螺栓组受力分析与计算汇总
螺栓组结构设计与受力

§5-4 螺栓组结构设计与——求出受力最大的螺栓,以进行单个螺栓强度计算。 假设:各螺栓直径、长度、材料和预紧力F0相同; 受载后结合面仍为平面; 螺栓的变形在弹性范围内。
1.螺栓组受横向载荷FR ①采用普通螺栓 ——靠结合面的摩擦平衡外载荷FR,而螺栓仅受预紧力和
F ax = F + F 2 + 2F ⋅ F 2 ⋅ cos α m S T S T
2 2
KS ⋅ F ax m f ⋅i
②受FQ+M FQ
§5-4 螺栓组受复合载荷
M FQ
FQ M
F=
F ax m
F Q Z
工作拉力 F ax m
M⋅ Lmax = 2 ∑Li
M⋅ Lmax = + 2 Z ∑Li F Q
F F F 变形协调条件: T1 = T2 = ⋅⋅ ⋅ = TZ r1 r2 rZ F F = Tmax ri Ti rmax
最大工作载荷: F max = T 哪个螺栓受 力最大?
FT1
1
r1
FT2
FT3
O
T 1 2
T⋅ rmax 2 ∑ri
3.螺栓组受轴向载荷FQ
§5-4 螺栓组受轴向载荷
总载荷FQ: F = ∑p Q p 单个螺栓工作载荷:F =
1
2
FR
2
2
α
F ax = F + F 2 + 2F ⋅ F 2 ⋅ cos α m S T S T
哪个螺栓受 力最大?
2)普通螺栓 ①受FR+T
§5-4 螺栓组受复合载荷
FR FT FS FR T
4
3 T
F F = R S Z T⋅ rmax F max = T 2 ∑ri F≥ 0
2螺栓组受力

例1、图示4个5.6 级M16的普通螺栓 固定在型号为25b 的标准槽钢上, 结合面摩擦系数 为μ=0.4,所受载 荷为P=16KN 问:联接是否可 靠? 分析:载荷P简化到螺栓组几何形心,普通螺栓 联接受横向载荷和旋转力矩作用,失效形式为螺 栓被拉断或者发生滑移
解: 计算项目 1、受力分析
横向载荷
N 1000 900 800 700 600 500 400 300 200 100
F F2
F1
60°
F0
30° 45°
F1
45°
F F2 变形
例4 一钢板采用三个铰制孔螺栓联接,下列三个 方案哪个最好?
FL 2a
F 3
F 3
F 3 FL 2a
Fmax=F3=
FL 2a
+
F 3
F 3
FL 2a
旋转力矩
计算内容
计算结果
P 16KN
T 6800KNmm
P 16KN
T 6800KNmm
P V 4 KN 4
Fmax Tr1 r12 r22 r32 r42
P作用下单个 螺栓受力
T作用下单个 螺栓受力 螺栓承受最大 载荷(2、3 螺栓)
V 4 KN
17.7 KN Fmax 17.7 KN
1、普通螺栓联接
F0 zm K s F
K s F F0 zm
2、铰制孔螺栓联接
每个螺栓所受工作剪力:
F F z
三、受旋转力矩的螺栓组联接 1、普通螺栓联接
力矩平衡条件: F0 ri K sT
i 1
z
所需预紧力: F0
K sT ri
i 1 z
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算汇总

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
H1.螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于较制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
I不令fit接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值扳手空间尺寸螺栓间距t o注:表中d 为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算..

