蛋白质分选的基本途径与类型剖析
蛋白质的分选途径

蛋白质的分选途径蛋白质是生物体中最重要的分子之一,它们在生命活动中扮演着重要的角色,包括催化、结构支持、运输、信号传递等。
因此,对于研究蛋白质的分选途径,不仅有助于理解生命活动的本质,还可以为新药物的研发提供重要的指导。
蛋白质的分选途径主要包括离子交换层析、凝胶过滤层析、亲和层析、透析、电泳、质谱等。
下面将分别介绍这些分选途径的原理和应用。
1.离子交换层析离子交换层析是蛋白质分选中最常用的方法之一。
其原理是利用离子交换树脂的特性,将带电的蛋白质分离出来。
离子交换树脂分为阳离子交换树脂和阴离子交换树脂两种。
阳离子交换树脂能吸附带负电的蛋白质,而阴离子交换树脂则能吸附带正电的蛋白质。
离子交换层析的应用范围十分广泛,可以用于分离各种蛋白质,例如血清蛋白、酶、激素等。
此外,离子交换层析还可以用于提纯蛋白质,去除杂质和有害物质,从而提高蛋白质的纯度。
2.凝胶过滤层析凝胶过滤层析是一种基于分子大小的蛋白质分选方法。
其原理是利用分子筛的特性,将大分子蛋白质滞留在分子筛中,而小分子蛋白质则通过分子筛。
分子筛的孔径大小可以根据需要进行调整,从而实现对不同分子大小的蛋白质的分离。
凝胶过滤层析的应用范围广泛,可以用于分离各种蛋白质,例如血清蛋白、酶、激素等。
此外,凝胶过滤层析还可以用于去除杂质和有害物质,从而提高蛋白质的纯度。
3.亲和层析亲和层析是一种基于分子亲和力的蛋白质分选方法。
其原理是利用某些化合物与特定蛋白质之间的亲和力,将目标蛋白质从混合物中分离出来。
亲和层析的化合物可以是抗体、配体、金属离子等。
亲和层析的应用范围也十分广泛,可以用于分离各种蛋白质,例如酶、激素、抗体等。
此外,亲和层析还可以用于提纯蛋白质,去除杂质和有害物质,从而提高蛋白质的纯度。
4.透析透析是一种基于分子大小的蛋白质分选方法。
其原理是利用半透膜的特性,将小分子物质从大分子物质中分离出来。
透析的半透膜可以是纸膜、凝胶、膜过滤器等。
透析的应用范围也十分广泛,可以用于去除杂质和有害物质,从而提高蛋白质的纯度。
2023年高中生物竞赛课件:细胞内蛋白质的分选

新生肽链跨膜取向
新生跨膜蛋白的肽链中没 有N端信号肽,只有内部 信号序列(internal signal sequence)。内部信号序列 的转位方向主要取决于其 侧翼氨基酸残基电荷的分 布。一般而言,带正电荷 的氨基酸残基一侧朝向细 胞质基质一侧
一、信号假说与蛋白质分选信号
Ⅳ型:G蛋白偶联受体、葡 萄糖转运蛋白、电压门 Ca2+通道、CFTR(Cl-)通道
图6-4 内质网膜整合蛋白的拓扑学类型
一、信号假说与蛋白质分选信号
(五)ER膜整合蛋白的信号序列
ER单次跨膜 新生跨膜蛋白肽链中既有N端信号肽,又 蛋白的合成 有停止转移信号
一、信号假说与蛋白质分选信号
(五)ER膜整合蛋白的信号序列
一、信号假说与蛋白质分选信号
(四)分泌性蛋白的合成与共翻译转运过程
1、分泌性蛋白在游离核糖体上起始合成 2、多肽链延伸至80个氨基酸残基时,N端内质网信号序列暴露,与 SRP结合,肽链延伸暂停,防止新生肽链N端损伤和成熟前折叠
一、信号假说与蛋白质分选信号
(四)分泌性蛋白的合成与共翻译转运过程
