分解因式十字相乘法教案
十字相乘法分解因式教案
十字相乘法分解因式教案教案标题:十字相乘法分解因式教案一、教学目标:1. 理解十字相乘法的概念和原理。
2. 掌握利用十字相乘法分解因式的方法。
3. 能够独立运用十字相乘法分解因式解决问题。
二、教学准备:1. 教师准备:教学课件、黑板、白板、彩色粉笔、练习题。
2. 学生准备:纸和笔。
三、教学过程:1. 导入(5分钟)a. 引入十字相乘法的概念和意义,解释十字相乘法在因式分解中的作用。
b. 通过一个简单的例子,引导学生思考如何利用十字相乘法分解因式。
2. 知识讲解(15分钟)a. 介绍十字相乘法的步骤和原理。
b. 指导学生如何根据给定的多项式运用十字相乘法进行因式分解。
c. 解释如何利用十字相乘法找出多项式的因式。
3. 案例分析(15分钟)a. 给出一个具体的多项式,引导学生一起运用十字相乘法进行因式分解。
b. 通过几个不同难度的案例,让学生逐步掌握十字相乘法的运用技巧。
4. 练习与巩固(20分钟)a. 分发练习题,让学生独立完成。
b. 针对练习题进行讲解和答疑,确保学生掌握十字相乘法分解因式的方法。
5. 拓展与应用(10分钟)a. 提供一些拓展题目,让学生应用十字相乘法解决更复杂的问题。
b. 引导学生思考十字相乘法在实际生活中的应用。
6. 总结与反思(5分钟)a. 总结本节课学到的知识点和方法。
b. 鼓励学生提出问题和疑惑,及时解答。
四、教学评价:1. 教师观察学生在课堂上的参与和表现。
2. 批改学生完成的练习题,评价他们对十字相乘法分解因式的掌握程度。
五、教学延伸:1. 鼓励学生在课后继续练习和巩固十字相乘法分解因式的方法。
2. 提供更多的练习题和挑战题,以提高学生的解题能力。
六、教学反思:本节课通过引入概念、讲解原理、案例分析和练习巩固等环节,有利于学生理解和掌握十字相乘法分解因式的方法。
然而,在教学过程中,可能会遇到学生对概念理解不清晰、运算错误等问题,需要教师及时解答和指导。
此外,为了增加学生的学习兴趣和参与度,可以设计一些趣味性的活动或游戏,使学生更主动地参与到教学中来。
第四章因式分解—十字相乘(教案)
1.理论介绍:首先,我们要了解十字相乘的基本概念。十字相乘是一种因式分解的方法,通过将多项式的项按照一定规则排列,找到两个数使得它们的乘积等于常数项,而它们的和等于一次项的系数。这种方法是解决二次多项式分解问题的关键。
2.案例分析:接下来,我们来看一个具体的案例,如分解x^2 + 5x + 6。这个案例将展示十字相乘在实际中的应用,以及它如何帮助我们解决问题。
-难点突破方法:
-使用图表、动画或实物模型来形象化展示十字相乘的过程;
-通过多个例题,展示不同情况下十字相乘的应用,强调识别和选择合适数字的策略;
-分组讨论,让学生在小组内相互解释和交流,共同解决难点问题;
-设计具有挑战性的问题,鼓励学生独立思考和探索,如让学生尝试分解含有一个变量和常数的二次多项式;
五、教学反思
在今天的教学中,我发现学生们对十字相乘的概念接受度较高,但实际操作时仍有一些困难。在讲解理论部分时,我尽量用生动的语言和具体的例子来阐述,希望让学生能够更好地理解。从学生的反馈来看,这种方法是有效的。
然而,当我让学生们尝试自己分解一些多项式时,部分学生显得有些迷茫。他们对于如何选择合适的数进行十字相乘感到困惑。这时,我意识到需要在教学过程中加强对这一难点的讲解和练习。或许,我可以设计一些更具针对性的练习题,让学生们在课堂上即时巩固所学知识。
-理解并记忆十字相乘法的步骤,尤其是如何确定乘积和和;
-在应用十字相乘法时,如何灵活变通,处理各种不同类型的二次多项式;
-将实际问题转化为数学表达式,并运用十字相乘法进行因式分解。
举例:难点在于如何引导学生从简单的例子中总结出十字相乘的规律,如对于多项式x^2 + 5x + 6,学生需要找出两个数(2和3),使得它们的乘积等于6,和等于5。学生可能在这一过程中遇到困难,需要教师通过具体例子和图示来帮助学生理解。
第13讲-因式分解之十字相乘法-教案
【答案】B
例8、把多项式 因式分解是 ,则m、n的值分别是( )
