二组分系统气液平衡温度-组成图的绘制
第6章 二组分液态部分互溶系统及完全不互溶系统气液平衡相图
C L1’
称为高临界溶解温度或高会溶
富水
温度。
l
L2’
富酚
温度高于高会溶温度,液 体水与液体苯酚可完全互溶, 温度低于高会溶温度,两液 体只能部分互溶。
l1+ l2
0M A (水)
N 100
wB /%
B(苯酚)
t
p=const.
e
加热
l1+ l2
g
冷却
的相变化,温度和三相组成均 不变,但三相的数量却在改变, 改变量之间的关系符合杠杆规 则。
二组分系统三相平衡的杠杆规则:
设A、B二组分系统成α,β, γ 三相平衡时,三个相的组成分 别为xB(α)、xB(β)、xB(γ) ,且 xB(γ) 介于xB(α)和xB(β)之间 。如 图:
又为另一液层的饱和蒸汽压。即气相与两个液
L2
相均平衡,而这两个液相相互平衡。
根据这三相组成的关系,可将部分互溶系统气-液平衡的温 度 - 组成图分为两类:
3.部分互溶系统的温度 - 组成图
(1)气相组成介于两液相组成之间的系统
t
P
92
L1 0M A
p=101.325kPa
Q
G L2
wB/%
N 100 B
对照相图理解三相平衡的杠 杆规则
Δn(α) xB ( β ) xB (γ ) Δn( β ) xB (γ ) xB (α)
Δn(α) α
Δn(β) γβ
0 xB(α) xB(γ) xB (β) 1
A
B
Δn(α) [xB (γ ) xB (α)] Δn( β ) [xB ( β ) xB (γ )]
P
3.4 二组分系统固液平衡相图
t/℃
80
l(A+B)
•t
* B
液相线(凝固
60
点降低曲线)
• 40 t
* A
s(A)+l(A+B)
l (A+B)+sB
固相线
20 C
•E s(A)+s(B)
共晶线
D
(温度、三个相的
0.0 0.2 0.4 0.6 0.8 1.0 组成都不变)
邻硝基氯苯(A) xB
对硝基氯苯(B)
E点:液相能存在的
l+s s(A+B)
p/102kPa
t=60℃ l(A+B)
lg g(A+B)
d-香芹(A) wB
l-香芹(B)
图a 最高熔点液固相图
H2O(A)
yB
C2H5OH(B)
图b 最高恒沸点气液相图
2 液态完全互溶而固态完全不互溶
t/℃ 80
60
• 40 t
* A
20
C
•E
•t
* B
t/℃
•t
* A
p=101 325Pa
出的t-xB图,列表回答系统在5C,30C,50C时的
相数、相的聚集态及成分、各相的物质的量、系统所 在相区的条件自由度数。
解:
系统 相数
温度
t / C
5
2
相的聚集态 及成分
s (A), s (B)
30 2 s (B), l (A+B)
50 1
l (A+B)
各相的物量
ns(A) = 2 mol ns(B) = 8 mol
t
* B
l (A+B)
ch6.3二组分理想液态混合物的气液平衡相图
二组分系统的相律分析
•根据相律 F = C - P + 2 = 4 - P
•F最大= 3 即最多可以有三个独立变量, 这三个变量通常是T,p 和组成 x
•P最大= 4 即最多可以四相平衡共存
•通常研究方法 •固定一个变量,用二维坐标描述使图形简单易用。 ( )T ( )P ( )x
两个纯液体可按任意比例互溶,每个组分都服从拉乌尔定律, 这样组成了理想的完全互溶双液系,或称为理想的液体混合物
pB pB xB
* pB
p
* A
pA pA (1 xB )
A
xB
B
∵T=常数,且系统达到气液平衡时,自由度数F= 1, 表明压力和组成中只有一个为变量,若选液相组成xB 为独立变量,即 p = f(xB),且yB = f(xB)
(2) p-x-y图
这是 p-x 图的一种,把液相组成 x 和气相组成 y 画在同一张图上。 • yA 和 yB的求法如下:
G1
tB pB p* a B ( t ) xB yB p 101.325kPa l * * 若已知t温度下的 pA (t )和pB (t ) A x B B 求得(t, xB , yB ) 以此类推可获得不同温度下的气液相组成,进而画出 气相点和液相点
(2)T-x图分析
在T-x图上,气 相线在上,液相线在 下,上面是气相区, 下面是液相区,梭形 区是气-液两相区。 •两条线 F=1 •三个区域 单相区 F=2 ; 气-液平衡区 F=1。 •两端点 F=0
