高中数学总结归纳 抽签法与随机数表法
高中数学知识点:抽样方法
高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,假如通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称如此的抽样为简单随机抽样。
一样地假如用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一样地,抽签法确实是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌平均后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采纳的方法是随机数法,即利用随机数表、随机数骰子或运算机产生的随机数进行抽样。
二、活用随机抽样系统抽样的最差不多特点是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯独确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中依照第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。
说话胆小是幼儿语言进展的障碍。
许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆那个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。
二是注重培养幼儿敢于当众说话的适应。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清晰,声音响亮,学会用眼神。
高中数学必修3概率统计常考题型:简单随机抽样
【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。
高中数学统计与概率
高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高中数学必修2《统计》知识点讲义
第二章统计一、三种抽样方法1、统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
2、抽样方法:要求:总体中每个个体被抽取的机会相等(1)简单随机抽样:抽签法和随机数表法简单随机抽样的特点是:不放回、等可能.抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从1到N)(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作(3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本随机数表法步骤(1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本(2)系统抽样系统抽样特点:容量大、等距、等可能.步骤:1.编号,随机剔除多余个体,重新编号2.分组 (段数等于样本容量),确定间隔长度 k=N/n3.抽取第一个个体编号为i4.依预定的规则抽取余下的个体编号为i+k, i+2k, …(3)分层抽样分层抽样特点:总体差异明显、按所占比例抽取、等可能.步骤:1.将总体按一定标准分层;2.计算各层的个体数与总体的个体数的比;3.按比例确定各层应抽取的样本数目4.在每一层进行抽样 (可用简单随机抽样或系统抽样)二、用样本估计总体1、用样本的频率分布估计总体的分布①作样本频率分布直方图的步骤:(1)求极差;(2)决定组距与组数; (组数=极差/组距)(3)将数据分组;(4)列频率分布表(分组,频数,频率);(5)画频率分布直方图。
根据频率分布表做频率分布直方图应注意两点: ⑴纵轴的意义:组距频率 ⑵横轴的意义:样本内容(每个矩形下面是组距).例1、为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm ) 175 168 180 176 167 181 162 173 171 177171 171 174 173 174 175 177 166 163 160166 166 163 169 174 165 175 165 170 158174 172 166 172 167 172 175 161 173 167170 172 165 157 172 173 166 177 169 181列出样本的频率分布表,画出频率分布直方图.解:在这个样本中,最大值为181,最小值为157,它们的差是24,可以取组距为4,分成7组,根据题意列出样本的频率分布表如下:频率分布直方图(略) 分组频数 频率 156.5~160.53 0.06 160.5~164.54 0.08 164.5~168.512 0.24 168.5~172.512 0.24 172.5~176.513 0.26 176.5~180.54 0.08 180.5~184.52 0.04 合计 50 1.00②茎叶图作图步骤:1.