找两条单链表的公共结点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:两个单向链表,找出它们的第一个公共结点。
链表的结点定义为:
struct ListNode
{
int m_nKey;
ListNode* m_pNext;
};
分析:这是一道微软的面试题。微软非常喜欢与链表相关的题目,因此在微软的面试题中,链表出现的概率相当高。
如果两个单向链表有公共的结点,也就是说两个链表从某一结点开始,它们的m_pNext 都指向同一个结点。但由于是单向链表的结点,每个结点只有一个m_pNext,因此从第一个公共结点开始,之后它们所有结点都是重合的,不可能再出现分叉。所以,两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能像X。
看到这个题目,第一反应就是蛮力法:在第一链表上顺序遍历每个结点。每遍历一个结点的时候,在第二个链表上顺序遍历每个结点。如果此时两个链表上的结点是一样的,说明此时两个链表重合,于是找到了它们的公共结点。如果第一个链表的长度为m,第二个链表的长度为n,显然,该方法的时间复杂度为O(mn)。
接下来我们试着去寻找一个线性时间复杂度的算法。我们先把问题简化:如何判断两个单向链表有没有公共结点?前面已经提到,如果两个链表有一个公共结点,那么该公共结点之后的所有结点都是重合的。那么,它们的最后一个结点必然是重合的。因此,我们判断两个链表是不是有重合的部分,只要分别遍历两个链表到最后一个结点。如果两个尾结点是一样的,说明它们用重合;否则两个链表没有公共的结点。
在上面的思路中,顺序遍历两个链表到尾结点的时候,我们不能保证在两个链表上同时到达尾结点。这是因为两个链表不一定长度一样。但如果假设一个链表比另一个长l个结点,我们先在长的链表上遍历l个结点,之后再同步遍历,这个时候我们就能保证同时到达最后一个结点了。由于两个链表从第一个公共结点考试到链表的尾结点,这一部分是重合的。因此,它们肯定也是同时到达第一公共结点的。于是在遍历中,第一个相同的结点就是第一个公共的结点。
在这个思路中,我们先要分别遍历两个链表得到它们的长度,并求出两个长度之差。在长的链表上先遍历若干次之后,再同步遍历两个链表,知道找到相同的结点,或者一直到链表结束。此时,如果第一个链表的长度为m,第二个链表的长度为n,该方法的时间复杂度为O(m+n)。
基于这个思路,我们不难写出如下的代码:
1.template
2.struct ListNode
3.{
4. T data;
5. ListNode* pNext;
6.};
7.template
8.{
9.int nLength = 0;
10.while(pHead)
11. {
12. ++nLength;
13. pHead = pHead->pNext;
14. }
15.return nLength;
16.}
17.template
18.ListNode
19.{
20.int nLength1 = GetListLength(pHead1);
21.int nLength2 = GetListLength(pHead2);
22.
23.// 交换两链表,是1为较长的链表
24.if(nLength1 < nLength2)
25. {
26. ListNode
27. pHead1 = pHead2;
28. pHead2 = pTemp;
29. }
30.for(int i = 0; i < nLength1 - nLength2; ++i)
31. {
32. pHead1 = pHead1->pNext;
33. }
34.while(pHead1 && pHead1 != pHead2)
35. {
36. pHead1 = pHead1->pNext;
37. pHead2 = pHead2->pNext;
38. }
39.
40.return pHead1;
41.}
PS:两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能像X。即从公共节点开始之后的所有都相同!求出链表长度差,遍历差数目长的链表,之后同步遍历两链表,第一个相同的节点即是结果。
PS:另外一种方法是把在一个链表尾部插入另一个链表,然后判断合成的新链表是否有环。环入口即为第一个公共点。
上题是基于两个链表无环考虑的。
1)判断一个链表是否有环。
设置两个指针(fast, slow),初始值都指向头,slow每次前进一步,fast每次前进二步,如果链表存在环,则fast必定先进入环,而slow后进入环,两个指针必定相遇。(当然,fast先行头到尾部为NULL,则为无环链表)
1.// 判断链表是否有环
2.template
3.bool HasRing(ListNode
4.{
5. ListNode
6. ListNode
7.while(pFast && pFast->pNext)
8. {
9. pSlow = pSlow->pNext;
10. pFast = pFast->pNext->pNext;
11.
12.if(pSlow == pFast) break;
13. }
14.
15.return !pFast && !pFast->pNext;
16.}
2)确定环入口:
当fast若与slow相遇时,slow肯定没有走遍历完链表,而fast已经在环内循环了n圈(1<=n)。
假设slow走了s步,则fast走了2s步(fast步数还等于s 加上在环上多转的n圈),设环长为r,则:
2s = s + nr
s= nr
设入口环与相遇点距离为x,x a = s - x = (n-1)r+ (r-x), 而r-x即为fast再次到环入口点时的步数 由此可知,从链表头到环入口点等于(n-1)循环内环+相遇点到环入口点,于是我们从链表头、与相遇点分别设一个指针,每次各走一步,两个指针必定相遇,且相遇第一点为环入口点。 1.// 判断链表环入口,如果没有环,返回NULL 2.template