(1)T-x图可通过计算获得
101.325kPa p (t )(1 x B ) p (t ) x B
* A * B
* * p* ( t ) ( p ( t ) p A B A ( t ))x B
物化实验 二组分体系气液平衡相图绘制
实验四二组分体系气液平衡相图一.实验目的1.了解液体沸点的测定方法。
2.掌握温度计的露茎校正方法。
3.掌握阿贝折光仪的原理及使用方法4.测定环己烷——乙醇二元系统气液平衡数据,给出沸点组成图。
二.实验原理常温下两液态物质混合构成的体系称为双液系。
若该双液系能按任意比例混合成为一相则称为完全互溶双液系。
若只能在一定比例范围内混合成为一相,其它比例范围内为两相则称部分互溶双液系。
环己烷——乙醇体系是完全互溶双液系。
液体的沸点是指液体的蒸气压和外压相等时的温度。
在一定外压下纯液体的沸点有确定值。
但是双液系沸点不仅与外压有关还随双液系的组成的改变而改变。
同时,在一般情况下双液系蒸馏时的气相组成和液相组成并不相同,因此原则上可通过反复蒸馏即精馏的方法分离双液系中的两液体。
但是当双液系具有恒沸点时,不能用单纯蒸馏的方法分离两液体。
如图4.1所示,本实验所用体系环己烷——乙醇的温度组成图是一个典型的具有最低恒沸点的相图。
若将组成在恒沸点处的体系蒸馏时气相组成和液相组成完全一样,因此在整个蒸馏过程中沸点也恒定不变,无法通过蒸馏的方法分离两组分。
恒沸点和恒沸混合物的组成还和外压有关,因此在不同外压条件下实验时所得双液系的相图也不尽相同,通常压力变化不大时恒沸点和恒沸混合物的组成的变化也不大,在未注明压力时一般均指外压为101.325kPa。
图4.1 具有最低恒沸点体系相图示意图本实验采用回流冷凝法测定环己烷——乙醇溶液在不同组成时的沸点。
由于液体沸腾时易发生过热现象,同时气相又易出现分馏效应,因此沸点的准确测定不易。
本实验所用的沸点仪如图 4.2所示,称为奥斯默沸点仪,它是一支带有回流冷凝管的长颈圆底烧瓶,加热用的电热丝直接浸在溶液中,这样可以减少溶液的过热现象和防止暴沸。
冷凝管的底部有一个小球泡用以收集冷凝下来的气相样品,由于分馏作用会使获得的气相样品的组成与气液平衡时的气相组成发生偏差,为此须在吹制沸点仪时尽量缩短小球泡与烧瓶间的距离以减少分馏作用。
04 双液系的气-液平衡相图的绘制
实验四 双液系的气-液平衡相图的绘制一、目的要求1.用沸点仪测定大气压下乙醇—环己烷或异丙醇-环己烷双液系气-液平衡时气相与液相组成及平衡温度,绘制温度—组成图,确定恒沸混合物的组成及恒沸点的温度。
2.了解物化实验中光学方法的基本原理,学会阿贝折光仪的使用。
3.进一步理解分馏原理。
二、预习要求1.理解分馏原理,了解影响双液系气-液平衡的因素。
2.熟悉阿贝折光仪的使用方法,了解折射率与物系组成的关系。
3.掌握如何由实验数据绘制t x -相图的方法。
三、实验原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。
两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。
双液系的气液平衡相图t x -图可分为三类。
如图4.1。
图 4.1 二元系统t x -图这些图的纵轴是温度(沸点),横轴是代表液体B 的摩尔分数B x 。
在t x -图中有两条曲线:上面的曲线是气相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。
例如图4.1(a)中对应于温度t 1的气相点为y 1,液相点为1l ,这时的气相组成y 1点的横轴读数是g B x ,液相组成点1l 点的横轴读数为lB x 。
y 1l 1t 1g B x l B x A B t/℃(a )气液t/℃A B B x →(b )t/ ℃气液A B B x →(c )如果在恒压下将溶液蒸馏,当气液两相达平衡时,记下此时的沸点,并分别测定气相图。
(馏出物)与液相(蒸馏液)的组成,就能绘出此t x图4.1(b)上有个最低点,图4.1(c)上有个最高点,这些点称为恒沸点,其相应的溶液称为恒沸混合物,在此点蒸馏所得气相与液相组成相同。
四、仪器和药品1.仪器玻璃沸点仪一套;阿贝折光仪一台;WLS系列可调式恒流电源一台;SWJ型精密数字温度计一台;SYC超级恒温槽一台。
2.药品无水乙醇(AR)或异丙醇(AR);环己烷(AR)。
