用测井曲线判断划分油气水层
测井解释识别油、水、气层
用测井曲线判断划分油、气、水层测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征:(1)、油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
根据测井曲线划分油气水层
1、油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
用测井曲线判别油气水层
五、声波速度测井
它就是测量声波在岩石中的传播速度或传 播时间。
声波在岩石中的传播速度与岩石的性质、 孔隙度以及孔隙中所充填的流体性质有关。 在砂泥岩剖面中,声波在砂岩中的传播时 间比在泥岩中传播时间短。
在油、气、水流体中的传播时间,由长到 短的顺序是:气---油---水。因为它们的密 度决定了它们的传播速度。
一. 自然电位
原理: 由于泥浆和地层水的矿化度不同,在钻开岩层后,在井碧附近两种 不同矿化度的溶液接触产生电化学过程,结果产生电动势造成自 然电场,沿井轴测量记录自然电位变化曲线,用以区别岩性,这种测 井方法叫自然电位测井. 用途: 由于自然电位曲线在渗透层处有明显的异常显示,因此它是划分 和研究储集层的重要方法之一,也是判断水淹层的重要曲线. 高浓度溶液中的离子受渗透压的作用要迁移到低浓度溶液中,叫 离子扩散. 负离子的迁移速度大于正离子的迁移速度. 在砂泥岩剖面中,以泥岩为基线,当地层水矿化度大于泥浆滤液矿 化度时,在自然电位曲线想砂岩层段则出现负异常.反之,砂岩层段 则出现正异常. 判断水淹层,在自然电位曲线上,泥岩基线发生偏移,上部基线偏移 说明顶部水淹,下部基线偏移说明底部水淹,自然电位幅度比正常 的要偏大.
自然伽马------实际测的是地层中泥质含量的多少
三、普通电阻率
电阻率测井:是测岩石的电阻 率和岩石中流体的电阻率高低 的曲线。
用来区分岩性、划分油水层、 进行地层对比。 在砂泥岩剖面中,砂岩电阻比 泥岩电阻高。砂岩中装油呈现 高电阻值,装水呈现低电阻。
四、感应电导率
感应电导率测井也是电阻率,只是 是一种特殊的电阻率测井。它的测 量半径大,对薄层的反应灵敏度比 普通电阻率高。它也是判别油水层 的非常重要的曲线。
各条测井曲线的原理及应用
①确定岩层界面
曲线应用
由于它电极距小,紧贴井壁进行 测量,消除了邻层屏蔽的影响,减小 了泥浆的影响,因此岩层界面在曲线 上反映清楚。分层原则是用微电位曲 线的半幅点来确定地层顶底界面。对 于薄层,必须与视电阻率曲线配合, 才能获准确结果。
②划分渗透层
曲线应用
渗透层处,两条微电极曲线出现幅度 差,非渗透层处,两条曲线出现很小的幅 度差。 微电位曲线幅度大于微梯度曲线幅度, 称做正幅度差。渗透性岩层在微电极曲线 上一般呈正幅度差。当泥浆矿化度很高, 使得泥浆电阻率大于侵入带电阻率,微电 位曲线幅度低于微梯度曲线幅度,出现负 幅度差。
声速测井
• 声波时差曲线的影响因素 裂缝或层理发育的地层 未胶结的纯砂岩气层、高压气层 井眼扩径严重的盐岩层 泥浆中含有天然气
周波跳跃
4、密度测井和岩性—密度测井
• 岩石体积密度是单位体积岩石的 质量,单位是g/cm3。岩石体积密 度是表征岩石性质的一个重要参 数,它不但与岩石矿物成分及其 含量有关,还与岩石孔隙和孔隙 中流体类别、性质及含量有关。
• 气探井测井系列
1:500测井项目(全 井 1 2 3 4 5 6 双侧向 声波时差 自然电位 自然伽马 井径 井斜 1 2 3 4 5 6 7 8 1:200测井项目(目的层段)选测项目 双侧向—微球形聚焦 岩性密度 补偿中子 声波时差 自然电位 自然伽马能谱 井径 地层倾角 微电阻率成像 声波成像 核磁共振
泥 浆
围岩
地 层 厚 度
泥饼
过 冲 渡 洗 带 带 或 环 带
未 侵 入 带
侵入带直径 di 井径 dn 围岩
1.自然电位测井(SP)
N
v
井中电极M与地面 电极N
M
测井曲线图实例介绍
砂 泥 岩 剖 面 测 井 曲 线 实 例
纯泥岩
含生物 灰质砂岩
指状泥岩在感应曲线上的特征
用感应曲线划分油、水层
C/O 比 测 井 实 例
C / O 测 井 实 例
用中子寿命测井确定堵水层位
油
气
水
用声波时差曲线划分油、气、水层
砂 泥 岩 剖 面 自 然 伽 马 测 井 图
应 用 自 然 伽 马 和 中 子 伽 马 曲 线 判 别 岩 性
管外窜通,液流向下的井的井温测井曲线 1—地温梯度,2—梯度温度曲线,3—微 差井温曲线
管外窜通,液流向上的井温测井曲 线1—地温梯度,2—梯度温度曲线, 3—微差井温曲线
寻找 吸水 层位 的井 温测 井曲 线实 例
正常注入下的温度曲线为水井动态温度曲线。 特点为在吸水层以上近似为一条直线吸水层以 下,温度朝地温曲线偏移。 关井后测的温度曲线为 静温曲线,吸水层位 为负异常。
测井曲线图实例
的某 两井 层钻 侧井 向液 测浸 井泡 ( 4 盐 6 水天 泥与 浆 8 ) 10 天
-
含轻质油 层在钻井 液浸泡3 天和 20 天的双感 应测井 (淡水泥 浆)
某井钻 开气层 3天和 13天的 深感应 测井曲 线(盐 水泥浆)
某井 测井 图 (高 阻油 层与 低阻 油层)
寻找出气层位的井温测井曲线实例(出气层段 为井温负异常)
地温梯度:地层深度每增加100米,地层温度 的增加量。 梯度温度曲线:用梯度井温仪测量的井内各个 深度处液体的温度。 梯度微差温度曲线:用梯度微差井温仪测量的 井轴上相隔一定间距两点间的温度差值。 径向微差井温曲线:某一深度上,同一水平面 圆周上相差180度两点间的温度差。 油井出气层段在各条梯度井温曲线均有明显 的显示,各条微差井温曲线也都有负异常。负 异常随生产油嘴的加大更加明显。油层微差井 温曲线一般没有负异常显示,只有在大油嘴生 产发生脱气时,才略有负异常。
油气水层判断测井曲线
测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征:如下图所示(1)、油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
