边恰好一次后回到该点的通路。
哈密顿图:经过所有点恰好一次的通路被称为哈密顿通路。
二、图的应用2.1 最短路径问题图论在计算机算法中最常见的应用之一就是最短路径问题。
在一个有向图中,从一个点到另一个点可能有多条不同的路径,每条路径的长度也可能不同。
最短路径问题就是找到两个点之间长度最短的路径。
最短路径问题可以通过深度优先搜索、广度优先搜索等方法来解决,但是时间复杂度通常较高。
另外,使用Dijkstra算法、Floyd算法等优化算法可以大大缩短计算时间。
2.2 社交网络社交网络是图论应用的一个重要领域。
在社交网络中,人们之间的关系可以用图的形式表示。
例如,在微博网络中,每个用户和他/她所关注的人就可以形成一个有向图。
在这种图中,点表示用户,边表示一个人关注另一个人的关系。
通过对社交网络进行图论分析,可以研究用户之间的互动模式,了解到哪些用户之间联系较为紧密,哪些用户是网络中的“大咖”等。
图论基础知识
end;
end;
end;
End; 15
End; End;
以上dfs(i)的时间复杂度为O(n*n)。 对于一个非连通图,调用一次dfs(i),即按深度优先顺序依次访问了顶点i所在的(强)连通分支,所以 只要在主程序中加上:for i:=1 to n do {深度优先搜索每一个未被访问过的顶点}
if not Visited(I) then dfs(i);
Begin
访问顶点i;Visited[i]:=true;顶点i入队q;
while 队列q非空 do
begin
从队列q中取出队首元素v;
for j:=1 to n do
begin
if (not Visited[j]) and (a[v,j]=1) then
begin
时间:O(n*n)
访问顶点j;Visited[j]:=true;顶点j入队q
强连通分支:一个有向图的强连通分支定义为该图的最大的强连通子图, 右图含有两个强连通分支,一个是1和2构成的一个子图,一个是3独立构 成的一个子图。
7
图论算法与实现
一、图论基础知识
3、图的存储结构(n阶e条边):
8
图论算法与实现
一、图论基础知识
4、图的遍历: 从图中某一顶点出发系统地访问图中所有顶点,使每个顶点恰好
11
图论算法与实现
一、图论基础知识
4、图的遍历: 图的宽(广)度优先遍历:类似于树的按层次遍历。从图中某个顶点V0出 发,访问此顶点,然后依次访问与V0邻接的、未被访问过的所有顶点,然 后再分别从这些顶点出发进行广度优先遍历,直到图中所有被访问过的顶 点的相邻顶点都被访问到。若此时图中还有顶点尚未被访问,则另选图中 一个未被访问过的顶点作为起点,重复上述过程,直到图中所有顶点都被 访问到为止。
图论知识及运用举例
图论知识及运用举例1 概论图论中的“图”是指某类具体事物和这些事物之间的联系。
如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。
图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。
图是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。
下面将要讨论最短路问题、最大流问题、最小费用流问题和匹配问题等。
2 图的基本概念2.1 无向图一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。
其中},,,{)(21n v v v G V =称为图G 的顶点集(vertex set )或节点集(node set ), )(G V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点(vertex )或节点(node );},,,{)(21m e e e G E =称为图G 的边集(edge set ),)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k =,被称为该图的一条从i v 到j v 的边(edge )。
当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。
如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。
边上赋权的无向图称为赋权无向图或无向网络(undirected network )。
图论及其应用
图和子图 图和简单图图 G = (V, E), 其中 V = {νv v v ,......,,21} V ---顶点集, ν---顶点数E = {e e e 12,,......,ε}E ---边集, ε---边数例。