将每个数据分为茎(高位)和叶(低位)两部分.2.将最小茎和最大茎之间的数按大小顺序排成一列,写在左(右)侧;3.将各个数据的叶按大小次序写在其右(左)侧.例、某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩如下:甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,130,98,114,98,79,101.画出两人数学成绩茎叶图,请根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如下图:甲乙5 65 6 1 7 98 9 6 1 8 6 3 84 15 9 3 9 8 87 10 3 10 11 4从这个茎叶图上可看出,乙同学的得分情况是大致对称的,中位数是99;甲同学的得分情况除一个特殊得分外,也大致对称,中位数是89.因此乙同学发挥比较稳定,总体得分情况比甲同学好.2、用样本的数据特征估计总体的数据特征(1)、在频率直方图中计算众数、平均数、中位数众数:在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
(完整版)高中数学必修2《统计》知识点讲义
第二章统计一、三种抽样方法1、统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
2、抽样方法:要求:总体中每个个体被抽取的机会相等(1)简单随机抽样:抽签法和随机数表法简单随机抽样的特点是:不放回、等可能.抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从1到N)(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作(3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本随机数表法步骤(1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本(2)系统抽样系统抽样特点:容量大、等距、等可能.步骤:1.编号,随机剔除多余个体,重新编号2.分组 (段数等于样本容量),确定间隔长度 k=N/n3.抽取第一个个体编号为i4.依预定的规则抽取余下的个体编号为i+k, i+2k, …(3)分层抽样分层抽样特点:总体差异明显、按所占比例抽取、等可能.步骤:1.将总体按一定标准分层;2.计算各层的个体数与总体的个体数的比;3.按比例确定各层应抽取的样本数目4.在每一层进行抽样 (可用简单随机抽样或系统抽样)二、用样本估计总体1、用样本的频率分布估计总体的分布①作样本频率分布直方图的步骤:(1)求极差;(2)决定组距与组数; (组数=极差/组距)(3)将数据分组;(4)列频率分布表(分组,频数,频率);(5)画频率分布直方图。
根据频率分布表做频率分布直方图应注意两点:频率⑴纵轴的意义:组距⑵横轴的意义:样本内容(每个矩形下面是组距).例1、为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm)175 168 180 176 167 181 162 173 171 177171 171 174 173 174 175 177 166 163 160166 166 163 169 174 165 175 165 170 158174 172 166 172 167 172 175 161 173 167170 172 165 157 172 173 166 177 169 181列出样本的频率分布表,画出频率分布直方图.解:在这个样本中,最大值为181,最小值为157,它们的差是24,可以取组距为4,分成7组,根据题意列出样本的频率分布表如下:频率分布直方图(略)②茎叶图作图步骤:1.将每个数据分为茎(高位)和叶(低位)两部分.2.将最小茎和最大茎之间的数按大小顺序排成一列,写在左(右)侧;3.将各个数据的叶按大小次序写在其右(左)侧.例、某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩如下:甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,130,98,114,98,79,101.画出两人数学成绩茎叶图,请根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如下图:甲乙5 65 6 1 7 98 9 6 1 8 6 3 84 15 9 3 9 8 87 10 3 10 11 4从这个茎叶图上可看出,乙同学的得分情况是大致对称的,中位数是99;甲同学的得分情况除一个特殊得分外,也大致对称,中位数是89.因此乙同学发挥比较稳定,总体得分情况比甲同学好.2、用样本的数据特征估计总体的数据特征(1)、在频率直方图中计算众数、平均数、中位数众数:在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