式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。
机械设计-螺栓组受力分析计

一支架与机座用4个普通螺栓联接,所受外载荷分别为横向载荷 一支架与机座用 个普通螺栓联接,所受外载荷分别为横向载荷R=5000 N, 个普通螺栓联接 , 轴向载荷Q=16000N。已知螺栓的相对刚度 Cb / (Cb + Cm) = 0.25 轴向载荷 。 接合面间的摩擦系数 螺栓材料的屈服极限 f =0.15,可靠性系数 ,
πD 2 P π × 300 2 × 1.5 F= = = 10602.88 N 4Z 4 × 10
F1 = 1.5F = 1.5×10602.88 = 15904.32N × 螺栓的总拉力F2 螺栓的总拉力 = F1 +F = 15904.32 +10602.88 = 26507.2N 螺栓的拉伸应力为: 螺栓的拉伸应力为:
大径d(mm) 小径d1(mm) 10 8.376 12 10.106 16 13.835 20 17.294
解:每个螺栓受的轴向载荷为 F = P / 2 = 1000 / 2 = 500N 螺栓的总拉力F2 = F1 +F = 2000 + 500 = 2500N 螺栓的总拉力 由拉伸强度条件: 由拉伸强度条件:
解:由挤压强度条件: 由挤压强度条件:
σP = F L min d0 ≤[σ ]P
F 即 ≤200 ⇒ F ≤14400 N (14 8) 12 ×
由剪切强度条件: 由剪切强度条件:
4F τ= ≤[τ ] 2 πd 0 即 4F ≤120 ⇒ F ≤13571.68 N 2 π × 12
F=
2T D0 Z
2
L2 ∑ i
i =1
根据力的叠加原理,螺栓 受力最大 其所受轴向力为: 受力最大, 根据力的叠加原理,螺栓2受力最大,其所受轴向力为:
螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组的受力分析

5)导程S——同一条螺旋线相邻两牙的轴向距离;
单线:S=t
d2
双线:S=2t
多线:S=nt
n——头数;
右旋
6)升角:螺旋线与水平线夹角;
S t
tg S d2
7)牙型角 牙型斜角
8)牙的工作高度h
S
d2
二、各种螺纹的特点、应用
自锁条件:升角<v(摩擦角); 牙型斜角越小越不容易加工。
b只受预紧力214dqp???31116dt???紧螺栓联接装配时螺母需要拧紧在拧紧力矩作用下螺栓除受预紧力qp的拉伸而产生拉伸应力外还受螺纹摩擦力矩t1的扭转而产生扭转剪应力使螺栓处于拉伸与扭转的复合应力状态下
第四章 螺纹零件
一、概述
1、作用
联接:起联接作用的螺纹; 传动:起传动作用的螺纹;
2、螺纹的形成 刀具——做直线运动; 工件——做旋转运动; 螺纹线:转动与直线运动;
rz
ks T
z
f ri
i 1
式中:f——结合面的摩擦系数;
ri——第i个螺栓的轴线到螺栓组 对称中心O的距离;
z——螺栓数目;
ks——防滑系数,同前。
机架 地基
T
r4 r1
rr32
Qpf
Qpf
松配
T
r4 r1
rr23
Qpf
Qpf
紧配
b)紧配 当采用紧配螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压
习题: 一、选择题
第四章 螺纹零件
1、在常用的螺旋传动中,传动效率最高的螺纹是 4 。
(1)三角形螺纹;(2)梯形螺纹;(3)锯齿形螺纹;(4)矩 形螺纹;
2、在常用的螺纹联接中,自锁性最好的螺纹是 1 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。
当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。
图1 凸台与沉头座的应用图2 斜面垫圈的应用2. 螺栓组联接的受力分析1).受横向载荷的螺栓组联接2).受转矩的螺栓组联接3).受轴向载荷的螺栓组联接4).受倾覆力矩的螺栓组联接进行螺栓组联接受力分析的目的是,根据联接的结构和受载情况,求出受力最大的螺栓及其所受的力,以便进行螺栓联接的强度计算。
为了简化计算,在分析螺栓组联接的受力时,假设所有螺栓的材料,直径,长度和预紧力均相同;螺栓组的对称中心与联接接合面的形心重合;受载后联接接合面仍保持为平面。