左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。
真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。
不过今后对两者将经常不加以区别。
称 边 ad 与顶点 a (及d) 相关联。
也称 顶点 b(及 f) 与边 bf 相关联。
称顶点a 与e 相邻。
称有公共端点的一些边彼此相邻,例如p 与af 。
环(loop ,selfloop ):如边 l 。
棱(link ):如边ae 。
重边:如边p 及边q 。
简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。
一条边的端点:它的两个顶点。
记号:νε()(),()().G V G G E G ==。
习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。
1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。
同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ V (G)=V(H), E(G)=E(H)。
图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间各存在一一对应关系,且这二对应关系保持关联关系。
记为 G ≅F 。
注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。
de f G = (V, E)y z w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。
完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。
数学建模——图论篇
软件学院
图论原理 一. 图的概念 一个图 G=<V(G),E(G)>, 其中结点集V(G):是G的结 点的非空集合.(V(G)≠Φ),简记成V;边集E(G):是 G的边的集合. 有时简记成E. 结点: 用 表示, 旁边标上该结点的名称. 边:有向边:带箭头的弧线.从u到v的边表示成(u,v) 无向边:不带箭头的弧线.u和v间的边表示成(u,v)
v3
软件学院
图论原理
回路:如果一条路的起点和终点是一个结点,则称此路 是一个回路. 如果一条路中所有边都不同,则称此路为迹或简单通路. 如果一条回路中所有边都不同,则称此回路为闭迹或简 单回路. 如果一条路中所有结点都不同,则称此路为基本通路. 如果一条回路中所有结点都不同,则称此路为基本回路. 一条基本通路一定是简单通路,但是一条简单通路不 一定是基本通路
图论原理
图的同构 设G=<V,E>和G’=<V’,E’>是图,如果存在双射f:VV’ 且任何 vi,vj∈V,若边(vi,vj)∈E,当且仅当 边(f(vi),f(vj))∈E’, (则称G与G’同构,记作G≌G’. (同构图要保持边的“关联”关系) 例如:右边所示的两个图: a b 1 4 G=<V,E> G’=<V’,E’> c d 3 2 构造映射f:VV’ a 1 b 2 c 3 d 4 a 1 b 2 c 3 d 4
软件学院
图论原理
2.汉密尔顿图的判定: 到目前为止并没有判定H图的充分必要条件. 定理1 (充分条件):G是完全图,则G是H图.
K2
K3
K4
K5
定理2(充分条件)设G是有n(n>2)个结点的简单图,若对G中每 对结点度数之和大于等于n,则G有一条H路(H回路)。
图论简介
注意:目前没有充分必要要条件来判断任 意一图是否为Hamilton图
2013.4.15
4.哈密顿图
图论简介
举行一个国际会议,有A、B、C、D、E、F、G 7个人。已知下列事实:
A 会讲英语;
B 会讲英语和汉语;
试问这7个人应如
C
会讲英语、意大利语和俄语;
(A)
2013.4.15
(B)
(C)
5.树
图论简介
最小生成树:
在一个赋权图中权值之和最小的生 成树就是最小生成树。
2013.4.15
5.树
图论经典例题之五:
管道问题:
▪ 选择怎么样的 路线可以使管 道可以通过所 有的点,且管 道总长度最短。
2013.4.15
图论简介
5.树
图论简介
Kruskal算法(避圈法):
2013.4.15
3.欧拉图
哥尼斯堡七桥问题
图论简介
2013.4.15
图论模型
3.欧拉图
各个点都与奇 数条边相连所
以不能实现
图论简介
2013.4.15
3.欧拉图 一笔写字问题
口日目
2013.4.15
哪个能一笔画 写完?