高一数学抽样方法
2、用随机数表法进行抽取
(1 )随机数表是统计工作者用计算机生成的随机数, 并保证表中的每个位置上的数字是等可能出现的。 (2)随机数表并不是唯一的,因此可以任选一个数作为 开始,读数的方向可以向左,也可以向右、向上、向下 等等。 (3)用随机数表进行抽样的步骤:将总体中个体编号; 选定开始的数字;获取样本号码。 (4)由于随机数表是等概率的,因此利用随机数表抽 取样本保证了被抽取个体的概率是相等的。 随机抽样并不是随意或随便抽取,因为随 意或随便抽取都会带有主观或客观的影响因素
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 n 取一个容量为n的样本,那么每个个体被抽取的概卒等于
N
随机抽样的方法: 抽签法 1、抽签法
随机数表法
先将总体中的所有个体(共N个)编号 (号码可以从1到N),并把号码写在形状、 大小相同的号签上(号签可以用小球、卡片、 纸条等制作),然后将这些号签放在同一个 箱子里,进行均匀搅拌。抽签时,每次从中 抽出1个号签,连续抽取n次,就得到一个容 量为n的样本。对个体编号时,也可以利用已 有的编号。例如学生的学号,座位号等。
由于分层抽样的要求不同,各层的抽样 的样本容量也不相同,所以,应当按照实际 情况,合理地将样本容量分配到各个层,以 确保抽样的合理性,研究时可以根据不同的 要求来分层抽样。
分层抽样适用于总体由差异明显的几部分 组成的情况,每一部分称为层,在每一层中实 行简单随机抽样。这种方法较充分地利用了总 体己有信息,是一种实用、操作性强的方法。 分层抽样的一个重要问题是一个总体如何分 层。分层抽样中分多少层,要视具体情况而 定。总的原则是:层内样本的差异要小,而 层与层之间的差异尽可能地大,否则将失去 分层的意义。
第九章 高考数学 统计知识总结
第九章统计知识点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n 的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.2.分层随机抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层.知识点二:用样本估计总体二、用样本估计总体1.频率分布直方图可以利用频率分布直方图估计总体的取值规律.2.百分位数与总体百分位数的估计(1)第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)可以用样本数据的百分位数估计总体的百分位数.3.众数、中位数和平均数与总体集中趋势的估计4.总体集中趋势的估计类型一 抽样方法的运用例1为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.按学校分层抽样解析:由于小学、初中、高中三个 学段学生的视力情况差异较大,而男女视力差异不大,则需按学段分类抽样.答案:C例2总体由编号为0.10.2,1920⋅⋅⋅,,,的20个体组成,利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第五列和第六列数字开始由左到右依次选取两个数字,则选出的第5个个体的编号为 ( )解析:由随机数表法抽取样本的过程可知,选出的5个个体的编号是08,02,14,07,01 ,所以第五个个体的编号01.答案D类型二 用样本的频率分布估计总体分布例3某学校随机抽取20个班,调查个班中有网上购物经历的人数,所得茎叶图如图,以组距为5将数据分组成[)[)[)[]05,10,15,30,35,35,40⋅⋅⋅,,时,所作的频率分布直方图是 ( )解析:方法1:由题意如样本容量为20,剧组为5列表解后反思:(1)在茎叶图中,要弄清“茎”和“叶”表示的意义.在本题中,“茎”表示的是数据的十位数字,“性叶”表示’的是数据的个位数字.(2)排除法是做选择题的一种非常简单有效的方法.类型三 用样本的数字特征估计总体的数字特征例4 茎叶图记录了甲乙丙组各五名同学在一次英语听力测试中的成绩(单位:分)已知甲组数据中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为 ( )A.2.5B.5.5C.5.8D.8.解析:因为甲组数据的中位数为1510x =+,所以5x =.因为乙组的平均数为()91510182416.85y +++++=, 所以8y =,所以,x y 得值分别为58,.答案:C解后反思:中位数是将一组数据按大小顺序排列后,处于中间位置的数或中间两个数的平均数;平均数等于所有数据之和除以数据个数.