A. B.
C. D.
【答案】B
【试一试】整式 能在有理数的范围内因式分解,则整数m的值有()
(A)4个.(B)5个.(C)6个.(D)8个.
【答案】C
课堂作业
1.若 能分解成两个一次因式的积,且m为整数,则m不可能是( )D
【分析】先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):1=1×1;
分解常数项:6=1×6=6×1=(-1)×(-6)=(-6)×(-1) =2×3=3×2=(-2)×(-3)=(-3)×(-2).
【答案】(1)6x2-7x-5=(2x+1)(3x-5);(2)5x2+6xy-8y2=(x+2y)(5x-4y)
(3)(x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y)2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
【说明】把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
用画十字交叉线方法表示下列四种情况:
1×3+2×1=5
1×1+2×3=7
1×(-3)+2×(-1)=-5
1×(-1)+2×(-3)=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
【答案】2x2-7x+3=(x-3)(2x-1).
最新人教版初中数学八年级上册 14.3《因式分解》十字相乘法教案
因式分解十字相乘法◆教学目标◆◆知识与技能:理解十字相乘法的概念和意义;◆过程与方法:会用十字相乘法把形如x2+px+q的二次三项式分解因式;.◆情感态度:培养学生的观察、分析、抽象、概括的能力,训练学生思维的灵活性和层次性渗.◆教学重点与难点◆◆重点:能熟练用十字相乘法把形如x2+p x+q的二次三项式分解因式◆难点:能熟练用十字相乘法把形如x2+p x+q的二次三项式分解因式◆教学过程◆自主学习一. 创设情境1.口答计算结果:(1) (x+2)(x+1) (2) (x+2)(x-1) (3)(x-2)(x+1)(4) (x-2)(x-1)(5)(x+2)(x+3) (6) (x+2)(x-3)(7) (x-2)(x+3) (8) (x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?归纳: .二.探索尝试根据上面的公式试将下列多项式写成两个一次因式相乘的形式:x2+(2+3)x+2×3=;x2+(-1-2)x+(-1)×(-2)=;x2+(-1+2)x+(-1)×2=;x2+(1-2)x+1×(-2)= . 由上面的分析可知形如x2+px+q的二次三项式,如果常数项q能分解为两个因数a、b的积,并且a+b恰好等于一次项的系数p,那么它就可以分解因式,即x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)三.例题举例基础题(1)x2+7x+6 (2)x2-5x-6 (3)x2-5x+6四.练习:(1)x2-7x+6 (2)a2-4a-21(3)t2-2t-8 (4)m2+4m-12拓展题(1)x2+xy-12y2(2)x4+5x2-6五.练习:(1)x2-13xy-36y2 (2)a2-ab-12b2(3)m4-6m2+8 (4)x4+10x2+9六.课堂小结:对二次三项式x2+px+q进行因式分解,应重点掌握以下三个方面:1.掌握方法: 拆分常数项,验证一次项.2.符号规律: 当q>0时,a、b同号,且a、b的符号与p的符号相同;当q<0时,a、b异号,且绝对值较大的因数与p的符号相同.七.课外延伸:把下列多项式分解因式:(1) 342+-x x (2)1282+-x x (3)1582++x x (4)762-+x x(5)11102--a a (6)432-+m m (7)302-+x x (8)13122--x x(9)2282y xy x -+ (10)2234b ab a ++ (11)22208y xy x -- (12)2254n mn m --(13)434--x x (14)1522--x x (15)24102-+x x (16)24142+-x x 八.思考:1.请将下列多项式因式分解:①362132++x x ② 12724++x x ③()()242112222+---x x x x2. 先填空,再分解(尽可能多的): x 2 ( )x + 60 = ;◆板书设计◆15.4.4 因式分解之十字相乘法二. 创设情境二.探索尝试三.例题举例课 堂 小 结课 外 延 伸◆课后思考◆。