3、SRP与ER膜上SRP受体结合,核 糖体新生肽复合物附着到ER膜,两 分子GTP分别与SRP-p54亚基和SRP 受体α亚基结合,相互作用加强
5、腔面信号肽酶切除信号肽并使之快速降解 6-8、肽链继续延伸,并在ER腔内折叠,移位子关闭
一、信号假说与蛋白质分选信号
(四)分泌性蛋白的合成与共翻译转运过程
一、信号假说与蛋白质分选信号
(五)ER膜整合蛋白的信号序列
➢ 开始转移序列(start transfer sequence) 作为内质网的信号序列,指导新合成的多肽向内
细胞内蛋白质分选的基本途径

细胞内蛋白质分选的基本途径
一、翻译后转运途径
翻译后转运途径是指蛋白质在完成多肽链的合成后,再通过特定的转运途径将其输送到细胞内指定位置。
这一途径主要涉及信号识别颗粒(SRP)的识别和核糖体与内质网之间的相互作用。
通过翻译后转运途径,细胞可以精确地控制蛋白质的合成和分选过程,以满足其特定需求。
二、共翻译转运途径
共翻译转运途径是指蛋白质在合成过程中即开始进行分选转运的途径。
该途径涉及信号肽的识别和引导,以及跨膜运输过程中的信号肽切除。
共翻译转运途径的主要特点是蛋白质在合成过程中就与转运相关的分子结合,从而引导其向特定方向进行转运和定位。
三、膜泡运输途径
膜泡运输途径是指蛋白质在合成过程中被包裹在膜泡内,通过一系列膜泡的转运和融合过程,最终将蛋白质运送到指定位置。
膜泡运输途径的主要特点是能够将蛋白质从粗面内质网合成部位转运至高尔基体,进而再转运至溶酶体、分泌泡等细胞内的不同部位。
四、门控转运途径
门控转运途径是指通过核孔复合体进行的选择性转运过程。
这一途径主要涉及细胞核内外蛋白质的合成与运输,特别是一些核质穿梭蛋白在细胞核与细胞质之间的运动。
门控转运途径对于维持细胞核的正常功能具有重要意义。
五、定位与锚定途径
定位与锚定途径是指蛋白质通过与细胞骨架系统的相互作用,实现其在细胞内的准确定位和锚定。
细胞骨架系统由微管、微丝和中间纤维构成,它们共同维持了细胞的形态并参与物质运输。
通过定位与锚定途径,蛋白质能够在特定的细胞区域发挥其功能,从而维持细胞的正常生理活动。
蛋白质分选的基本途径与类型

改变离子通道和转运蛋白的活性,调节物质进出细胞的速率。
03
蛋白质的囊蛋白质分选的 重要途径之一,通过囊泡将蛋白 质从一处转运到另一处,实现蛋 白质的定位和功能。
02
囊泡运输涉及到多种细胞器之间 的相互联系和蛋白质的跨膜转运 ,对于维持细胞结构和功能具有 重要意义。
囊泡运输的调控机制
信号分子调控
某些信号分子可以与囊泡上的受 体结合,调控囊泡的转运方向和 目的地。
能量依赖性调控
囊泡运输需要消耗能量,如ATP 水解产生的能量,以驱动囊泡的 转运过程。
蛋白激酶与磷酸化
调控
某些蛋白激酶可以调控囊泡运输 相关蛋白的磷酸化状态,从而影 响囊泡的转运过程。
04
蛋白质的膜泡运输
囊泡运输的途径
蛋白质从粗面内质网(RER)到高尔基体的运输
在蛋白质合成过程中,新生蛋白质通过RER进行合成,然后通过囊泡转运到高尔基体进行 加工和分类。
跨膜运输
囊泡可以穿过细胞膜,将蛋白质从一个细胞器转运到另一个细胞器,如从高尔基体转运到 溶酶体或转运到细胞膜。
胞吐作用
当囊泡与细胞膜融合时,其内容物会被释放到细胞外,如神经递质的释放。