例5将某选手的9个得分去掉一个最高分,去掉一个最低分,7个剩余分数的平均分为91,现场作的九个分数的茎叶图,后来有1个数据后来有一个数据模糊,无法辨别,在图中用x 表示:则7个剩余分数的方差为 ( )A .1169 B .367C .36 D解析:根据茎叶图,去掉1个最低分87,去掉一个最高分99,则()187949091909091917x +++++++=⎡⎤⎣⎦,所以4x =,所以 ()()()()()()()22222222136879194919091919190919491919177s ⎡⎤=-+-+-+-+-+-+-=⎣⎦答案:B解后反思:(1)由茎叶图可知,选手的9个得分均为两位数,故最高分为99分. (2)方差的计算公式:()()()2222121.n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦类型四 统计案例例6为了调查甲,乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两个学校的学生各抽取30名高三学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示(1)若甲校高三年级每位学生被抽取的概率为0,05,求甲校高三年级学生总人数,并估计甲校高三年级这次数学联考的及格率(60分以及60分以上算是及格)(2)设甲,乙两校高三年级学生这次联考数学平均成绩分别为12,,x x 估计12x x -. 分析:(1)由样本数除以所占的比例得总体n ,计算样本中的及格率,利用样本估计总体,(2)阅读茎叶图,带入平均数公式计算可解.解:(1)设甲校高三学生总数为n ,又题意得,知300.05n=,解得600.x =样本中甲校高三年极数学成绩不及格的人数为5,据此估计甲校高三年级这次联考数学成绩的及格率为551.306-= (2)设甲、乙两校样本平均数分别为``12,.x x根据样本茎叶图,知()````1212303030x x x x -=-()()()()()7555814241265262479222092=-++-+--+--+-+249537729215.=+--++=因此``120.5x x -=,所以``12x x -的估计值为0.5分.解后反思:(1)在计算一组数据的平均数时,如果数据较大,可将这组数据同时减去一个数,计算所得新数据的平均数,然后将这个平均数加上减去的那个数即为所求.。
抽签法和随机数表法
统计是研究如何合理地收集、整理、 分析数据的学科,它可以为人们制定决 策提供依据。在日常生活中,人们常常 需要收集数据,根据所获得的数据提取 有价值的信息,作出合理的决策。
在本章中了解对数据的收集、整理和
分析,可以增强我们的社会实践能力,
培养我们解决问题的能力,增强我们学
习数学的兴趣。
5
2.1.1简单随机抽样
18
(3) 继续向下读,得到733作为第2个代号。 继续向下读,得996大于850,跳过。继 续向下读,得到131作为第3个代号。只 要3个数构成的数不大于850且不与前面 取出的数重复,就把它取出,否则跳过 不取,取到一行(列)末尾时转到下一 行(列)从左到右继续读,如此下去, 直到得到在001~850之间的50个三位数。
24
本章我们先学习简单随机抽样、系统抽 样、分层抽样这三种常用的抽样方法。
接着学习如何用样本估计总体,一是如 何用样本的频率分布估计总体分布;二是 如何用样本的某种特征数去估计总体的相 应的特征数。
最后学习两个变量之间的关系,除了函 数关系这种确定性的关系以外,还存在因 变量的取值带有一定随机性的两个变量之 间的关系——相关性。
17
例如要考察某种品牌的850颗种子的发 芽率,从中抽取50颗种子进行实验。用 随机数表抽取的步骤如下:
(1) 对850颗种子进行编号:可以编为001, 002,……,850.
(2) 在给出的随机数中取3个数一组,从 各表中任选一个数作为起始号码,例如 从第5行第7个数开始并定好方向(向 下),取出395作为抽取的第1个代号;
于是,和这10个号码对应的10个学生就 构成了一个简单随机样本 。
16
四、随机数表法
随机数表由数字0,1,2,3,……,9 这10个数字组成,并且每个数字在表中各 个位置上出现的机会一样。通过随机数生 成器,例如计算器或计算机的应用程序生 成随机数的功能,可以生成一张随机数表.
高中数学必修三抽签法课件
统 计
统计学:
研究客观事物的数量特征和数量关系, 它是关于数据的搜集、整理、归纳和分析 方法的科学。
统计的基本思想:
用样本估计总体,即通常本,根据 样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据 样本来推断总体,第一个问题:总体、个 体、样本、样本容量的概念.
3、从7开始往右读(方向随意),得到第一 个三位数785<编号799,将对应编号的牛奶 取出;继续向右读,得到916>编号799,舍 弃;如此继续下去,直至抽出60袋牛奶。 能从本例体会下,从000开始编号的好处吗?
随机数表:
制作一个表,其中的每个数都是 用随机方法产生的(随机数)。
随 机 数 表 法
评点:抽签法—编号、制签、搅拌、抽取,关
键是“搅拌”后的随机性;随机数表法—编号、选数、 取号、抽取,其中取号位置与方向具有任意性.