物理化学 06-05
24
在化工生产和科学研究中常要用到低温浴, 在化工生产和科学研究中常要用到低温浴,配 制合适的水-盐体系,可以得到不同的低温冷冻液。 制合适的水-盐体系,可以得到不同的低温冷冻液。 例如: 例如: 水盐体系
H 2 O - NaCl(s) H 2 O - CaCl 2 (s) H 2 O - KCl(s) H 2 O - NH 4 Cl(s)
上次课主要内容
1、二组分理想液态混合物的气-液平衡相图 二组分理想液态混合物的气-
压力- 压力-组成图
l 液相线 l+g
温度- 温度-组成图
g l+g
气相线 g
l
(1)气液相区的位置不同 气液相区的位置不同 (2)最高点与最低点 最高点与最低点
(3)各相区的稳定相态与自由度 各相区的稳定相态与自由度 (4)杠杆规则。 n g 杠杆规则。 杠杆规则 x o − x l 0ox
9
d e
w L1 w O
f g
w
V
n L1 w V − w O = O V n w − w L1
10
d
w L1
wO
e f g
w
V
杠杆规则只适用于两相平衡
L ′ − wO n1D 1+ Lw DV −→ g w加热 O L =2 n w V = O D n ′ 冷却wO − w D 1 − wL n → L + L w g 1 2
21
22
(2)溶解度法 在不同温度下测定盐的溶解度,根据 溶解度法 在不同温度下测定盐的溶解度,
c d c
大量实验数据,绘制出水大量实验数据,绘制出水-盐的T-x图。
B析出 d
A 析 出 e’
6-2二组分系统理想液态混合物的气—液平衡相图
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线
物理化学课件二组分相图相图解读
2
压力-组成图(p~ xB图)
设组分A和B形成理想液态混合物(见图). 气-液平衡时蒸气总压p与液相组成xB的关系: 在温度T下两相平衡时, 由拉乌尔定律
* * xB pA pA xA , pB pB
T一定
g p y A yB pA pB xA xB l
•理想液态混合物的 气 - 液平衡
A和B均满足 pB = p*B xB
t 一定 p
p
l (A+B) M
* B
nGxG + nLxL = (nG + nL) xM 得
L 总 nG n n B B B
L
G
nL xG xM MG 推导 nG xM xL LM
B 既是系统点又是相点
A
xL xM xG nL nM nG
xB
7
• 实际混合物中苯(B)和甲苯(A)双液系的性质接近理想 混合物, 在79.7 ℃下实测 压力-组成 数据如下:
液相组成 xB 0 0.1161 0.2271 0.3383 0.4532 0.5451 0.6344 0.7327 0.8243 0.9189 0.9565 1.000
8
相点
系统点
液相线
• 点, 线, 区的含义 及各状态下自由 度数; • 会读系统总组成 g p 与相组成 ; yA yB pA pB 气相线 xA xB 相点 l
T一定
结线 •理想液态混合物的 气 - 液平衡
蒸气压组成相图 A和B均满足 pB = p*B xB
9
2. 温度-组成图(T~ xB图)
在恒压下表示二组分系统气-液平衡时的温度和
组成的关系. 根据实验数据可以作出T~x图(包括气相线和液 相线). 例如:苯~甲苯的T~x图如下:
6-4相平衡-二组分理想液态混合物气液平衡相图
p* A3
p* As
p* B3
p* Bs
x B3 1.0
y B 3 1.0
3.绘图: T—XB线(紫)T—YB线(红)
§6-3二组分理想液态混合物气液平衡相图
四、温度——组成图(T—X图)分析 1.相图静分析:坐标、区、线、点 坐标:T,XB(YB) 区: 下线下边(浅蓝色区)
P=1、液相、F=2 上线上边(灰色区)
第六章 相平衡
§6-!本章基本要求 §6-1 相平衡系统基本概念 §6-2 单组分相平衡 §6-3二组分理想液态混合物气液平衡相图 §6-4二组分真实液态混合物液态完全互溶系统气液平衡相图 *§6-5 精镏原理 §6-6二组分液态部分互溶及完全不互溶系统气液平衡相图 §6-7二组分无中间化合物的凝聚系统相图 §6-8二组分有中间化合物的凝聚系统相图 *§6-9三组分系统相图简介 §6-$本章小结与学习指导
(上册)
第六章就先讲到这里 下节课再见!