十字相乘法分解因式的教案
十字相乘法分解因式的教案教案标题:十字相乘法分解因式的教案教学目标:1. 理解十字相乘法在分解因式中的应用。
2. 掌握使用十字相乘法分解因式的步骤和方法。
3. 能够独立应用十字相乘法分解因式解决相关问题。
教学准备:1. 教学PPT或白板,以及相应的绘图工具。
2. 教学中使用的教材和习题。
3. 十字相乘法分解因式的示例题目和解答。
4. 讲解板书的工具,如白板笔或彩色粉笔。
教学步骤:引入活动:1. 引导学生回想并复习乘法分配律的概念和应用。
2. 提问学生:在学习因式分解中,如何应用乘法分配律?请举例说明。
讲解十字相乘法分解因式的概念和步骤:1. 在白板上绘制一个简单的多项式示例,并使用乘法分配律展示如何通过分解因式的方法化简多项式。
2. 讲解十字相乘法的概念:十字相乘法是一种用于分解因式的方法,通过将多项式的首项和尾项相乘,然后找到满足相乘结果的两个数,进而分解因式。
3. 讲解十字相乘法分解因式的步骤:a. 将多项式的首项和尾项相乘得到一个结果。
b. 找到两个数,使其乘积等于上一步得到的结果,同时使其和等于多项式中的线性项系数。
c. 将多项式重新写成两个括号内的乘积形式。
d. 化简和测试分解因式的正确与否。
示范和练习:1. 在白板上示范一个具体的例子,展示应用十字相乘法分解因式的步骤。
2. 指导学生根据示例进行练习,并及时给予反馈和指导。
巩固和扩展:1. 提供更多的练习题,让学生进一步巩固和加深对十字相乘法分解因式的理解和应用。
2. 提供一些挑战性的问题,扩展学生对于十字相乘法的运用。
总结:1. 总结十字相乘法分解因式的步骤和方法。
2. 强调理解和掌握十字相乘法分解因式对解决相关问题的重要性和实用性。
3. 鼓励学生在日常学习中主动应用并巩固所学的知识和技巧。
评估:1. 提供一组习题,让学生独立应用十字相乘法分解因式解答问题。
2. 评估学生对于十字相乘法的理解和运用能力。
备注:教案中的具体内容应根据教育阶段和学生实际情况进行相应调整和修改。
十字相乘法分解因式
因式分解(十字相乘法)的导学案
主备人:刘明汉
导学目标:让学生学会用十字相乘法进行因式分解。
导学过程:
一、例题讲解:用十字相乘法把下列多项式进行因式分解
x2+2x-3 3x2+3x-6 x2-5xy-6y2
二、小练习:
1、分解因式x2-10x-24=
2、分解因式x2-5x-6=
3、分解因式x2-x-12=
4、分解因式x2-x-2=
5、把多项式a2-3a-18因式分解是
6、分解因式:x2-5x-14=
7、因式分解:x2-5x+6=
8、如果多项式my2+ny+2有两个因式(y+1)和(y+2),那么m+n 等于
9、多项式x2+px+12可分解为两个一次因式的积,整数p的值是(写
出一个即可)
10、如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个
11、一个长方形的面积为m2+m-2(m>1),其长为m+2,
则宽为
三、提升训练:用十字相乘法把下列多项式进行因式分解
a3-a2b-2ab2x3+6x2-27x x2y-2xy-3y a2-4ab-5b2-x2y+6xy-8y x2-xy-156y2(a+3)(a-7)+25。
十字相乘法分解因式教案
十字相乘法1.二次三项式多项式ax2+ bx + c,称为字母x的二次三项式,其中ax 2称为二次项,bx为一次项,C为常数项.例如,x2 -2x-3和x2 + 5x + 6都是关于x的二次三项式.在多项式x2 -6xy + 8j2中,如果把y看作常数,就是关于x的二次三项式;如果把x看作常数,就是关于y的二次三项式.在多项式2a2b2—7ab + 3中,把ab看作一个整体,即2(ab)2 -7(ab) + 3,就是关于ab的二次三项式.同样,多项式(x + y)2 + 7(x + y) +12,把x+y看作一个整体,就是关于x+y的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法.2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax+b)(cx+d)竖式乘法法则.