测井曲线检验油水层
一、介绍测井曲线的用途-二、测井资料的综合运用一、划分岩层界面二、确定地层的电阻率三、确定地层的孔隙度四、确定地层传声速度五、确定地层的含泥量六、确定地层的含H量七、确定地层的密度八、综合判断地层的岩性九、综合判断油气水层1、⑴渗透层。
⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。
⑶标准水层其电阻率接近于同井段的泥岩。
在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。
2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。
⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。
声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。
⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。
十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。
⑵感应曲线上在油水界面上幅度变化特别明显。
⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。
⑷密度曲线在油水界面上有微弱的台阶,含油部分密度小,含水部分密度较大。
⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包。
2、油气界面的划分:⑴声波时差在油气界面有明显的幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显的幅度变化。
⑵中子伽马在油气界面上有不太明显的变化,长源距气层的幅度高,油层的幅度小。
3、气水界面的划分:⑴声波时差在气水界面上明显的幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃。
⑵密度曲线在气水界面上有明显的幅度变化,气层部分密度小,含水部分密度大。
⑶中子伽马曲线在气水界面上有不明显的变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显)。
测井曲线油层识别
井 壁
Rt Rtr Rx o
泥
钻头
饼
直径
冲过 原 洗渡 状 带带 地
层
泥 浆
增阻泥浆侵入
减阻泥浆侵入
5、普通视电阻率测井及其应用
电阻率法测井是通过测量钻井剖面上各种岩石和矿物电阻率来 区别岩石性质的方法。电流以A为中心呈球形辐射状流出。
梯度电极系:梯度电极系就是成对电极靠得很近, 而不成对电极离得较远的电极系。
当侵入较深时,侧向测井电流线成水平圆盘状从井轴向四面发射,而感 应测井电流线是绕井轴的环流。因此,对于侧向测井,泥浆、侵入带和地层 的电阻是串联的,而对感应测井,它们则是并联关系。
这意味着,感应测井值受两个带中电阻率较低的带的影响较大,而侧向 测井值受电阻率较高的带影响较大。因此,如果Rxo>Rt时,采用感应测井确 定Rt较侧向测井优越;如果Rxo<Rt时,选用侧向测井较好。
感应测井、微电极系测井等。
1、自然伽玛测井及其应用
原理:通过测量井内岩层中自然存在的放射性元素核衰变过程中放射出来的γ射线的强度来认识岩层的一种 放射性测井法,其γ射线强度与放射性元素的含量及类型有关(岩石的放射性是由岩石中所含的U、Th、k 系放射性同位素引起的)。
沉积岩的自然放射性,大体可分为高、中、低三种类型。 ①高自然放射性的岩石:包括泥质砂岩、砂质泥岩、泥岩,以及钾盐层等,其自
声波时差测井是孔隙度测井系列的主要方法。
4、声波时差测井及其应用
应用
(1)划分岩性,作地层对比
砂泥岩剖面:一般情况是 砂岩:显示为低时差400—180、
越致密声时越低; 泥岩:显示为高时差548—252; 页岩:介于砂岩与泥岩之间;
4、声波时差测井及其应用
油气层在测井曲线中的反应讲解
油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
油、气、水层划分
(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测阻率小于浅探测电阻率的现象,但没有水层差别那样大。
常规储层油气水层的识别方法
S = SHLG GMAX
− GMIN − GMIN
SH
=
2 GCUR 2 GCUR
*S − 1 −1
(1 )
(2 )
SHLG-----解释层段内 RE 曲线的测井值; GMIN-----RE 曲线在纯砂岩处(即纯水层)的测井值; GMAX----RE 曲线在纯泥岩处的测井值; S -------是 RE 曲线测井相对值; GCUR----地区经验系数,辽河地区GCUR取值为 5;
TSH1------孔隙度进行泥质校正时所用的中间变量;
TSH -------解释层段内泥质声波时差值;
TM ------砂岩声波骨架值;
PORR = AAC − TM * 100 − SH * TSH 1 − TM * 100
(6)
TF − TM
TF − TM
其中
PORR-----有效孔隙度;
TF ------孔隙流体的声波时差值(us/m)。
POR = PORR + SH * TSH 1 − TM * 100
(7)
TF − TM
3).求总孔隙度
c、计算地层含水饱和度(SW)
本地区有四种方法求地层含水饱和度,但在实际数字处理过程中只采用阿尔
奇公式求 SW。即
SW
=
B* POR
A * RW M * RT
其中:
1
N
(8 )
B------与岩性有关的系数;
(3)
其中 DEP------深度;
CP -------地层压实校正系数,当大于 1 时,令 CP 为 1。