LM G
§6-3二组分理想液态混合物气液平衡相图
二、压力——组成图(p—x图)分析 2.相图动分析: 压力不变往液体A中
加入B气体 组成不变改变压力
§6-3二组分理想液态混合物气液平衡相图
三、杠杆规则(物料衡算)
对二组分2相系统(如左下图气液2相):
中间M点称为系统点
L
M点组成XM,B称为系统组成
§6-3二组分理想液态混合物气液平衡相图
前面课程我们讲述了二组份系统的特征 1.描述二组分系统需要的三个独立变量,可以用三维坐标系表
示二组分系统相平衡 。 2.二组分系统若固定一个变量,就可以用二维坐标系表示相平
衡。 3主要讨论:确定温条件下的压力—组成图,确定压条件下的温
物理化学课件二组分相图相图
* A A
气相线(p~y图) 将气相线与液相线画在同一张图上得:
6
系统点
p
相点
t 一定
l (A+B) M
L
G
• 系统点: 表示系统总状态 p (总组成)的点(例如M点); 结线 • 相点:表示各个相的状态的 点( 只有一个相时,系统点 就是相点) (例如L、G点).
* B
* pA
g (A+B)
• 结线: 两个平衡相点的连 结线。 相点
0.18 l A+B)
气相线
g(A+B)
0.12
0.06 g (A+B) 0.2 0.4 xB 0.6 0.8 1.0 B
p
* A
0.0 A
•H2O(A) - C3H6O (B)系统的压力-组成图
20
具有最大正偏差系统的压力-组成图 液相线和气相线在最高点处相切
1. 0 60 50
t =35 ℃
l L G
* f AB < f AA * f AB < f BB
•若纯组分有缔合作用, 在形成混合物后发生离解, 因分子数 增多而产生正偏差.
•混合时常有吸热及体积增大现象. 关于负偏差: •若两组分分子间的吸引力大于各纯组分分子间吸引力, 形成 混合物后, 分子就较难逸出液面而产生负偏差. * * f AB > f AA f AB > f BB
•若形成混合物后分子发生缔合, 因分子数减少而产生负偏差.
•混合时常有放热及体积缩小现象.
19
②. 压力-组成图
一般正偏差和一般负偏 差系统的压力-组成图 与理想系统的主要 差别是液相线不是直 线. 如: 统. 水和丙酮系
3.2 二组分系统气液平衡相图
LG
定温连结线
80
t
* B
xl,B
l(A+B)
60
0.0
0.0 0.2 0.4 0.6 0.8 1.0
C6H5CH3(A)
xB
C6H6 (B)
图3-10 C6H5CH3(A) - C6H6 (B)系统的 沸点-组成图
15
0.0 t/℃
120
t
* A
100
80
60
yB 0.2 0.4 0.6 0.8 1.0
p/102kPa
(2) 蒸气压‐组成曲线有极值
0.0 0.2 1. 0
t=60℃ 0.8
0.6
0.4
pA*
0.2
xB 0.4 0.6
l(A+B) lg
0.8 1.0 xB=0.92
蒸气压有极大值,
yB=xB,气相线与液相 线相切
左半支:yB > xB pB* 右半支:yB < xB
g(A+B)
0.0 0.0 0.2
若pB* > p > pA*, 则 yB > xB, yA < xA. 可知:
饱和蒸气压不同的两种液体形成理想液态混合物成气液平衡时, 两相的组成并不相同, 易挥发组分在气相中的相 对含量大于它在液相中的相对含量.