图论简介
田
4.哈密顿图
图论简介
通过每个顶点一次且仅一次最后再回 到原点的回路叫做Hamilton 回路。含有 哈密顿回路的图叫做哈密顿图。
最短路问题 指派问题 最小费用
选址问题
2013.4.15
2013.4.15
图论简介
2013.4.15
3.欧拉图
图论简介
欧拉通路 走遍图G每一条边一次仅且一次 的通路(到达另外一点)。
图论的基本概念与应用
图论的基本概念与应用图论作为一门理论研究和应用探索的数学学科,不仅在学术和工程领域发挥着巨大作用,而且在现代科技和日常生活中也处处体现。
本文将简单介绍图论的基本概念、应用领域,以及一些相关案例。
一、基本概念图论的研究对象是图。
图是由一些点和连接这些点的线组成的,表示事物之间的某种关系,如网络中的路由、社交网络中的朋友等等。
根据点与线的不同特征,图被分为有向图和无向图。
有向图中的边是有方向的,表示两个节点之间是起点和终点的关系。
无向图中的边没有方向,表示两个节点之间是双向的。
图的另一个重要概念是网络,网络是在边上赋予权值用以表示边的强度或距离的图。
在图论中,我们常用的还有度数和路径的概念。
度数是一个点相邻边的数量,路径是由若干个顶点和它们之间的边所构成的序列,且顶点之间按照连接的顺序排列。
二、应用领域图论被广泛应用于计算机科学、运筹学、生物学、化学、经济学等领域。
在计算机科学中,图论被用于构建搜索引擎、路由算法等多个方面。
在运筹学中,最短路径算法、匹配算法、流量分配算法等问题可通过图论求解。
生物学中,图以蛋白质相互作用网、基因调控网等方式表现生物体内的复杂关系。
在化学中,图被用于描述分子之间的行为和作用。
在经济学中,图常常被用于解决网络流量调度和供应链计算。
三、相关案例1. 社交网络在社交网络中,我们可以将人视为节点,人与人之间的关系视为边,从而构建出一个网络模型。
通过对网络模型的分析,可以发现一些有趣的现象或规律,比如弱连接理论、六度分离理论等,这些理论不仅仅能被应用于社交网络,还可以用于其他领域的研究。
2. 铁路路径优化一个问题是如何生成铁路的最短路径,它既可以被看作是一个有向图问题,也可以看作是一个网络流问题。
由于铁路上存在许多互联的节点,因此在这种情况下,图论技术可以用于优化路径,解决径路选择和路径总长度最小化等问题。
3. 分子结构预测化学家常常利用图论的相关技术来模拟和预测分子的结构。
在这种情况下,节点表示原子,边表示原子之间的化学键。
图论的基本概念和应用
图论的基本概念和应用图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。
图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。
本文将介绍图论的基本概念和一些常见的应用。
图的定义图是由节点(顶点)和边组成的一种数据结构。
节点表示对象,边表示对象之间的关系。
图可以分为有向图和无向图两种类型。
有向图有向图中,边是有方向的,表示从一个节点到另一个节点的关系。
如果从节点A到节点B存在一条边,那么我们称节点A指向节点B。
无向图无向图中,边是没有方向的,表示两个节点之间的关系。
如果两个节点之间存在一条边,那么我们称这两个节点是相邻的。
图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。
邻接矩阵邻接矩阵是一个二维数组,其中行和列分别表示图中的节点,数组元素表示节点之间是否存在边。
如果节点i和节点j之间存在边,则邻接矩阵中第i行第j列的元素为1,否则为0。
邻接表邻接表是一种链表的形式,其中每个节点都有一个链表,链表中存储了与该节点相邻的节点。
邻接表更加节省空间,适用于稀疏图。
图的遍历图的遍历是指从图中的某个节点出发,按照一定规则依次访问图中的所有节点。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索(DFS)深度优先搜索是一种递归的遍历算法,从起始节点开始,沿着一条路径尽可能深入地访问图中的节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未被访问过的节点。
广度优先搜索(BFS)广度优先搜索是一种非递归的遍历算法,从起始节点开始,按照距离起始节点的距离逐层访问图中的节点。
首先访问起始节点,然后访问与起始节点相邻的所有节点,再访问与这些相邻节点相邻的所有未被访问过的节点,以此类推。
图的应用图论在许多领域都有着广泛的应用,下面介绍几个常见的应用场景。
社交网络分析社交网络是一个典型的图结构,其中节点表示用户,边表示用户之间的关系。
通过对社交网络进行图论分析,可以研究用户之间的关系、社区发现、信息传播等问题。
数学中的图论基础
数学中的图论基础图论作为数学中的一个重要分支,研究的是图这种数学结构。
图论不仅在数学理论中有着重要的地位,而且在计算机科学、运筹学、电路设计等领域也有着广泛的应用。
本文将介绍数学中的图论基础知识,包括图的基本概念、性质以及一些经典的应用。
1. 图的基本概念图由节点(顶点)和边组成,是图论研究的基本对象。
图可以分为有向图和无向图两种。