药物研发过程中,针对影响蛋白质分选的靶点进行设计, 可以实现对特定蛋白质的调控,从而达到治疗疾病的目的 。
THANKS FOR WATCHING
感谢您的观看
01
蛋白质通过内质网-高尔基体途径进行膜泡运输,该途径包括顺 面高尔基体、反面高尔基体和溶酶体等细胞器。
02
蛋白质还可以通过核膜-内质网途径进行膜泡运输,该途径涉及
核孔复合体和内质网等细胞器。
此外,还有其他的膜泡运输途径,如线粒体膜泡运输和叶绿体
蛋白质分选(proteinsorting)信号、基本途径与类型

蛋⽩质分选(proteinsorting)信号、基本途径与类型学⽣的问题:核糖体合成的蛋⽩质如何转运到其它部位,特别是如何进⼊叶绿体和线粒体内?其实,这是就是蛋⽩质合成后的去路问题,属于蛋⽩质的分选。
蛋⽩质分选:依靠蛋⽩质⾃⾝信号序列,从蛋⽩质起始合成部位转运到其功能发挥部位的过程。
蛋⽩质分选不仅保证了蛋⽩质的正确定位,也保证了蛋⽩质的⽣物学活性。
与原核细胞不同的是真核细胞具有复杂的由内膜构成的功能区隔。
细胞内膜系统指在结构,功能或发⽣上相关的细胞内膜形成的细胞结构,包括核被膜、内质⽹、⾼尔基体及其形成的溶酶体和分泌泡等,以及其它细胞器如线粒体,质体和过氧化物酶体等膜包围的细胞器(膜性细胞器)。
内膜系统形成了⼀种胞内⽹络结构,其功能主要在于两个⽅⾯:其⼀是扩⼤膜的总⾯积,为酶提供附着的⽀架,如脂肪代谢、氧化磷酸化相关的酶都结合在细胞膜上。
其⼆是将细胞内部区分为不同的功能区域,保证各种⽣化反应所需的独特的环境。
细胞内合成的蛋⽩质、脂类等物质之所以能够定向的转运到特定的细胞器取决于两个⽅⾯:其⼀是蛋⽩质中包含特殊的信号序列,其⼆是细胞器上具特定的信号识别装置,因此内膜系统的发⽣具有核外遗传的特性。
⼀、蛋⽩质分选信号细胞类⾄少存在两类蛋⽩质分选的信号。
①信号序列(signal sequence):存在于蛋⽩质⼀级结构上的线性序列,通常15-60个氨基酸残基,有些信号序列在完成蛋⽩质的定向转移后被信号肽酶(signal peptidase)切除.②信号斑(signal patch):存在于完成折叠的蛋⽩质中,构成信号斑的信号序列之间可以不相邻,折叠在⼀起构成蛋⽩质分选的信号。
蛋⽩质分选信号的作⽤是引导蛋⽩质从胞质溶胶进⼊内质⽹、线粒体、叶绿体和过氧化物酶体,也可以引导蛋⽩质从细胞核进⼊细胞质或从Golgi体进⼊内质⽹。
这种分选信号的氨基酸残基有时呈线性排列,有时折叠成信号斑,如引导蛋⽩质定向运输到溶酶体的信号斑,是溶酶体酸性⽔解酶被⾼尔基体选择性加⼯的标识。
《蛋白质的分选》课件

利用细胞生物学技术,如荧光标记、免疫荧光染色等,观察蛋白质在细胞内的定位和动 态变化,揭示蛋白质分选的细胞生物学过程。
蛋白质分选的潜在治疗策略
靶向治疗
针对异常表达的蛋白质或蛋白质分选相关基 因进行靶向治疗,以纠正异常的蛋白质分选 过程,治疗相关疾病。
基因治疗
通过基因工程技术,对相关基因进行修饰或敲除, 以改变蛋白质的表达和分选,达到治疗目的。
膜泡运输
01
指蛋白质在细胞质基质中形成膜泡,然后通过胞吐作用将膜泡
释放到细胞外或细胞内的其他部位。
膜泡运输的类型
02
包括内吞作用、外排作用和胞饮作用等,每种类型都有其特定
的运输途径和作用。
膜泡运输的机制