气-液平衡时蒸气总压p与气相组成yB的关系: 结合式 p = pA* + (pB* - pA* ) xB 和式 yB = pB*xB /p 可得
• 从相图分析恒温降压变化过程.
• 与纯物质在恒温下有一定的饱和蒸气压不同, 由于液相在 气化过程中组成不断变化(剩余难挥发性组分愈来愈多), 使得其平衡蒸气压不断下降, 因而存在相变压力区间. 5
第4 5 节:二组分理想液态混合物的气液平衡相图分析
压力-组成图
应用相图可以了解指 定系统在外界条件改变时 的相变化情况。 若在一个带活塞的导热 气缸中有总组成为xB(M) (简写为xM)的 A,B二组分 系统,将气缸置于100°C 恒温槽中。起始系统压力 pa,系统的状态点相当于 右图中的 a 点。 当压力缓慢降低时,系统 点沿恒组成线垂直向下移 动。在到达L1 前,一直是单 一的液相。 p t =const. a L2 L1 M b G3 g
0 A
l
pB
L3
pA
l+g G1 G2
xL
xM xG xB
1 B
C6H5CH3(A) - C6H6(B)
7
压力-组成图
到达L1后,液相开始蒸发, 最初形成的蒸气相的状态为 G1所示,系统进入平衡区。 在此区内,压力继续降 低,液相蒸发为蒸气。当系 统点为M点时,两相平衡的 液相点为L2,气相点为G2, 这两点均为相点。两个平衡 相点的连接线称为结线。 压力继续降低,系统点到 达G3时,液相全部蒸发为蒸 气,最后消失的一滴液相的 状态点为 L3 。 p
p=const. b
L2 L1 a l
0 A
g
tA
t2 t1
G2 l+g
G1 tB
C6H5CH3(A) - C6H6(B)
12
1 B
§6.2
杠杆规则(Lever rule)
讨论A,B二组分系统,气、液两相,C点代表了系 统总的组成和温度,称为物系点。 通过C点作平行于横坐标 的等温线,与液相和气相线 分别交于D点和E点。DE线 称为等温连结线(tie line)
n(l) CD n(g) CE
或
m(l) CD m(g) CE
双液系气液平衡相图的绘制
实验四双液系气液平衡相图的绘制姓名:谭成彬班级:生物工程学院生物工程07级四班学号;07041010428一、实验目的1.测定常压下环己烷—乙醇二元系统的气液平衡数据,绘制沸点—组成相图。
2.掌握双组份沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝斯折射仪的使用方法。
二、实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组间分溶解度不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合成完全互溶体系时,如果该两组分的蒸汽压不同,则混合物的组成于平衡的气相的组成不同。
当压力保持一定,混合物沸点与两组分的含量有关。
恒定压力下,真实的完全互溶双液系的气—液平衡相图(T—x图),根据体系对拉乌尔的偏差情况,可分为三类:1)一般偏差:混合物的沸点介于两种纯组分之间,如果苯—苯体系,如图1(a)所示。
2)最大负偏差:混合物存在最高沸点,如盐—水体系,如图1(b)所示。
3)最大正偏差:混合物纯在最低沸点,如正丙醇—水体系,如图1(c)所示。
(a) (b)(c)图1 二组分也太混合物气——液平衡相图(T—x图)对于后两种情况,为具有沸点的双系相图。
他们爱最高或最低衡沸点时气相和液相组成相同,因而不能像第一类那样通过反复蒸馏的方法而使双液系的两个组分分离,而只能采取精馏扥那个方法分离出一种纯物质和另一种衡沸混合物。
为了测定双液系的T—x图,需要在气—液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验一环己烷—乙醇为体系,该体系属于上述第三类型,在沸点仪中蒸馏不同组成的混合物,、液二相组成,即可作出T—x 相图。
本实验气液两相的组成均采用折光率测定。
折光率是物质的一个特征数值,天宇物质的浓度计温度有关,因此在测定物质的折光率是要求温度恒定。
溶液的浓度不同、组成不同,折光率也不同,因此可先配制一系列已知组成的溶液,在恒定温度下扯其折光率,作出折光率—组成曲线,便可通过折光率的大小在工作曲线上找出未知溶液的组成。
二组分理想液态混合物的气-液平衡相图.