练习3、下列抽取样本的方式是属于简单随机抽 样的是( C ) ①从无限多个个体中抽取100个个体作样本; ②盒子里有80个零件,从中选出5个零件进行质 量检验,在抽样操作时,从中任意拿出一个零件 进行质量检验后,再把它放回盒子里; ③从8台电脑中不放回的随机抽取2台进行质量检 验(假设8台电脑已编好号,对编号随机抽取) A.① B.② C.③ D.以上都不对 练习4、书本63页 习题 T2
注意以下四点: (1)它要求被抽取样本的总体的个体数有限;
(2)它是从总体中逐个进行抽取;
(3)它是一种不放回抽样;
(4)它是一种等概率抽样。
随机数表:
制作一个表,其中的每个数都是 用随机方法产生的(随机数)。
随 机 数 表 法
随 机 数 表
教材103页
范例、要考察某公司生产的500克袋装牛奶的 质量是否达标,现从800袋牛奶中抽取60袋进 行检验。 1、将800袋牛奶编号,000,001,…,799 2、在随机数表(课本103页)中任选一数, 例如第8行第7列,是7。
(完整版)高中数学概率统计知识点总结
高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。
化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。
高中数学统计知识点
高中数学统计知识点在高中数学的学习中,统计是一个重要的板块,它不仅在日常生活中有广泛的应用,也是进一步学习高等数学和其他相关学科的基础。
下面我们就来详细了解一下高中数学统计的相关知识点。
一、随机抽样随机抽样是获取数据的重要方法,主要包括简单随机抽样、系统抽样和分层抽样。
简单随机抽样是指从总体中逐个抽取,每个个体被抽到的机会均等。
常用的方法有抽签法和随机数表法。
抽签法就是把总体中的 N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取 n 次,就得到一个容量为 n 的样本。
随机数表法则是利用随机数表来抽取样本。
系统抽样是将总体平均分成若干部分,然后按照一定的规则,从每一部分抽取一个个体,得到所需要的样本。
比如,从 1000 个个体中抽取 50 个样本,我们可以先将 1000 个个体编号,然后计算抽样间隔 k= 1000÷50 = 20,从 1 到 20 中随机抽取一个数作为起始号码,然后依次抽取间隔为 20 的个体。
分层抽样是将总体分成若干层,然后从每一层中按照一定比例抽取样本。
这种抽样方法适用于总体由差异明显的几部分组成的情况。
比如,要调查一个城市居民的收入情况,可以按照不同的收入层次进行分层抽样。
二、用样本估计总体1、频率分布表和频率分布直方图通过收集样本数据,我们可以列出频率分布表,然后绘制频率分布直方图来直观地展示数据的分布情况。
频率分布直方图中,纵轴表示频率/组距,每个小矩形的面积表示相应组的频率。
2、众数、中位数和平均数众数是一组数据中出现次数最多的数据。
中位数是将一组数据从小到大(或从大到小)排序后,位于中间位置的数(如果数据个数是奇数),或者中间两个数的平均数(如果数据个数是偶数)。
平均数则是所有数据的总和除以数据的个数。
3、方差和标准差方差和标准差用来衡量一组数据的离散程度。
方差是每个样本值与全体样本值的平均数之差的平方值的平均数。
_新教材高中数学第六章统计2
简单随机抽样新课程标准解读核心素养通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种数学抽象简单随机抽样方法:抽签法和随机数法2020年11月第七次全国人口普查全面展开,人口普查的工作量是何等的巨大,那么一般的统计工作如何进行调查呢?仍然使用普查的方法吗?[问题] 有一种调查的方法比较科学,那就是抽样调查,那么如何进行抽样呢?知识点简单随机抽样1.随机抽样在抽样调查中,每个个体被抽到的可能性均相同的抽样方法.2.简单随机抽样一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法.3.抽签法(1)定义:先把总体中的N(N为正整数)个个体编号,并把编号依次分别写在形状、大小相同的签上(签可以是纸条、卡片或小球等),再将这些号签放在同一个不透明的箱子里搅拌均匀.每次随机地从中抽取一个,然后将箱中余下的号签搅拌均匀,再进行下一次抽取.如此下去,直至抽到预先设定的样本容量;(2)抽签法的具体步骤:①给总体中的每个个体编号;②抽签.4.随机数法(1)定义:先把总体中的N个个体依次编码为0,1,2,…,N-1,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,2,…,N-1中的随机数,产生的随机数是几,就选第几号个体,直至选到预先设定的样本容量;(2)利用随机数表进行抽样的具体步骤:①给总体中的每个个体编号;②在随机数表中随机抽取某行某列作为抽样的起点,并规定读取方法;③依次从随机数表中抽取样本号码,凡是抽到编号范围内的号码,就是样本的号码,并剔除相同的号码,直至抽满为止.抽签法与随机数表法的异同点抽签法随机数表法不同点①抽签法比随机数表法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数表法要求编号的位数相同;②随机数表法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取用随机数表进行简单随机抽样的规则是什么?提示:(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.1.对于简单随机抽样,每个个体被抽到的机会( )A.相等B.不相等C.不确定D.与抽取的次数有关解析:选A 由简单随机抽样的概念可知,每个个体被抽到的机会相等,与抽取的次数无关.2.某学校数学组要从11名数学老师中推选3名老师参加市里举办的教学能手比赛,制作了11个签,抽签中确保公平性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B 利用抽签法要做到搅拌均匀才具有公平性.3.