它的一般规律是:31)对于二次项系数为1的二次三项式x2 + px + q ,如果能把常数项q分解成两个因数a,b的积,并且a+b为一次项系数p,那么它就可以运用公式x2 + (a + b)x + ab =(x + a)(x + b)3 •因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1把下列各式分解因式:(1)x2 -2x-15 ;(2) x2 —5xy + 6y2.点悟:(1)常数项一15可分为3义(一5),且3 + (—5)=—2恰为一次项系数;(2)将y看作常数,转化为关于x的二次三项式,常数项6y2可分为(一2y)( —3y),而(一2 y ) + ( —3 y ) = (—5 y)恰为一次项系数.解:(1) x2 - 2x -15 =(x + 3)(x - 5);(2)x2 -5xy + 6y2 =(x-2y)(x-3y).例2把下列各式分解因式:(3)2x2 -5x-3 ; (2) 3x2 + 8x-3 .点悟:我们要把多项式ax2 + bx + c分解成形如(ax1+ ,)(ax2 + c2)的形式,这里4a2 = a ,c c = c而a c + a c = b .解:(1) 2x2 - 5x - 3 =(2x +1)(x - 3);(4)3x2 + 8x- 3 =(3x-1 )(x + 3).点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3把下列各式分解因式:(1 ) x 4 -10 x 2 + 9 ;(5)7(x + y)3 -5(x + y)2 -2(x + y);(6)(a2 + 8a)2 + 22(a2 + 8a) +120 .点悟:(1)把x2看作一整体,从而转化为关于x2的二次三项式;(2)提取公因式(x+y )后,原式可转化为关于(x+y )的二次三项式;。
七年级数学下册《十字相乘法》教案、教学设计
5.通过课堂小结,让学生总结本节课所学内容,巩固知识点,提高记忆效果。
(三)情感态度与价值观
在本章节的教学过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们主动探索、积极思考的学习热情。
2.培养学生的耐心和细心,让他们在解题过程中体会到付出努力的重要性,从而形成良好的学习习惯。
3.鼓励学生积极与他人合作,培养他们的团队精神,提高人际交往能力。
4.培养学生勇于面对困难和挑战的精神,让他们在解决问题中增强自信心,树立正确的价值观。
二、学情分析
七年级下册的学生在数学学习上已经具备了一定的基础,包括因式分解的基本概念和简单运用,以及多项式乘法的运算规则。在此基础上,他们对十字相乘法这一新知识点的学习将更加得心应手。然而,学生在运算过程中可能会出现以下问题:对十字相乘法理解不透彻,容易混淆运算步骤;对特定类型的因式分解题目不能迅速找到解题思路;以及在运算过程中忽视细节,导致答案错误。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握十字相乘法的运算步骤,能够熟练运用到实际问题中,特别是解决因式分解相关问题。
2.难点:理解十字相乘法的原理,以及在复杂问题中灵活运用该方法。
(二)教学设想
1.教学方法:
-采用情境教学法,通过生活实例引入十字相乘法,使学生感受到数学与生活的紧密联系。
针对这些情况,教师需要关注以下几个方面:首先,通过生动有趣的案例引入,帮助学生建立起对十字相乘法的直观认识,降低学习难度;其次,设计梯度性练习题,让学生在逐步提高难度的过程中,熟练掌握十字相乘法的运用;最后,注重培养学生的细心和耐心,引导他们在解题过程中关注细节,提高解题准确率。
十字相乘法教学设计(多篇)
十字相乘法教学设计(多篇)篇:十字相乘法设计因式分解——十字相乘法东莞市可园中学教材与学情分析本课时属数学教材八年级上学期《分解因式》的补充内容,依据一是这一内容在九年级解一元二次方程中有很大的应用价值,二是学生的掌握难度并不大,增补此内容并不会增加学生负担,三是学习此内容可开阔学生视野,锻炼学生的思维,所以,我们也安排了课时讲解此内容。
教学目标:1、会用十字相乘法进行二次三项式(x2px q)的因式分解;2、通过学生的不断尝试,培养学生的耐心和信心,在尝试中提高学生的观察能力和逆向思维能力。
教学重点:能熟练应用十字相乘法进行二次三项式(x2px q)的因式分解。
b,a b q。