1.1 有向图有向图中的边是有方向的,即从一个节点指向另一个节点。
有向图用表示,其中为节点集合,为有向边的集合。
1.2 无向图无向图中的边是没有方向的,即连接两个节点的边不区分起点和终点。
无向图用表示,其中为节点集合,为无向边的集合。
2. 图的性质图论中有许多重要的性质和定理,这些性质对于研究图的结构和特点具有重要意义。
2.1 连通图在无向图中,如果任意两个节点之间都存在路径相连,则称该图是连通图。
连通图中任意两个节点都是连通的,不存在孤立的节点。
2.2 完全图完全图是一种特殊的图,任意两个节点之间都存在一条边相连。
完全图用表示,其中表示图中节点的个数。
2.3 欧拉图欧拉图是指一条路径经过图中每条边恰好一次的连通图。
欧拉图有一个著名的结论——存在欧拉回路的充要条件是该图所有节点度数为偶数。
2.4 哈密顿图对于一个图,如果存在一条路径经过图中每个节点恰好一次,则称该路径为哈密顿路径。
如果存在一条经过每个节点恰好一次的回路,则称该回路为哈密顿回路。
3. 图论的应用图论在现实生活和学术研究中有着广泛的应用。
以下介绍一些图论在实际问题中的应用场景。
3.1 网络路由在计算机网络中,路由器通过构建网络拓扑图并使用图论算法来选择最佳路径,实现数据的传输和通信。
3.2 交通规划交通规划中的交通流量分析、交通网络设计等问题可以通过图论模型进行建模和求解,帮助优化城市交通系统。
3.3 社交网络分析社交网络中的节点表示个体,边表示个体之间的关系。
通过图论分析社交网络的拓扑结构和节点之间的连接关系,可以帮助推荐系统、信息传播等问题。
图论及其应用
一个最小边割集。
连通度
定义:如果0<k≤λ(G),则称G是k-边连通图。
定理:图G是k-边连通图当且仅当对E(G)的任 意一个子集E1,若|E1|≤k-1,则G\E1仍是连通 图。
连通度
定理:对p 简单图G,有
(1) (G) (G),(G) (G); (2) (G) p 1,等号成立当且仅当G Kp; (3)(G) p 1,等号成立当且仅当G Kp; (4)对G的任意一个顶点u, (G) 1 (G u); (5)对G的任意一条边e,(G) 1 (G e) (G).
(v0-vk)路P,且E(P) E(W ) 。
若P是一条路,x与y为顶点,用
表示这条路。
当G为简单图时,W=v0e1v1e2v2···vk-1ekvk,可简写为 W=v0v1v2···vk-1vk。
路和圈
对于图G中两个给定的顶点u和v,若存在(u-v)路,则 必存在长度最短的(u-v)路P0,称P0的长度为u,v的 距离,记为dG(u,v)或d(u,v)。
Байду номын сангаас
连通图
定理:设D是连通的有向图,则D是强连通的当 且仅当D的每一条弧都含在某一有向圈中。
连通度
定义:设连通图G=(V,E)不是完全图,V1是V(G)的一个
非空真子集,若G\V1非连通,则称V1是G的点割集。若点 割集V1含有k个顶点,也称V1是G的k-点割集。
定义:图G是p 阶连通图,令
(G)
表示n个点的回路。
有向图D的有向途径是指交替地出现点和弧的一个有限非空序列
W=v0a1v1a2v2···akvk ,对于i=1,2,···,k,弧ai的起点是vi1,终点是vi,简称W是一条(v0-vk)有向途径。在严格有向图中, 可用v0v1···vk表示有向途径。
图论及其应用—典型图
4.3Hamilton图
定理4.3.2:设G是p(G)≥3的图,如果G中任意 两个不相邻的顶点u和v,均有 dG(u)+dG(v)≥p(G), 则G是若G是Hamilton图。
推论4.3.3:若G是具有p(≥3)个顶点的简单图, 且每个顶点的度至少是p/2,则G是Hamilton图 。
定理5.2.5:对k≥1,2k-正则图G有2-因子。 注:若H是G的k-正则生成子图,则称H是G的 k-因子。
5.3二分图最大对集算法
匈牙利算法。
k
w(C)定 义 为 w(ei)。 i 1
w(C)包 含 两 部 分 权 和 ,
一 部 分 是 w(C),即 每 条 边 的 和 ; eE (G)
另 外 一 部 分 是 重 复 走 的街 道E E(G),即 w(e)。 eE
因 此 , 对 于G的 人 一 个 环 游C, w(C) w(C), eE (G )
图论及其应用—典型图
4.1Euler环游 4.2中国邮路问题 4.3Hamilton图 4.4旅行售货员问题 5.1对集 5.2二分图的对集 5.3二分图最大对集算法
4.1Euler环游
定义4.1.1:经过G的每条边的迹称为G的Euler迹,如
果这条迹是闭的,则称这条迹为G的Euler环游。 一般情况下,我们把不是Euler环游的迹称为G的Euler 通路,而把含有Euler环游的图称为Euler图。
推论4.3.9:设图G的度序列为(d1,d2,…,dp) ,d1≤d2≤…≤dp,p≥3。若对任何k,1≤k<(p-1)/2 ,均有dk>k,若p为奇数,更有d(p+1)/2>(p-1)/2, 则G是Hamilton图。
图论在生活中的几个应用
图论在生活中的几个应用
图论是一种研究计算机算法和程序部署的数学方法。
近年来,随着计算机科学技术的发展,图论在生活中也越来越多地发挥着重要的作用。