x1>x2>x3 ---→纯A y1< y2/<y3 / --→纯B • 6.3 精馏操作的条件
蒸气总压介于两纯组分饱和 蒸气压之间
恒沸点:沸腾时温度不变
特点—该点气相组成始终等于液 相组成
相律解释—C=S-R-R/=2-0-1=1, F=1-2+1=0
恒沸混合物不是化合物
§6.6 精馏原理
• 6.1 精馏操作的理论基 础
易挥发组分在气相中的含量 大于液相中的含量,难挥发组 分在液相中的含量大于气相中 的含量
• 6.2 精馏操作过程分析
• 5.1 真实液态混合物与理想 液态混合物的差别 • 5.2 蒸气压-组成图
(1)一般正、负偏差
在一定温度下,混合物中任一组分是否在 全部组成范围内都符合拉乌尔定律
§6.5 二组分真实液态混合物的气-
液平衡相图• 5.1 真实液态 Nhomakorabea合物与理想 液态混合物的差别 • 5.2 蒸气压-组成图
(1)一般正、负偏差 (2)最大正、负偏差
液相线—泡点,泡点线
(2)对比T-x图与p-x图
① p-x图中液相区在上,气相区在
下; T-x图则相反
② p-x图中液相线为直线,气相线
为曲线;T-x图中液相线和气相
线都为曲线
(3)a→b系统加热过程状态变化分析
易挥发组分在气相中的含量大于 液相中的含量
§6.5 二组分真实液态混合物的气-
液平衡相图
§6.4 二组分理想液态混合物的气-
液平衡相图 复 习
• 4.1 二组分系统相律分析
温度-组成图:恒定压力下研究
• 4.2 压力-组成图
T、x、y之间关系
• 4.3 温度-组成图
实验六 实验六完全互溶二组分液态混合系统的 气液平衡相图
五、实验步骤
4、停止加热,冷却2~3分钟,由侧管加入0.1ml乙醇 于蒸馏瓶中,重新加热至沸腾,边加热边将沸点仪倾 斜,目的是用冷凝器流下来的回流液冲洗球形小室, 斜, 以保证收集的冷凝液是与液相平衡的气相组成。冲洗 两次后,将冷凝液收集在球形小室中,等沸点稳定 后,记录沸点温度。停止加热,冷却2~3分钟,由凝 液取样口和侧管分别取气相和液相样品,迅速测定其 折光率。测完后,打开棱镜,用镜头纸擦干,并用洗 耳球吹干,以备测另一样品。
八、问题讨论
1、每次加入蒸馏瓶中的环己烷或乙醇的量是否需要 精确量取?为什么? 2、如何判断气、液两相已达平衡?本实验能否真正 达到平衡?为什么? 3、测定纯环己烷和乙醇沸点时,为什么要求蒸馏瓶 必须是干燥的? 4、我们测的沸点与标准大气压的沸点是否一致? 5、为什么每次测定气相冷凝液的折光率以前,一定 要将取样支管的球形小室冲干净?
五、实验步骤
5、为了使数据在图中均匀分布,按0.1,0.2,0.2,0.5,0.5, 1.0,1.0,2.0ml的顺序依次加入乙醇,重复步骤4,记录 沸点和折光率数据。 6、将蒸馏瓶中的液态混合物从侧管吸出,并用洗耳 球吹干,重新加入20ml乙醇,按步骤3测沸点后,再 按步骤4,依次加入1.0,1.0,2.0,2.0,4.0,8.0,10.0,12.0ml 的环己烷,重复步骤4,记录沸点和折光率数据。
四、实验仪器及试剂
二组分理想混合物的气液平衡相图
22二组分理想混合物的气液平衡相图鉴于理想液体混合物中的组分都遵守Raoult 定律,这种混合物的气液平衡相图是可以通过计算得到的,它是各种实际气液平衡相图研究的基础。
本专题便来介绍这种模型混合物的气液平衡相图,并从中引出杠杆规则等重要的概念。
1. 相律分析对于一个二组分气液平衡系统,若两个组分间没有化学反应,也没有其他独立的限制条件,则由相律可得系统的自由度为:πππ−=−−+−=′−−+−=400222R R K F (22-1)由于系统至少有一个相,自由度最多等于3。
这就是说,要构作二组分气液平衡相图需要三个坐标,是一个T 、p 、B x 或B y 的三维立体图。
然而,为了简单和易读,人们常常使其中一个强度性质保持不变,而去表示其它两者的关系,从而将立体相图变成两个平面相图。