教学难点:在x2px q分解因式时,准确地找出a、使ab p,教学过程:一、复习引入分解因式:把一个多项式分解成几个整式的_______的形式。
已学的因式分解方法有_______________和______________.思考:你知道x25x6怎样分解因式吗?二、探究(x2)(x3) = ____;(x2)(x4)= _。
填空:(1)(2)(x3)(x4)= ___;(x a)(x b)= _。
(3)(4)根据上面结果,你会对下列二次三项式进行因式分解?请试一下。
它们有什么共同的特点?(1)x25x 6 =____________ , (2) x22x8=_______________。
(3)x27x12 =____________ , (4)x2(a b)x ab =_______________。
共同特点:①二次项系数是_____;②常数项是两个数之_______;③一次项系数是常数项的两个因数之_______。
例题讲解例1.因式分解x25x 6十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
练习1 .因式分解(1)x27x 6 (2)x25x 6例2.因式分解x22x8练习2.因式分解(1)x22x8 (2)x27x8四、巩固练习练习3.因式分解(1)x27x10 (2)x27x10(3)x29x10 (4)x23x10练习4.若x2mx n(x4)(x9),则m=______,n=________.五、拓展提升出题比赛练习5.在横线上填一个整数,然后因式分解(1)x2____x15 (2)x2____x 15练习6.若x2ax6在整数范围内可以因式分解,则a的值可能是_____________.六、小结七、教学反思在读书的时候学到十字相乘法时,曾经心里有这样一个疑惑,是不是所有的二次三项式都可以用十字相乘法进行因式分解呢?如果不是,那满足什么条件的二次三项式可以用十字相乘法进行因式分解呢?这留作我们今天这节课的第三个思考题。
十字相乘法教案
十字相乘法一.学习目标导航重点 应用十字相乘法解一元二次方程难点 对多项式运用十字相乘法进行因式分解二.重点难点透视详解点一 十字相乘法对2ax bx c ++,把二次项系数a 分解成两个因数1a ,2a 的积12a a ∙,把常数项c 分解成两个因数1c,2c 的积12c c ∙,并使1221a c a c ∙+∙正好等于一次项系数b ,那么可以直接写成结果:21122()()ax bx c a x c a x c ++=++,这种分解因式的方法就叫十字相乘法。
详解点二 二次项系数为1的二次三项式【例1】分解因式:232x x ++分析:二次项系数可以分解成11⨯,常数项分解成12⨯,11123⨯+⨯=,故该二次三项式可分解成(1)(2)x x ++。
解:原式=(1)(2)x x ++点评:用十字相乘法分解因式,可写成十字交叉的形式,更直观清楚:1112,十字左边乘积为二次项系数,十字右边乘积为常数项,交叉相乘结果为一次项系数。
随堂小练:分解下列因式256x x ++ 2710x x ++ 21016x x ++ 2701000x x ++【变式1】一次项系数为负,常数项为正说明:常数项分解成两个负数的乘积 【例2】分解因式:232x x -+分析:二次项系数可以分解成11⨯,常数项分解成(1)(2)-⨯-,1(1)1(2)3⨯-+⨯-=-,故该二次三项式可分解成(1)(2)x x --。
解:原式=(1)(2)x x --点评:写成十字交叉的形式:1112--随堂小练:分解下列因式268x x -+ 2812x x -+ 2914x x -+ 250400x x -+【变式2】一次项系数为负,常数项为负或一次项系数为正,常数项为负说明:常数项分解成正数负数的乘积,且其中绝对值较大的数符号与一次项系数符号一致。
【例3】分解因式:(1)234x x -- (2)234x x +-分析:(1)1114- (2)1114-解:(1)原式=(1)(4)x x +- (2)原式=(1)(4)x x -+ 点评:注意符号的一致性! 随堂小练:分解下列因式212x x +- 2328x x +- 2340x x -- 29400x x --详解点三 二次项系数不为1的二次三项式说明:与二次项系数为1时类似,能提公因式先提取公因式,再将二次项系数化为正数,写成两个正数的乘积,再利用十字相乘法。
九年级数学《十字相乘法分解因式》教案北师大版