下面就来看看图论在生活中的几个应用。
首先,计算机网络的管理是由图论来解决的。
我们经常会遇到这样的问题:如何在复杂的计算机网络中规划路由?答案正是图论解决方案的存在,当我们把计算机网络的每个节点画成一幅图形时,这些图形就可以表示一个完整的系统,并且可以确定路由的最优解决方案。
其次,搜索引擎中也使用了图论。
在搜索引擎内部,索引系统负责索引网络中的所有网页,并且必须保证搜索结果的准确性和可用性。
在处理这种巨大的网络索引系统时,图论可以帮助我们更高效地处理大量网页,从而精确地搜索按关键字查找所需的信息。
此外,图论也可用于最优化汽车的路径规划。
目前,许多智能小车都采用智能图论方法,通过分析图形关系及现有环境条件来建立最优路径,帮助汽车灵活避开拥堵路段,尽快到达目的地,同时也能帮助汽车有效防止盗窃。
最后,在社交网络中,图论也深受用户的喜爱。
图论技术可以帮助分析社交网络中的每条关系,找出影响用户行为的因素,从而得出最佳的社交推广结果,利用图论的算法让我们可以更准确地聚焦受众群体,提高推广和宣传的效果。
总之,如今我们日常生活中已经充分发挥着图论技术的优势,如计算机网络管理、搜索引擎技术、智能出行路径规划以及社交网络等,图论无疑成为当今社会技术化发展的重要一环。
它促进了数字通信的发展,对科技的发展发挥了巨大的作用。
图论基础:图的基本概念和应用
图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。
图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。
本文将介绍图论的基本概念和一些常见的应用。
一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。
通常顶点表示为V,边表示为E。
2. 有向图和无向图图可以分为有向图和无向图。
在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。
3. 权重在一些应用中,边可能具有权重。
权重可以表示顶点之间的距离、成本、时间等概念。
有权图是指带有边权重的图,而无权图则是指边没有权重的图。
4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。
环是一种特殊的路径,它的起点和终点相同。
5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。
在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。
二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。
这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。
2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。
这个概念在电力网络规划、通信网络优化等领域有广泛的应用。
3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。
图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。
4. 社交网络分析图论在社交网络分析中起着重要的作用。
通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。
这些分析对于推荐系统、舆情监测等领域具有重要意义。
5. 电路设计图论在电路设计中也有应用。
通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。
数学中的图论理论及其应用
数学中的图论理论及其应用图论是一门研究图形和网络的数学理论,它是数学中的一个分支,也是计算机科学中的一个重要领域。
图论的不断发展使其应用越来越广泛,尤其在计算机网络、社交网络、交通路线等方面有着广泛的应用。
一、图论的定义与性质图论中的“图”指的是一个有限的节点集合和与这些节点相关的边集合。
在图中,节点被称为顶点,边被称为边缘。
在一个无向图中,每条边连接两个节点,没有方向性;在有向图中,每条边都有一个方向,从一个节点指向另一个节点。
图所具有的一些性质,如连通性、路径、环等,可以用来研究现实世界中的许多问题。
例如,人际关系可以用图来表示,而在图中找到最短路径可以用来表示最小成本行程的问题。
二、图的表示方法图可以通过矩阵和链表两种方式进行表示。
矩阵表示法是将图中的节点和边分别用矩阵的元素表示,由于矩阵的性质,这种方法适用于表示边的权重,但对于节点的增加和删除比较麻烦。
链表表示法是将图中的节点和边分别用链表的形式表示,这种方法适用于动态改变图的结构。
三、最短路径算法最短路径算法是图论中的一个重要问题,它是计算图中两个节点之间最短路径的算法。
最短路径算法可以采用Dijkstra算法或Floyd算法进行计算。
Dijkstra算法是一种贪心算法,通过构建带权重的图来计算两个节点之间最短距离。