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:下为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.07 B.44C.15 D.51解析:选B 找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.简单随机抽样的概念辨析[例1] 下面的抽样方法是简单随机抽样吗?为什么?(1)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.[解] (1)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等机会的抽样.(2)不是简单随机抽样.因为它是有放回抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:[提醒] 教科书中简单随机抽样单指不放回简单随机抽样.[跟踪训练](多选)已知下列抽取样本的方式,其中,不是简单随机抽样的是( ) A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里C.从20件玩具中一次性抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛解析:选ABCD A中不是简单随机抽样,简单随机抽样中总体的个数是有限的,而题中是无限的;B中不是简单随机抽样,简单随机抽样是不放回地抽取,而题中是放回地抽取;C中不是简单随机抽样,简单随机抽样是逐个抽取,而题中是一次性抽取;D中不是简单随机抽样,原因是个子最高的5名同学是56名同学中特定的,不存在随机性,不是等可能抽样.故选A、B、C、D.抽签法的应用[例2] 某单位对口支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.[解] 方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,所得号码对应的志愿者就是志愿小组的成员.抽签法的5个步骤[跟踪训练]甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样,请用抽签法设计抽样方案?解:第一步:将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,揉成小球状,制成号签;第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出与所得号码对应的篮球.随机数表法及应用[例3] (链接教科书第154页例1)现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数表法设计抽样方案?[解] 第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向.第三步,从选中的数开始,按上步选取方向,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,读满6个数为止.第四步,以上选出的号码对应的元件就是要抽取的对象.随机数表法抽样应抓住3个关键点(1)编号:这里的所谓编号,实际上是总体中的每个个体对应一个编号,且每个编号位数相同;(2)确定读数方向和规则:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向;(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的舍去,依次下去,直至得到容量为n的样本.[跟踪训练]总体由编号为00,01,02,…,18,19的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为________. 78166572080263140702436997280198 32049234493582003623486969387481 解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字组成的两位数中,小于20的编号依次为08,02,14,07,02,01,04,…,其中第2个编号和第5个编号都是02,重复.可知对应的数值为08,02,14,07,01,04,…,则第6个个体的编号为04.答案:041.下列问题中,最适合用简单随机抽样的方法抽样的是( )A.某报告厅有32排座位,每排有40个座位,座位号是1至40.某次报告会坐满了观众,报告会结束以后为听取观众的意见,要留下32名观众进行座谈B.从10台冰箱中抽取3台进行质量检验C.某学校有教职工160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取20人D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量解析:选B 对于A,总体容量较大,用简单随机抽样法比较麻烦;对于B,总体容量较少,用简单随机抽样法比较方便;对于C,由于教职工对这一问题的看法可能差异较大,不宜采用简单随机抽样法;对于D,总体容量较大,且各类农田的差别很大,不宜采用简单随机抽样法.故选B.2.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B A、D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.3.某工厂的质检人员利用随机数表产生随机数的方法对生产的100件产品进行检验,对这100件产品采用下列编号方法:①01,02,…,100;②001,002,…,100;③00,01,…,99.其中正确的是( )A.①②B.①③C.②③D.③解析:选C 利用随机数表产生随机数的方法抽取样本,总体中各个个体的编号必须位数相同,这样便于读数,故②③正确.4.用随机数法从100名学生(其中男生25人)中抽取20人参加评教,某男生被抽到的机会是( )A.1100B.125C.15D.14解析:选C 用随机数法进行抽样,每个学生被抽到的机会都相等,均为20100=15.。