03
涉及多种蛋白质和细胞器的协同作用,如网格蛋白、细胞骨架
和溶酶体等。
蛋白质的细胞质运输途径
细胞质运输
针对蛋白质分选过程的治疗策略可能 对癌症治疗具有重要意义。
蛋白质分选与神经退行性疾病的关系
神经退行性疾病是指神经元或 神经胶质细胞逐渐退化并导致 功能障碍的一类疾病,如帕金
森病、阿尔茨海默病等。
某些神经退行性疾病可能与蛋 白质聚集物的形成有关,这些 聚集物可能干扰蛋白质的正常 分选和功能。
蛋白质分选异常可能导致神经 元死亡和神经退行性疾病的发
3
临床应用转化
将蛋白质分选的研究成果转化为临床应用,开发 新的治疗策略和方法,为疾病治疗提供更多选择 。
THANKS
THANK YOU FOR YOUR WATCHING
05
蛋白质分选的研究前景与展望
蛋白质分选的研究方法与技术
蛋白质组学技术
利用蛋白质组学技术,如质谱分析、蛋白质免疫印迹等,对蛋白质进行定性和定量分析 ,深入了解蛋白质分选的机制和过程。
细胞生物学(第五版)-第6章 蛋白质分选与膜泡运输

1.蛋白质在rER合成,通过共翻译 转运途径跨膜运输 2.内质网出芽,形成转运膜泡并与 高尔基体融合,形成高尔基体顺 面网状结构 3.从高尔基体顺面膜囊和高尔基体 顺面网状结构到r ER的逆向运输 4.高尔基体膜囊从顺面至反面成熟 递进(非膜泡过程)。 5.从高尔基体后期膜囊到早期膜 囊的逆向运输
(2)膜泡运输:蛋白质被不同类型的转运膜泡从糙面内质网合成部 位转运至高尔基体进而再分选转移至细胞的不同部位,其中涉及供体 膜出芽形成不同的转运膜泡、膜泡运输和转运膜泡与靶膜的融合等过 程。
(3)选择性门控转运:在游离核糖体上合成的蛋白质通过 核孔复合体在核-质间双向选择性地完成核输入或核输出。 (4)细胞质基质中蛋白质的转运:蛋白质在细胞质基质中 的转运与细胞骨架系统密切相关,其它不明。
真核细胞蛋白质分选的主要途径与类型
左:共翻译转运
右:后翻译转运
根据蛋白质分选的机制或转运方式不同,又可将蛋白 质转运分为4类
(1)跨膜转运:指共翻译转运途径中蛋白质边合成边转运进入内质 网腔或插入内质网膜;另后指翻译转运途径中蛋白质在合成后依不同 机制转运到线粒体、叶绿体和过氧化物酶体等细胞器。
信号识别颗粒的受体(又称停泊蛋白),与SRP特异结合,存在 于内质网膜上,为异二聚体。
体外非细胞系统蛋白质合成的实验证实,在分泌性蛋白合成 过程中信号肽、信号识别颗粒和停泊蛋白之间的关系如下表 所示:
信号肽酶 内质网腔面上蛋白水解酶,负责切除并快速降解新生 多肽的N端信号肽序列。 移位子 由3-4个Sec61蛋白构成的通道,每个Sec61由3条肽链组 成。 内在停止转移锚定序列 和内在信号锚定序列 与内质网膜的亲 合力很高,阻止肽链继续进入网腔,成为跨膜蛋白。
简述蛋白分选的基本途径,并具体说明

简述蛋白分选的基本途径,并具体说明蛋白分选是生物分析中被广泛应用的一种方法,旨在从一种物质中获取细胞内的蛋白质。
蛋白分选的核心技术理论在化学和生物学领域都有广泛的应用,其中包括分子生物学、蛋白质组学、心血管疾病的分析和突变基因的鉴定等,对于系统性地了解蛋白质的特性、功能及其与疾病发生发展之间的关系起到至关重要的作用。
蛋白质分选的基本途径主要有几类,包括物理法、化学法、生物识别法和仪器分析法。