例如,在T 保持不变的条件下,构作B x 或B y 与p 的关系图,此图称为恒温相图。
或者,也可在保持p 不变的条件下,构作B x 或B y 与T 的关系图,此图称为恒压相图。
因此,所有二组分气液平衡系统,都可有两个平面相图。
2. 恒温相图专题17已述,理想混合物中的所有组分,在任意温度和压力下,都遵守Raoult 定律。
如果气液平衡时气相压力较低,则可得总压B *B B *A B A )1(x p x p p p p +−=+= (22-2)AB *A B p p p p x −−= (22-3) 式(22-3)便是液相组成B x 与压力p 的关系式。
式中*A p 、*B p 分别为两个纯组分的饱和蒸气压,对于确定的系统,在指定的温度下是两个常数。
不难看出,式(22-2)是一个线性关系,在图22-1所示的恒温相图中,是一条直线(如实线所示),它称为液相线。
又因气相中组分B 的平衡分压可由下式表示B *B B B x pp p p y == (22-4) 故将式(22-3)代入式(22-4),可得)()(*A *B *A *B B p p p p p p y −−= (22-5)式(22-5)便是气相组成B y 与压力p 的关系式。
二组分理想液态混合物的气液平衡相图(共6张PPT)
• 6.2 精馏操作过程分析
精馏是多次蒸馏过程
x1>x2>x3 ---→纯A y1< y2/<y3 / --→纯B • 6.3 精馏操作的条件
蒸气总压介于两纯组分饱和蒸气压之 间
液相线—泡点,泡点线
(2)对比T-x图与p-x图
① p-x图中液相区在上,气相区在
下; T-x图则相反
② p-x图中液相线为直线,气相线
为曲线;T-x图中液相线和气相
线都为曲线
(3)a→b系统加热过程状态变化分析
易挥发组分在气相中的含量大于液相中的 含量
§6.5 二组分真实液态混合物的气-液平 衡相图
§6.4 二组分理想液态混合物的气-液
平衡相图
复习
• 4.1 二组分系统相律分析
温度-组成图:恒定压力下研究T、
• 4.2 压力-组成图
x、y之间关系
• 4.3 温度-组成图
气相线:表示液相蒸气总压与蒸气组 成关系的曲线
(1)气相线、液相线
液相线:表示液相蒸气总压与液相组
气相线—露点,露点线
成关系的曲线
一般正、负偏差的蒸气压-组成图中蒸气
总压仍然介于两纯组分饱和蒸气压之间,
而另一种情况则不然
§6.5 二组分真实液态混合物的气液平衡相图
• 5.1 真实液态混合物与理想
液态混合物的差别
• 5.2 蒸气压-组成图
• 5.3 压力-组成图
§6.5 二组分真实液态混合物的气-液 液态混合物的差别 • 5.2 蒸气压-组成图
• 5.3 压力-组成图
• 5.4 温度-组成图
恒沸点:沸腾时温度不变
特点—该点气相组成始终等于液相 组成
相律解释—C=S-R-R/=2-0-1=1,F=12+1=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波工程学院
物理化学实验报告
专业班级化本092 姓名周培实验日期2011年4月7日
同组姓名徐浩,郑志浩指导老师刘旭峰,王婷婷
实验名称实验四、二组分系统气液平衡温度-组成图的绘制
一、实验目的
1、测定在常压下环乙烷系统的气液平衡数据,绘制沸点的沸点-组成图。
2、确定洗头的恒沸温度及恒沸混合物组成。
3、了解阿贝折射仪的测量原理,掌握阿贝折射仪的使用方法。
二、实验原理
液体的沸点是指液体的饱和蒸气压和外压相等时的温度。
在一定外压下,纯液体的沸点有确定的值。
但对于完全互溶的双液系,沸点不仅与外压有关,而且还与双液系的组成有关。
本实验采用环乙烷(B)-乙醇(A)系统,其沸点-组成图属于具有最低恒沸点的类型(如图1)。
在101.325Kpa下,环乙烷的沸点为80.75℃,乙醇的沸点为78.37℃,最低恒沸点为64.8℃,最低恒沸点混合物的组成(摩尔分数)为x B=0.55.