下面针对几种典型的受载情况,分别加以讨论。
1).受横向载荷的螺栓组联接图所示为一由四个螺栓组成的受横向载荷的螺栓组联接。
横向载荷的作用线与螺栓轴线垂直,并通过螺栓组的对称中心。
当采用螺栓杆与孔壁间留有间隙的普通螺栓联接时(图a)。
靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接时(图b),靠螺栓杆受剪切和挤压来抵抗横向载荷。
虽然两者的传力方式不同,但计算时可近似地认为,在横向总载荷F∑的作用下,各螺栓所承担的工作载荷是均等的。
因此,对于铰制孔用螺栓联接,每个螺栓所受的横向工作剪力为(5-23)式中z为螺栓联接数目。
对于普通螺栓联接,应保证联接预紧后,接合面间所产生的最大摩擦力必须大于或等于横向载荷。
假设各螺栓所需要的预紧力均为Q p,螺栓数目为z,则其平衡条件为或(5-24)图:受横向载荷的螺栓组联接式中:f——接合面间的摩擦系数,见下表;i——接合面数(图中,i=2);K s——防滑系数,K s=1.1~1.3。
由式(5-24)求得预紧力Q p,然后按式(5-14)校核螺栓的强度。
联接接合面间的摩擦系数被联接件接合面的表面状态摩擦系数f钢或铸铁零件干燥的加工表面0.10-0.16 有油的加工表面0.06-0.10钢结构轧制表面,钢丝刷清理浮锈0.30-0.35 涂富锌漆0.35-0.40喷砂处理0.45-0.55钢铁对砖料,混凝土或木材干燥表面0.40-0.452).受转矩的螺栓组联接如下图所示,转矩T作用在联接接合面内,在转拒T的作用下,底板将绕通过螺栓组对称中心O并与接合面相垂直的轴线转动。
为了防止底板转动,可以采用普通螺栓联接,也可以采用铰制孔用螺栓联接。
其传力方式和受横向载荷的螺栓组联接相同。
图:受转矩的螺栓组联接采用普通螺栓时,靠联接领紧后在接合面间产生的摩擦力矩来抵抗转矩T。
假设各螺栓的预紧程度相同,即各螺栓的预紧力均为Qp,则各螺栓联接处产生的摩擦力均相等,并假设此摩擦力集中作用在螺栓中心处。
为阻止接合面发生相对转动,各摩擦力应与各该螺栓的轴线到由上式可得各螺栓所需的预紧力为【5-25】式中:f——接合面的摩擦系数,见表;ri——第i个螺栓的轴线到螺栓组对称中心O的距离;z——螺栓数目;Ks ——防滑系数,同前。
由上式求得预紧力Q p,然后按式(5-14)校核螺栓的强度。
采用铰制孔用螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压作用,各螺栓所受的横向工作剪力和各该螺栓轴线到螺栓组对称中心O的连线(即力臂r。
)相垂直(图b)。
为了求得各螺栓的工作剪力的大小,计算时假定底板为刚体,受载后接合面仍保持为平面。
则各螺栓的剪切变形量与各该螺栓轴线到螺栓组对称中心O的距离成正比。
即距螺栓组对称中心O越远,螺栓的剪切变形量越大。
如果各螺栓的剪切刚度相同,则螺栓的剪切变形量越大时,其所受的工作剪力也越大。
如图b所示,用r i、r max分别表示第i个螺栓和受力最大螺栓的轴线到螺栓组对称中心O的距离;F i、F max。
分别表示第i个螺栓和受力最大螺栓的工作剪力,则得【5-26】根据作用在底板上的力矩平衡的条件得即. 【5-27】联解式(5-26)及(5-27),可求得受力最大的螺栓的工作剪力为【5-28】图所示的凸缘联轴器,是承受转矩的螺栓组联接的典型部件。
各螺栓的受力根据r1=r2=…=r z的关系以及螺栓联接的类型,分别代人式(5-25)或(5-28)即可求得。
3).受轴向载荷的螺栓组联接下图为一受轴向总载荷F∑的汽缸盖螺栓组联接。
F∑的作用线与螺栓轴线平行,并通过螺栓组的对称中心O。
计算时,认为各螺栓平均受载,则每个螺栓所受的轴向工作载荷为图:受轴向载荷的螺栓组联接4).受倾覆力矩的螺栓组联接下图a为一受倾覆力矩的底板螺栓组联接。
倾覆力矩M作用在通过x-x轴并垂直于联接接合面的对称平面内。
底板承受倾覆力矩前,由于螺栓已拧紧,螺栓受预紧力Qp,有均匀的伸长;地基在各螺栓的Qp作用下.有均匀的压缩,如图b所示。
当底板受到倾覆力矩作用后,它绕轴线O—O倾转一个角度,假定仍保持为平面。
此时,在轴线O-O左侧,地基被放松,螺栓被进一步拉伸,在右侧,螺栓被放松,地基被进一步压缩。
底板的受力情况如图c所示。