该算法的基本思想是从起点出发,按照距离最近的顺序找到与该节点相邻的节点,然后根据这些节点的权重更新起点到别的节点的距离,直至找到终点。
由于该算法使用优先队列来存储节点,因此对于大规模的节点数或边数较多的图,具有较好的计算效率。
Floyd算法是一种动态规划算法,通过构建带权重的图来计算两个节点之间最短距离。
该算法的基本思想是先计算任意两个节点之间的距离,然后再使用动态规划的思想,从中间节点出发更新两个节点之间的距离,直至找到终点。
由于该算法需要计算所有的两点之间的距离,因此对于较小规模的图具有优势。
四、最小生成树算法最小生成树算法是图论中另一个重要的问题,它是用来找到给定的无向联通图的一棵生成树,使得生成树中的边权和最小。
图论在实际生活中的应用
一、图论的基本知识
图论起源于举世闻名的柯尼斯堡七桥问题。在柯尼斯堡的普莱格尔河上面有七座桥将河中的岛及岛与河岸是连接起来的,有一个问题是要从这四块陆地中任何一块开始,通过每一座桥而且正好只能一次,再回到起点。然而许多人经过无数次的尝试都没有成功。在1736年欧拉神奇般的解决了这个问题,他用抽像分析法将这个问题化为第一个图论问题:即用点来代替每一块陆地,将每一座桥用联接相应的两个点的一条线来代替,所以相当于得到一个“图”(如下图)。
{
int i=0;
while(i<G.vexnum && v!=G.vexs[i])
i++;
if(i<G.vexnum)
return i;
else
return -1;
}
int CreateUDG(MGraph &G) //数组邻接矩阵表示法构造无向图
{
char v1,v2;
int weight;
cout<<"请输入图的顶点数和边的条数"<<endl;
cin>>G.vexnum>>G.arcnum;
cout<<"请输入顶点的名称(0--9)"<<endl;
for(int i=0;i<G.vexnum;i++)
cin>>G.vexs[i];
for(int q=0;q<G.vexnum;q++)
for(int p=0;p<G.vexnum;p++)
G.arcs[q][p]=0;
离散数学中的图论入门
离散数学中的图论入门图论是离散数学的一个重要分支,研究的对象是图。
图是由一些点和连接这些点的边组成的数学模型,可以用来描述现实世界中的各种关系和问题。
本文将介绍图论的基本概念和常见应用,帮助读者初步了解图论的入门知识。
一、图的定义与基本术语图由顶点集合和边集合组成。
顶点集合是图中的点的集合,用V表示;边集合是图中连接顶点的边的集合,用E表示。
图可以分为有向图和无向图。
有向图中的边是有方向的,表示从一个顶点指向另一个顶点的关系;无向图中的边是无方向的,表示两个顶点之间的关系。
图还可以分为简单图和多重图。
简单图中不存在重复的边和自环(起点和终点相同的边);多重图中可以存在重复的边和自环。
图中的边可以带权重,表示顶点之间的距离、代价或其他属性。
带权图可以用来解决最短路径、最小生成树等问题。
图的度是指与顶点相关联的边的数量。
对于无向图,顶点的度等于与之相连的边的数量;对于有向图,顶点的度分为入度和出度,分别表示指向该顶点的边的数量和从该顶点指出的边的数量。
二、图的表示方法图可以用邻接矩阵和邻接表两种方式进行表示。
邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。
如果顶点i和顶点j之间存在边,则邻接矩阵中第i行第j列的元素为1;否则为0。
邻接矩阵适用于稠密图,但对于稀疏图来说,会浪费较多的存储空间。
邻接表是由若干个链表构成的数组,数组的每个元素对应一个顶点,链表中存储与该顶点相连的其他顶点。
邻接表适用于稀疏图,可以有效地节省存储空间。
三、常见的图论算法与应用1. 深度优先搜索(DFS):DFS是一种用于遍历图的算法,通过递归的方式依次访问与当前顶点相邻的未访问过的顶点,直到所有顶点都被访问过为止。
DFS可以用来解决连通性、可达性等问题。
2. 广度优先搜索(BFS):BFS也是一种用于遍历图的算法,通过队列的方式按层次遍历图中的顶点。
BFS可以用来求解最短路径、网络分析等问题。
3. 最小生成树(MST):最小生成树是指在连通图中选择一棵生成树,使得树中所有边的权重之和最小。
图论的基本概念及其应用
图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。
图由节点和连接节点的边组成,以解决现实生活中的许多问题。
本文将介绍图论的基本概念,并探讨它在不同领域中的应用。
一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。
节点和边可以有不同的属性,如权重、方向等。
2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。
3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。
4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。
二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。