一、物理法物理法一般指根据特定蛋白质在分子量、电荷等物理性质的不同,采取离心分离、电泳分离、色谱分离、光谱聚焦法等方法进行分离。
离心分离是根据蛋白质的不同分子量,利用离心力来进行分离的方法。
这种方法利用离心力分离出蛋白质,分离的结果取决于凝胶的粒径,并且能够有效地分离出分子量较大和较小的蛋白质。
电泳分离是根据蛋白质的不同电荷,利用离子膜电场将蛋白质向外移动,在长时间的电场中实现分离的方法。
这种方法利用蛋白质的电性质进行分离,分离的结果取决于离子膜的选择和电场的强度,因此能够有效地分离出电荷不同的蛋白质。
色谱分离是根据蛋白质的结构及其相对极性,利用溶剂系统和柱层析等方法进行分离的方法。
这种方法能够利用不同结构蛋白质之间的相对极性,有效地分离出各种蛋白质。
光谱聚焦法是基于蛋白质在透明介质中的吸收特性,利用蛋白质在空间上的分布状态实现分离的方法。
这种方法利用蛋白质在空间上的分布状态,有效地分离出蛋白质,并且能够获得蛋白质纯度较高的结果。
二、化学法化学法一般指利用抗原特异性的化学键,根据不同蛋白质的抗原特性,利用具有特异性的化学试剂实现分离的方法。
常用的化学分离方法有凝胶定向溶解、硫酸沉淀、抗原捕合法和核酸静电粘附法等。
凝胶定向溶解是利用不同酶将某一蛋白质从溶液中溶解出来,从而分离出其他蛋白质进行分离的方法。
这种方法利用特定的酶将某一蛋白质从溶液中溶解出来,从而分离出其他蛋白质进行分离。
硫酸沉淀是利用某种蛋白质的活性受特定酶抑制而沉淀在溶液中,并未受到其他蛋白质的影响实现分离的一种方法。
蛋白质分选转运的基本类型

蛋白质分选转运的基本类型蛋白质分选转运是细胞内的一个重要过程,确保蛋白质能够在正确的时间和位置发挥其功能。
在这个过程中,蛋白质会通过特定的信号序列被识别并被运输到细胞的不同位置。
蛋白质分选转运的基本类型包括胞外分泌、内质网转运、线粒体转运和泛素化降解。
本文将逐步介绍这些基本类型。
首先,胞外分泌是蛋白质分选转运的一种基本类型。
在细胞合成蛋白质时,一些蛋白质会被转运到细胞膜上,并通过胞外分泌途径释放到细胞外。
胞外分泌蛋白质通常具有信号序列,这些序列可以被细胞的高尔基体识别并进行正确的转运。
一旦到达细胞膜,这些蛋白质会通过膜蛋白的介导而被释放到胞外环境中。
其次,内质网转运是蛋白质分选转运的另一种基本类型。
内质网是一个具有平滑和粗糙部分的细胞器,它在蛋白质合成和分选过程中起着重要作用。
在内质网转运中,蛋白质会被合成并传送到内质网的腔室中。
在腔室内,蛋白质会进行折叠、糖基化和修饰等过程。
然后,这些蛋白质会经过内质网的质量控制机制的筛选,检查是否出现异常结构或错误折叠的蛋白质。
如果通过筛选,蛋白质将进一步转运到细胞的其他位置。
第三,线粒体转运是蛋白质分选转运的另一个重要类型。
线粒体是细胞内的能量制造中心,需要多种蛋白质来保持其正常功能。
在线粒体转运过程中,蛋白质会具有线粒体定位信号,这些信号可以被线粒体的膜蛋白识别并将其导向正确的位置。
线粒体转运蛋白质可以穿越线粒体的外膜和内膜,并最终定位在线粒体的不同亚细胞区域。
最后,泛素化降解是蛋白质分选转运的最后一种基本类型。
泛素是一种小的蛋白质,可以与目标蛋白质结合,并通过一系列的酶反应形成泛素链。