图:受倾覆力矩的螺栓组联接联接接合面材料的许用挤压应力[σ]p,可查下表。
表:联接接合面材料的许用挤压应力[σ]p注:l)σs为材料屈服权限,MPa; σB为材料强度极限,MPa。
2)当联接接合面的材料不同时,应按强度较弱者选取。
3)联接承受载荷时,[σ]p应取表中较大值;承受变载荷时,则应取较小值计算受倾覆力矩的螺栓组的强度时,首先由预紧力Qp、最大工作载荷Fmax确定受力最大的螺栓的总拉力Q,由式(5-18)得【5-38】然后接式(5-19)进行强度计算。
确定螺栓直径首先选择螺栓材料,确定其性能等级,查出其材料的屈服极限,并查出安全系数,计算出螺栓材料的许用应力[σ]= σs/S。
根据以下公式计算螺纹小径d1:最后按螺纹标准,选用螺纹公称直径。
螺纹联接件的材料适合制造螺纹联接件的材料品种很多,常用材料有低碳钢Q215、10号钢和中碳钢Q235、35、45号钢。
对于承受冲击、振动或变载荷的螺纹联接件,可采用低合金钢、合金钢,如15Cr、40Cr、30CrMnsi等。
对于特殊用途(如防锈蚀、防磁、导电或耐高温等)的螺纹联接件,可采用特种钢或铜合金、铝合金等。
表:螺栓的性能等级(摘自 GB 3098.1-82)注:规定性能等级的螺栓、螺母在图纸中只标出性能等级,不应标出材料牌号。
表:螺母的性能等级(摘自GB 3098.2-82)4.校核螺栓组联接接合面的工作能力,是根据实际情况,对螺栓进行强度校核。
5.校核螺栓所需的预紧力。
采用公式为:碳素钢螺栓合金钢螺栓式中:s——螺栓材料的屈服极限;A1——螺栓危险截面的面积。
式(5-14)松螺纹联接强度计算拉伸强度条件为:【5-14】式中:F--螺栓工作载荷,N;d1--螺栓危险截面的直径,mm;[σ]--螺栓材料的许用拉应力,MPa.紧螺栓联接强度计算1.仅承受预紧力的紧螺栓联接拉伸强度条件为:式中:Q p—螺栓所受预紧力,N。
其余符号意义同前。
2. 承受预紧力和工作拉力的紧螺栓联接①拉伸强度条件为:式中:Q—螺栓总拉力,N。
其余符号意义同前。
螺栓总拉力的计算:Q=Qp+[Cb/(Cb+Cm)]·F式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)被联接钢板间所用垫片类别Cb/(Cb+Cm)金属垫片(或无垫片)0.2~0.3皮革垫片0.7铜皮石棉垫片0.8橡胶垫片0.9②疲劳强度计算对于受轴向变载荷的重要联接,应对螺栓的疲劳强度作精确校核,计算其最大应力计算安全系数:式中:σ-1tc——螺栓材料的对称循环拉压疲劳极限,MPa ,σ-1tc值见表——试件的材料特性,即循环应力中平均应力的折算系数,对于碳素钢,=0.1—0.2,对于合金钢,=0.2—0.3;——拉压疲劳强度综合影响系数,如忽略加工方法的影响,则Kσ=kσ/εσ,Kσ此处为有效应力集中系数,见表εσ为尺寸系数,见附表;S ——安全系数。
螺纹联接件常用材料的疲劳极限(摘自GB38-76)材料疲劳极限(MPa)σ-1σ-1tc10 Q215 35 45 40C r 160~220170~220220~300250~340320~440120~150120~160170~220190~250240~340螺纹联接的安全系数 S受载类型静载荷变载荷松螺栓联接 1.2~1.7紧螺栓联接受轴向及横向载荷的普通螺栓联接不考虑预紧力的简化计算M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60 碳钢5~4 4~2.5 2.5~2 碳钢12.5~8.5 8.5 8.5~12.5合金钢 5.7~5 5~3.4 3.4~3 合金钢10~6.8 6.8 6.8~10考虑预紧力的计算1.2~1.51.2~1.5(S a=2.5~4)铰制孔用螺栓联接钢:S r=2.5,Sp=1.25铸铁:S p=2.0~2.5钢:S r=3.5~5,S p=1.5铸铁:S p=2.5~3.03.承受工作剪力的紧螺栓联接螺栓杆与孔壁的挤压强度条件为螺栓杆的剪切强度条件为式中:F ——螺栓所受的工作剪力,N;d0——螺栓剪切面的直径(可取为螺栓孔的直径),mm;L min——螺栓杆与孔壁挤压面的最小高度,mm,设计时应使L min 1.25d0;[σ]p——螺栓或孔壁材料的许用挤压应力,MPa ;[τ] ——螺栓材料的许用切应力,MPa 。