最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。
2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。
在通信网络、电力输送等领域中,最小生成树被广泛应用。
3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。
例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。
三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。
利用图论分析社交网络,可以发现用户群体、影响力传播等信息。
2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。
中心节点的识别对于广告投放、信息传播等决策具有指导意义。
3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。
四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。
2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。
图论的初步知识
树支:组成树的支路。 树支数 nt n 1
连支:其余的支路。 连支 数 l b nt b n 1
第9页/共13页
X
2. 图论的一些基本概念
树支电压,连支电流
树支集合 2,5,6 连支集合 1,3,4
1
①
2② 3
③
5
4
6
④
2.9 基本回路:只含有一条连支的回路。
注
1,6,5,2 3,6,5 4,2,5
①
①
①
1
3
2
1 2
1
3
② 4③ 5 ④ ② 4 ③5 ④ ② 4③ 5 ④
图G
子图 G1
子 G2
图
第8页/共13页
X
2. 图论的一些基本概念
2.8 树(tree-T) :树是连通图G的一个连通子图;包含
图G的所有的节点;不包含任何回路。
①
①
①
1
3
2
1
3
2
1
② 4③5 ④ ②
③
4
5
④②
③④
图G
T1
T2
2.1 拓扑(topology):几何或联接性质。
2.2 图(Graph):电路(网络)的图由支路(线段)和节 点(点)组成,用G表示。每一支路代表一个电路元件 或一些电路元件的某种组合,每一支路都连接在图中 的两个节点之间。
标准支 ①
②①
②
路组合
i
u
第4页/共13页
X
2. 图论的一些基本概念
第5页/共13页
X
2. 图论的一些基本概念
2.4 路径(path):从图G的某一节点出发,沿着一些支
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论知识及运用举例
1 概论
图论中的“图”是指某类具体事物和这些事物之间的联系。
如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。
图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。
图是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。
下面将要讨论最短路问题、最大流问题、最小费用流问题和匹配问题等。
2 图的基本概念
2.1 无向图
一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。
其中},,,{)(21n v v v G V =称为图G 的顶点集(vertex set )或节点集(node set ), )(G V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点(vertex )或节点(node );},,,{)(21m e e e G E =称为图G 的边集(edge set ),)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k =,被称为该图的一条从i v 到j v 的边(edge )。
当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。
如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。
边上赋权的无向图称为赋权无向图或无向网络(undirected network )。
我们对图和网络不作严格区分,因为任何图总是可以赋权的。
一个图称为有限图,如果它的顶点集和边集都有限。
图G 的顶点数用符号||V 或)(G ν表示,边数用||E 或)(G ε表示。
当讨论的图只有一个时,总是用G 来表示这个图。
从而在图论符号中我们常略去字母G ,例如,分别用ν,,E V 和ε代替)(),(),(G G E G V ν和)(G ε。
端点重合为一点的边称为环(loop)。
一个图称为简单图(simple graph),如果它既没有环也没有两条边连接同一对顶点。