(完整版)高中数学统计、统计案例知识点总结和典例
统计一.简单随机抽样:抽签法和随机数法1.一般地,设一个总体含有N个个体(有限),从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等(n/N),就把这种抽样方法叫做简单随机抽样。
2.一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本,这种抽样方法叫做抽签法。
抽签法的一般步骤:a、将总体的个体编号。
b、连续抽签获取样本号码。
3. 利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。
随机数表法的步骤:a、将总体的个体编号。
b、在随机数表中选择开始数字。
c、读数获取样本号码。
4. 抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。
二.系统抽样:1.一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N个个编号。
(2)将整体按编号进行分段,确定分段间隔k=N/n。
(k∈N,L≤k).(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。
在确定分段间隔k时应注意:分段间隔k为整数,当N/n不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。
三.分层抽样:1.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
高中数学必修3_第二章_统计_总结学生版
第二章统计一、随机抽样三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法。
(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n次;成样:对应号签就得到一个容量为n的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n的样本。
结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为1/N;在整个抽样过程中各个个体被抽到的概率为n/N;②基于此,简单随机抽样体现了抽样的客观性与公平性;③简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤可概括为:(1)将总体中的个体编号。
采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。
为将整个的编号进行分段,要确定分段的间隔k .当N/n 是整数时,k=n/N ;当N/n 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时k=N ’/n ;(3)确定起始的个体编号。
人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点
第三章 简单随机抽样第一节 简单随机抽样概述一、简单随机抽样的概念简单随机抽样也叫作纯随机抽样。
其概念可有两种等价的定义方法:定义之一:简单随机抽样就是从总体N 个抽样单元中,一次抽取n 个单元时,使全部可能的)(Nn A 种不同的样本被抽到的概率均相等,即都等于1/A 。
按简单随机抽样,抽到的样本称为简单随机样本。
按上述定义,在抽取简单随机样本之前,应将所有可能的互不相同的样本一一列举出来。
但当N 与n 都比较大时,要列出全部可能的样本是不现实的。
因此,按上述定义进行抽样是不太方便的。
定义之二:简单随机抽样是从总体的N 个抽样单元中,每次抽取一个单元时,使每一个单元都有相等的概率被抽中,连续抽n 次,以抽中的n 个单元组成简单随机样本。
由于定义二无需列举全部可能的样本,故比较便于组织实施。
但按这个定义进行抽样时,仍然需要掌握一个可以赖以实施抽样的抽样框。
二、简单随机抽样的具体实施方法常用的有抽签法和随机数法两种。
(一)抽签法抽签法是先对总体N 个抽样单元分别编上1到N 的号码,再制作与之相对应的N 个号签并充分摇匀后,从中随机地抽取n 个号签(可以是一次抽取n 个号签,也可以一次抽一个号签,连续抽n 次),与抽中号签号码相同的n 个单元即为抽中的单元,由其组成简单随机样本。
抽签法在技术上十分简单,但在实际应用中,对总体各单元编号并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时,抽签法并不是很方便,而且也往往难以保证做到等概率。
因此,实际工作中常常使用随机数法。
(二)随机数法随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
由于计算机产生的随机数实际上是伪随机数,不是真正的随机数,特别是直接采用一般现成程序时,产生的随机数往往不能保证其随机性。
因此,一般使用随机数表,或用随机数骰子产生的随机数,特别在n 比较大时。
1、随机数表及其使用方法随机数表是由0到9的10个阿拉伯数字进行随机排列组成的表。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽签法与随机数表法
常用的简单随机抽样方法有两种:抽签法和随机数表法.他们都是在总体个数不多的情况下使用.其中抽签法的操作要点是:编号、写签、搅匀、抽取.随机数表法的操作要点是:编号、选起始数、读数、获取样本.