环乙烷(B)-乙醇(A)的沸点-组成图沸点仪装置本实验采用的是沸点仪装置,用沸点仪直接测定一系列不同组成液态混合物的气液平衡温度,并收集少量馏出物和蒸馏液,分别用阿贝折光仪测定折射率,利用环乙烷(B)-乙醇(A)二组分系统的折射率-组成工作曲线,查出对应于样品折射率的组成。
三、实验仪器、试剂
仪器:沸点仪1套、NTY-2A型数字式温度计1套、YP-2B精密稳流电源1套、阿贝折射仪1套、HK-1D型恒温水槽1套
试剂:无水乙醇(A.R)、环乙烷(A.R)。
不同组成环乙烷-乙醇混合物
四、实验步骤
1、开启恒温水槽,设定温度为30℃。
2、加入试剂,盖好加料口塞子,使电热丝及温度传感器浸入液体中。
3、开冷凝水,温度传感器连接NTY-2A型数字式温度计,加热丝连接YP-2B精密稳流电源。
调
节稳流电源电流,加热至沸腾。
液体沸腾后,蒸气逸出,经冷凝后流入球形小室。
刚出现在球形小室中的液体不纯,应将其吸取掉,如此2~3次后,待温度恒定后,记下沸点,并停止加热。
4、在冷凝管上口冷凝液取样口插入干燥的长吸液管吸取球形小室的气相冷凝液,迅速测其折光
率。
用另一根干燥的短吸液管,待沸点仪冷却后,从沸点仪的加料口吸取蒸馏液迅速测其折射率。
实验完毕,将沸点仪中的溶液倒回原瓶。
5、最后,关闭电源、水源。
五、数据记录与处理
室温:17.5℃大气压:101.30KPa
1、30℃时,已知组成的环己烷(B)—乙醇(A)二组分系统的折射率见表1,由表1制作环己烷—乙醇二组分系统的工作曲线。
表1 已知组成的环己烷(B)—乙醇(A)二组分系统的折射率(温度:30.0℃±0.1℃)
B
n
x
B
图3、30℃时,折射率——组成工作曲线
2、实验数据的记录与处理
表2 环己烷(B)—乙醇(A)二组分系统的气液平衡数据
T /℃
x B
图4、环己烷—乙醇系统气液平衡时的沸点—组成图
3、由图4得:系统的恒沸点为66.83℃ 恒沸混合物的组成B x =0.66
在101.325KPa 下,最低恒沸点为64.8℃,最低恒沸点混合物的组成为B x =0.55。
系统的恒沸点的相对误差=(66.83-64.8)/64.8=3.13%。
恒沸混合物的组成的相对误差=(0.66-0.55)/0.55=20%
六、结果讨论
1、在该二相组分图中,删除了第7组,在该组中气相的组分比前一组小,在图中出现回折,与实际不符。
造成该情况的原因可能是在吸取气相物质和液相物质到折射仪的时候,物质在读数过程中,很多蒸发掉了,从而导致数据明显偏低。
3、冷凝管下的小球大小随实验结果有无影响?
答:有影响。
蒸馏气体到达冷凝管前,会有沸点高的组分被冷凝,因而所测的气体组分可能并不
是真正的气相气体组分,为了减少由此引入的误差蒸馏器中支管的位置不宜过高,沸腾液体的液面与支管上部的距离不应过远,最好在一起外面在加上棉套之类的保温层,以减少蒸汽先行冷凝。
4、测定纯环乙烷和纯乙醇的沸点时,为什么要求沸点仪必须是干燥的? 答:测纯样品时,如果沸点仪不干燥,那么测得的沸点就不是纯样品的沸点。
4、实验测得的沸点与标准大气压的沸点是否一致?
答:不一致。
因为液体的沸点是指液体的饱和蒸汽压和外压相等时的温度,实验时的大气压力与标准大气压不同,所以实验测得的沸点与标准大气压的沸点不一致。
5、在测定中,溶液过热或分馏不彻底将使得到的相图图形发生什么变化?
答:过热时将导致液相线向高温处移动,就是向上移动;分馏作用会导致出来的气相组分含有易挥发成分偏多,该气相点会向易挥发组分那边偏移。