2.2 有向图
定义 一个有向图(directed graph 或 digraph )G 是由一个非空有限集合V 和V 中某些元素的有序对集合A 构成的二元组,记为),(A V G =。
其中},,,{21n v v v V =称为图G 的顶点集或节点集, V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点或节点;},,,{21m a a a A =称为图G 的弧集(arc set ),A 中的每一个元素k a (即V 中某两个元素j i v v ,的有序对) 记为),(j i k v v a =或),,2,1(n k v v a j i k ==,被称为该图的一条从i v 到j v 的弧(arc )。
当弧j i k v v a =时,称i v 为k a 的尾(tail ),j v 为k a 的头(head ),并称弧k a 为i v 的出弧(outgoing arc ),为j v 的入弧(incoming arc )。
对应于每个有向图D ,可以在相同顶点集上作一个图G ,使得对于D 的每条弧,G 有一条有相同端点的边与之相对应。
这个图称为D 的基础图。
反之,给定任意图G ,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G 的一个定向图。
以下若未指明“有向图”三字,“图”字皆指无向图。
2.3 完全图、二分图
每一对不同的顶点都有一条边相连的简单图称为完全图(complete graph)。
n 个顶点的完全图记为n K 。
若Y X G V =)(,Φ=Y X ,0||||≠Y X (这里||X 表示集合X 中的元素个数),X 中无相邻顶点对,Y 中亦然,则称G 为二分图(bipartite graph);特别地,若Y y X x ∈∀∈∀,,则)(G E xy ∈,则称G 为完全二分图,记成|||,|Y X K 。
2.4 子图
图H 叫做图G 的子图(subgraph ),记作G H ⊂,如果)()(G V H V ⊂,)()(G E H E ⊂。
若H 是G 的子图,则G 称为H 的母图。
G 的支撑子图(spanning subgraph ,又成生成子图)是指满足)()(G V H V =的子图H 。
2.5 顶点的度
设)(G V v ∈,G 中与v 关联的边数(每个环算作两条边)称为v 的度(degree),记作)(v d 。
若)(v d 是奇数,称v 是奇顶点(odd point);)(v d 是偶数,称v 是偶顶点(even point)。
关于顶点的度,我们有如下结果:
(i) ∑∈=V
v v d ε2)(
(ii) 任意一个图的奇顶点的个数是偶数。
2.6 图与网络的数据结构
网络优化研究的是网络上的各种优化模型与算法.为了在计算机上实现网络优化的算法,首先我们必须有一种方法(即数据结构)在计算机上来描述图与网络。
一般来说,算法的好坏与网络的具体表示方法,以及中间结果的操作方案是有关系的。
这里我们介绍计算机上用来描述图与网络的5种常用表示方法:邻接矩阵表示法、关联矩阵表示法、弧表表示法、邻接表表示法和星形表示法。
在下面数据结构的讨论中,我们首先假设),(A V G =是一个简单有向图,m A n V ==||,||,并假设V 中的顶点用自然数n ,,2,1 表示或编号,A 中的弧用自然数m ,,2,1 表示或编号。
对于有多重边或无向网络的情况,我们只是在讨论完简单有向图的表示方法之后,给出一些说明。
(i )邻接矩阵表示法
邻接矩阵表示法是将图以邻接矩阵(adjacency matrix )的形式存储在计算机中。
图),(A V G =的邻接矩阵是如下定义的:C 是一个n n ⨯的10-矩阵,即
n n n n ij c C ⨯⨯∈=}1,0{)(,
⎩⎨⎧∉∈=.
),(,0,),(,1A j i A j i c ij 也就是说,如果两节点之间有一条弧,则邻接矩阵中对应的元素为1;否则为0。
可以看出,这种表示法非常简单、直接。
但是,在邻接矩阵的所有2n 个元素中,只有m 个为非零元。
如果网络比较稀疏,这种表示法浪费大量的存储空间,从而增加了在网络中查找弧的时间。
(ii )关联矩阵表示法
关联矩阵表示法是将图以关联矩阵(incidence matrix )的形式存储在计算机中.图),(A V G =的关联矩阵B 是如下定义的:B 是一个m n ⨯的矩阵,即
m n m n ik b B ⨯⨯-∈=}1,0,1{)(,
⎪⎩
⎪⎨⎧∈=∈∃-∈=∈∃=.,0,),(, ,1,),(,,1其它A i j k V j A j i k V j b ik
也就是说,在关联矩阵中,每行对应于图的一个节点,每列对应于图的一条弧。
如果一个节点是一条弧的起点,则关联矩阵中对应的元素为1;如果一个节点是一条弧的终点,则关联矩阵中对应的元素为1-;如果一个节点与一条弧不关联,则关联矩阵中对应的元素为0。
对于简单图,关联矩阵每列只含有两个非零元(一个1+,一个1-)。
可以看出,这种表示法也非常简单、直接。
此外,还有邻接表表示法,弧表示法,星形表示法等。
2.7 轨与连通。