例1.北京某中学举行“元旦数理化”竞赛,每一个学生在这次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道数学题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,数学题的编号为36~47).分析:由于题的个数较少,可以采用简单随机抽样的两种方法:抽签法及随机数表法.解法一:抽签法.
第一步:将物理、化学、数学试题依次编号为1~47,分别写在一张纸条上,将纸条揉成团制成号签,并将物理、化学、数学题的号签分别放在三个不透明的袋子中,搅匀;
第二步:在装有物理题的袋子中逐个抽取3个号签,装有化学题的袋子中逐个抽取3个号签,装有数学题的袋子中逐个抽取2个号签,并记录所得号签的编号,这便是所要回答的问题的序号.
解法二:随机数表法.
第一步:将物理题的序号对应改成01,02,…,15,共余的两科题的序号不变;
第二步:在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第10行第2个数“7”,向右读;
第三步:从数“7”开始,向右读,每次读取二位,凡不在01~47中的数跳过去不读,前面已读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码,依次可得到08,24,40,44,29,05,28,14;
第四步:对应以上号码找出所要回答的问题的序号,物理题的序号为5,8,14;化学题的序号为:24,28,29;数学题的序号为:40,44.
点拨:当总体中个体数较少,制作号鉴比较简单时,可以用抽签法;当总体中个体数校多,制作号签比较复杂,并且把号签挽拌均匀比较困难的时候,可以用随机数表法.例2.高一(1)班有学生60人,为了了解学生对目前高考制度的看法,现要从中抽取
一个容量为10的样本,问此样本若采用简单随机抽样,将如何获得?试设计抽样方案.
分析:简单随机抽样方法有抽签法和随机数表法.注意到该问题中总体的个体数不多,所以采用抽签法或随机数表法都能获取样本,从而有以下两种解法:
(1)采用抽签法,进行如下操作即可获得所需样本.
①编号,即对这60名学生编号;
②写签制签,即将这60个号码分别写在60张相同纸片上并揉成团;
③搅拌均匀,即放到一盒子里搅匀;
④抽签,逐个抽取,记下号码,到10个终止.
(2)采用随机数表法,需完成以下三步:
①编号;
②选定随机数表中的起始数;
③从选定的起始数开始读下去,直到取满10个为止.
解法1 (抽签法):
①将这60名学生按学号编号,分别为1,2, (60)
②将这60个号码分别写在60张相同纸片上;
③将这60张相同纸片揉成团,放到一盒子里搅拌均匀;
④抽出一张,记下上面的号码,然后再搅拌均匀,接着抽取第2张,记下号码.重复这个过程直到取到10个号码为止.
这样,与这10个号码对应的10名学生就构成了一个简单的随机样本.
解法2 (随机数表法):
①将60名学生编号,可以编为00,01,02, (59)
②选定随机数表中的起始数,如指定从随机数表中的第2行第2列的数74开始;
③从选定的起始数74开始向右读下去,得到24,下一个是67,由于67>59,跳过去,继续,下一个是62,由于62>59,再跳过去,继续读,得到下一个42,… 如此下去,又得到14,57,20,53,32,37,27,07(后重复出现的跳过去),至此10个样本号码已经取满.
于是所要抽取的样本号码是24,42,14,57,20,53,32,37,27,07,这样,与这10个号码对应的10名学生就构成了一个简单的随机样本.
点评:采用简单随机抽样(抽签法或随机数表法)时,必须先对所有个体进行编号.用抽签法时,注意“搅匀”;用随机数表抽样时,开始数和读数方向是任意的.从以上两种方法
可以看出,当总体个数较少时用两种方法都可以,当样本总数较小时,解法1优于解法2.。