这个泛素链会标记目标蛋白质,使其被泛素降解酶识别并降解。
泛素化降解在细胞内起着重要的质量控制作用,可以分解一些错误折叠、过期或异常蛋白质。
蛋白质分选途径

蛋白质分选途径蛋白质是生命体中最基本的组成部分之一,具有多种重要的功能。
为了研究和利用蛋白质,科学家们发展了多种蛋白质分选途径,以实现对蛋白质的高效分离和纯化。
本文将介绍几种常用的蛋白质分选途径,包括凝胶电泳、柱层析、亲和层析和质谱等。
一、凝胶电泳凝胶电泳是一种常见的蛋白质分选方法,主要通过蛋白质在电场中的迁移速度差异来实现分离。
凝胶电泳可以分为聚丙烯酰胺凝胶电泳(SDS-PAGE)和原位凝胶电泳两种。
在SDS-PAGE中,蛋白质被SDS(十二烷基硫酸钠)等电泳缓冲液中的阴离子表面活性剂包裹,使蛋白质带有负电荷,从而消除了蛋白质本身的电荷差异,仅依赖于蛋白质的分子量来分离。
原位凝胶电泳则是在聚丙烯酰胺凝胶中掺入SDS,使得蛋白质在电场中迁移时受到凝胶的限制,从而分离不同大小的蛋白质。
二、柱层析柱层析是一种基于蛋白质与柱填料之间的相互作用来实现分离的方法。
常见的柱填料包括离子交换层析、凝胶过滤层析、凝胶渗透层析和亲和层析等。
离子交换层析是利用蛋白质与填料上的固定离子交换作用来分离蛋白质,根据蛋白质的电荷差异进行分离。
凝胶过滤层析则是根据蛋白质的分子量差异进行分离,分子量较大的蛋白质无法进入填料的内部,从而被分离出来。
凝胶渗透层析则是基于蛋白质与填料之间的体积排斥作用来分离蛋白质。
亲和层析是利用蛋白质与填料上特定结构的亲和配体之间的结合作用来分离蛋白质。
三、质谱质谱是一种高效的蛋白质分选方法,主要基于蛋白质的质量-电荷比(m/z)来实现分析和分离。
质谱分为质谱仪和质谱分析两个步骤。
在质谱仪中,蛋白质被离子源转化为带电离子,然后进入质谱分析器,通过对离子的加速、分离和检测,得到蛋白质的质量-电荷比。
质谱分析主要包括质谱图的解析和蛋白质的鉴定。
质谱分析可以高效地分离蛋白质,且可以测定蛋白质的分子量、序列和修饰等信息。
总结蛋白质分选途径涵盖了凝胶电泳、柱层析、亲和层析和质谱等多种方法。
不同的方法适用于不同的研究目的和需求。
细胞生物学:第8章 蛋白质分选与膜泡运输

信号肽位于N端,中部具有停止转移序列
3)如果多肽含有多个起始转移列和多个 停止转移序列:形成多次跨膜蛋白
多次跨膜蛋白
膜整合蛋白的方向性:在内质网上合成时已确 定,转运中保持不变
膜外 内质网 膜整合蛋白的方向性
通过翻译后转运将细胞质基质中合成的蛋 白质转移到细胞器中:线粒体、叶绿体、 细胞核、过氧化物酶体
停泊蛋白 (docking protein, DP):即内质网膜上的 信号识别颗粒的受体, 是一种G蛋白,它能够与结合 有信号序列的SRP特异结合,使正在合成蛋白质的核 糖体停靠到内质网上来
信号假说的基本内容:
1. 蛋白质的起始合成:都在细胞质基质中的游离核糖 体上开始,是否进入内质网由基因决定
2.信号序列与SRP结合:当多肽链延伸至80个aa左右, SRP识别新生肽的信号序列并与之结合并暂时停止核 糖体的蛋白质合成
网格蛋白有被小泡
网格蛋白 结合素蛋白 膜受体
被运输的物质
细胞质基质 高尔基体的TGN