测井曲线划分油水层知识讲解
测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
正确划分、判断油、气、水层
测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征(1)油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
油气水层判断测井曲线
测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征:如下图所示(1)、油层:微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
测井曲线
直接反映油、气层情况的第一性资料
1、钻井过程中的油、气、水显示,主要包括
泥浆性能的变化及槽面油气显示情况。 2、钻井取芯 。 3、井壁取芯 。 4、岩屑录井 。 5、气测井 。 6、地化录井。 7、试油、试水资料 等。
测井资料间接反映地层情况
测井资料是通过地层的物理性质,间接反映地层岩性、 物性和含油性的资料。由于测井技术的准确性、连续性和 成本低等特点,以及它对岩性,物性及含油性关系的研究 越来越精确,目前,测井资料不仅能用于划分油(气)、水层 ,而且能定量提供关于地层岩性、物性和含油性的十分详 细的资料,远远超过了人们对第一性资料的一般观察结果 ,在某些方面甚至可以达到实验分析的水平。
典型示例五(某井井低孔低渗储层)
1、sp异常幅度正负不定; 2、微电极呈低值正幅度差; 3、储油层电阻率和上下围岩相比较低; 4、曲线显示孔隙度值很小,在5%左右, 一般密度曲线有减小趋势; 5、GR值在砂层段低值,井径在砂岩处 有扩径现象。
典型示例六(低阻油层)
1、sp负异常幅度; 2、微电极正幅度差; 3、油层电阻率水层还低;
③Sw≤50%,或Rwa/Rw≥3--5,Φ≥2Φw,或交会图上有 类似显示,即各种方法显示的含油饱和度均在50%以上,特 别是在本井没有比较典型的水层或邻井没有可靠的油层作为 对比资料时,这是判断油层的主要方法。
④有可动油显示,三孔隙度显示的可动油也比较好。 ⑤录井油气显示好,与邻井经过试油资料证实的油层比较 接近。与邻井对比是划分油(气)、水层的重要方法之一。如 果邻井有经过试油证实的油、气、水层,只要本井有相应 的地层,而且测井及录井显示与邻井相同,则可以把相应 的地层当作比较可靠的油气、水层,并可以把这些地层作 为对比的依据。由于不知道该油层是否为下限层,则只能 判断与该层邻近或显示最好的为油层。难以对显示较差的 地层作出肯定的解释。 ⑥自然电位异常一般比水层略小些。
测井曲线划分油、气、水层
油气水层的定性解释主要是采用比较的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:ﻫ(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
长、短电极视电阻率曲线均为高阻特征。ﻫ感应曲线呈明显的低电导(高电阻)。ﻫ井径常小于钻头直径。ﻫ(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。ﻫ(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。即
概述 分类 主要方法 应用" alt="地球物理测井 概述 分类 主要方法 应用" src="" width=1 height=1 real_src="" eventslistuid="e4">
第一节:概述
普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。又称视电阻率测井。
沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。
油水界面测井曲线特征
油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
油,气,水层的特征
油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用测井曲线判断划分油、气、水层
测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。
1、油、气、水层在测井曲线上显示不同的特征:
(1)、油层:
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层
油气水层的定性解释主要是采用比较(对比)的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:
(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3) 邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。
(4) 最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。
比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层, 低于电性标准的是水层。
从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。
但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。
(5) 判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。
所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。
根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性的、简单明显的油、气、水层划分出来。