复数单元测试题(一) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( ) A .5
B
C
.D .5i
3.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( ) A .6
B
C .5
D
4.已知i 为虚数单位,则复数23i
i
-+的虚部是( ) A .35 B .35i - C .15-
D .15
i -
5.在复平面内复数Z=i (1﹣2i )对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6.若复数()()24z i i =--,则z =( ) A .76i --
B .76-+i
C .76i -
D .76i +
7.设1z 是虚数,211
1
z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22⎡⎤
-
⎢⎥⎣⎦
C .[]22-,
D .11,00,22
⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝
⎦
8.设复数2i
1i
z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.已知复数z 的共轭复数212i
z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1
B .-1
C .i
D .i -
10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) A
B .2
C .10
D
11.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +
B .68i -
C .68i --
D .68i -+
12.设a +∈R ,复数()()
()
2
4
2
121i i z ai ++=-,若1z =,则a =( )
A .10
B .9
C .8
D .7
13.复数21i
i
+的虚部为( ) A .1-
B .1
C .i
D .i -
14.已知i 是虚数单位,设11i
z i
,则复数2z +对应的点位于复平面( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
15.设复数满足(12)i z i +=,则||z =( )
A .
15
B C D .5
二、多选题
16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限
17.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )
A .z 的虚部为3
B .z =
C .z 的共轭复数为23i +
D .z 是第三象限的点
18.下面是关于复数2
1i
z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =
B .22z i =
C .z 的共轭复数为1i +
D .z 的虚部为1-
19.已知复数1cos 2sin 22
2z i π
πθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )
A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .2cos z θ=
D .
1
z 的实部为12
-
20.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z
w z
=,则下列结论正确的有( )
A .w 在复平面内对应的点位于第二象限
B .1w =
C .w 的实部为12
-
D .w 的虚部为
2
i 21.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .
z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
22.已知i 为虚数单位,以下四个说法中正确的是( ).
A .234i i i i 0+++=
B .3i 1i +>+
C .若()2
z=12i +,则复平面内z 对应的点位于第四象限
D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,12z =
D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
25.下列命题中,正确的是( ) A .复数的模总是非负数
B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D .相等的向量对应着相等的复数
26.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
27.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )
A .3||5
z =
B .12i
5
z +=-
C .复数z 的实部为1-
D .复数z 对应复平面上的点在第二象限 28.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -
B .若120z z +=,则12z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数