2. COPⅡ被膜小泡(COPⅡ coated vesicle) 这种小泡的外被是外被蛋白COPⅡ,是由5种蛋 白亚基组成的复合体 功能:负责内质网到高尔基体的物质运输
运输小泡的形成与网格蛋白有被小泡的形成类似:
2. 蛋白质的跨膜运输: 主要指在细胞质基质中合成的蛋白质转运到线粒体、 叶绿体和过氧化物酶体等细胞器中,需通过膜上运输 蛋白进行跨膜运输,被运输的蛋白要有转运肽或导肽
3. 核孔运输(选择性的门控转运): 细胞质基质中合成的蛋白质穿过核孔复合体选择性 地进入细胞核或从细胞核返回细胞质,被运输的蛋 白需要有核定位信号(第十章)
G. Blobel、D. Sabatini等根据实验依据,于1975年 提出信号假说:认为分泌性蛋白N端序列作为信号 肽,指导分泌性蛋白到内质网膜上合成,在蛋白质 合成结束之前信号肽被切除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子伴侣(molecular chaperones):细胞中的一 类蛋白质,可以识别正在合成的多肽或部分折叠 的多肽并与多肽的某些部位相结合,从而帮助这 些多肽转运、折叠或装配,但是其本身并不参与 最终产物的形成。 大部分属于热休克蛋白(hsp)进化上很保 守,无专一性。
跨膜蛋白运输机制 布朗棘轮模型(Brownian rachet model):Simon 线粒体基质Hsp70(mHsp70):转运发动机
三 选择性的门控转运(gated transport) 指在细胞质基质中合成的蛋白质通过核孔复合体 选择性的完成核输入或从细胞核返回细胞质基质; 核孔复合体主要由蛋白质构成,其总相对分子 质量约为125×106,推测可能含有100余种不 同的多肽,共1 000多个蛋白质分子。
1)核孔复合体成分
gp210:结构性跨膜蛋白 p62:功能性的核孔复合体蛋白,具有两个功能 结构域; 疏水性N端区:可能在核孔复合体功能活动中直 接参与核质交换; C端区:可能通过与其它核孔复合体蛋白相互作 用,从而将p62分子稳定到核孔复合体上,为其N 端进行核质交换活动提供支持;
B
A
二 膜泡运输(vesicular transport) 蛋白质通过不同类型的转运小泡从其粗面内质 网合成部位转运至高尔基体进而分选至细胞的 不同部位,其中涉及各种不同的定向转运,及 膜泡出芽与融合的过程。 目前发现三种不同类型的有被小泡具有不 同的物质运输作用:网格蛋白有被小泡, COPⅡ有被小泡,COPⅠ有被小泡。
蛋白质分选的基本途径与类型
刘媛媛
蛋白质的分选大体可分为两条途径: (1)后转运:游离核糖体上合成的蛋白质如用于 催化代谢的酶类、核蛋白、线粒体和叶绿体蛋白 质等。 (2)共转运:在粗面内质网(ER)合成的蛋白质 如膜的整合蛋白、胞外分泌蛋白、构成细胞器中 的可溶性驻留蛋白等。
蛋白质分选的类型或机制的角度,可以分为四类:
细胞核中既有正调控信号保证 mRNA 的出核转运,
也有负调控信号防止mRNA的前体被错误地运输,
后者与剪接体(spliceosome)有关。 3’端在后。
mRNA的出核转运过程是有极性的,其5’端在前,
核输出信号 (Nuclear Export Signal , NES) :
RNA分子的出核转运需要蛋白分子的帮助,这些
2)叶绿体蛋白质的运送及装配 转运肽(transit peptides):细胞质中合成的叶 绿体前体蛋白,在N端也含有一个额外的氨基酸 序列。 目前研究的较多的是类囊体膜和内囊体腔中蛋 白质的运送过程。如补光色素蛋白或称叶绿素 a/b结合蛋白前体,其转运肽含有35个氨基酸残 基,引导其穿过叶绿体进入基质,在基质中由特 异的蛋白酶加工切去转运肽成为成熟的蛋白质。
核定位信号 (nuclear localization signal)特点
NLS是存在于亲核蛋白内的一些短的氨基酸序列 片段,富含碱性氨基酸残基,如 Lys 、 Arg ,此 外还常含有Pro; NLS 的氨基酸残基片段可以是一段连续的序列 (T抗原),也可以分成两段,两段之间间隔约 10个氨基酸残基(核质蛋白); NLS序列可存在于亲核蛋白的不同部位,在指导 完成核输入后并不被切除; NLS只是亲核蛋白入核的一个必要条件而非充分 条件 。
(1)蛋白质的跨膜转运 (transmembrane transport) (2)膜泡运输(vesicular transport ) (3)选择性的门控转运(gated transport ) (4)细胞质机制中的蛋白质的转运
一 蛋白质的跨膜转运(transmembrane transport) 主要是指细胞质基质中合成的蛋白质转运到内 质网、线粒体、质体(包括叶绿体)和过氧化物 酶体等细胞器的一种分选方式。
蛋白因子本身含有出核信号。
入核转运与出核转运之间有某种联系,它们可
能需要某些共同的因子。
Байду номын сангаас
2)核孔复合体功能 一种特殊的跨膜运输蛋白复合体,是一个双 功能、双向性的亲水性核质交换通道。 双功能:有两种运输方式被动运输与主动运输; 双向性:介导蛋白质的入核转运,介导RNA 、 核糖核蛋白颗粒(RNP)的出核转运。
3)亲和蛋白质入核转运机制
(1)亲核蛋白(karyophilic protein) 在细胞质内合成后,需要或能够进入细胞核内 发挥功能的 一类蛋白质; ( 2 )核定位信号 (nuclear localization signal , NLS) 亲和蛋白的含有的特殊的氨基酸序列,具 有定向定位作用的一段序列; (3)胞质蛋白因子:importinα /β 、Ran等。
线粒体和叶绿体蛋白质的运转与装配
1)线粒体蛋白质的转运与装配 导肽(leader peptide):N端引导蛋白质转运的一 段氨基酸序列。20~80个氨基酸序列。特点: (1)含有丰富的碱性氨基酸,特别是Arg; (2)羟基氨基酸如ser的含量很高; (3)几乎不含酸性氨基酸; (4)可形成亲水性和疏水性的α螺旋结构;
转录产物RNA的核输出
真核细胞中转录后的RNA通常需加工、修饰成为
成熟的RNA分子后才能被转运出核。
(1)RNA聚合酶I转录的rRNA分子:以RNP的形
式离开细胞核,需要能量;
(2)RNA聚合酶III转录的5s rRNA与 tRNA的核
输出由蛋白质介导;
(3)RNA 聚合酶II转录的hn RNA,在核内进行 5′端加帽和 3′端附加多聚 A 序列以及剪接等加工 过 程 , 然 后 形 成 成 熟 的 mRNA 出 核 , 5′ 端 的 m7GpppG“ 帽子”结构对 mRNA 的出核转运是 必要的;