山东省泰安宁阳实验中学九年级数学《1.3十字相乘法分解因式(1)(2)》教案 北师大版我们知道()()22356x x x x ++=++,反过来,就得到二次三项式256x x ++的因式分解形式,即()()25623x x x x ++=++,其中常数项6分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。
一般地,由多项式乘法,()()()2x a x b x a b x ab ++=+++,反过来,就得到()()()2x a b x ab x a x b +++=++这就是说,对于二次三项式2x px q ++,如果能够把常数项q 分解成两个因数a 、b 的积,并且a+b等于一次项的系数p ,那么它就可以分解因式,即()()()22x px q x a b x ab x a x b ++=+++=++。
可以用交叉线来表示:十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
例1 把232x x ++分解因式。
分析:这里,常数项2是正数,所以分解成的两个因数必是同号,而2=1×2=(-1)(-2),要使它们的代数和等于3,只需取1,2即可。
例2 把276x x -+分解因式。
例3 把2421x x --分解因式。
例4 把2215x x +-分解因式。
通过例1︿4可以看出,怎样对2x px q ++分解因式?如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同。
如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同。
x x+a +b对于分解的两个因数,还要看它们的和是不是等于一次项的系数p 。
例5 把下列各式分解因式: (1)4268x x ++ (2)()()243a b a b +-++ (3)2232x xy y -+练习:1、因式分解:(1)62--x x (2)652++x x (3)62-+x x (4)432-+x x (5)432--x x 2、(1)若多项式m x x +-82可分解为)6)(2(--x x ,则m 的值为. (2)若多项式122--kx x 可分解为)6)(2(+-x x ,则k 的值为. 3、选作:若多项式m x x +-22可分解为))(3(n x x -+,求m 、n 的值.我们知道()()223531110x x x x ++=++。
“十字相乘法”教学设计(优秀3篇)
“十字相乘法”教学设计(优秀3篇)“十字相乘法”教学设计篇一【教学内容】8.壹五十字相乘法(第一课时,课本P.49~P.51)【教学目标】1、能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式;2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质。
【教学重点】能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式。
【教学难点】把x2+px+q分解因式时,准确地找出a、b,使a·b=q;a+b=p.【教学过程】一、复习导入1.口答计算结果:(1)(x+2)(x+1)(2)(x+2)(x-1)(3)(x-2)(x+1)(4)(x-2)(x-1)(5)(x+2)(x+3)(6)(x+2)(x-3)(7)(x-2)(x+3)(8)(x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?[在多项式的乘法中,有(x+a)(x+b)=x2+(a+b)x+ab]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算。
反过来可得x2+(a+b)x+ab=(x+a)(x+b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解。
2、体会与尝试:①试一试因式分解:x2+4x+3;x2-2x-3将二次三项式x2+4x+3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3+1=4,恰好等于一次项系数,所以用十字交叉线表示:x2+4{WWW.JIAOXUELA}x+3=(x+3)(x+1).x+3x+13x+“十字相乘法”教学设计篇二教学目标:1.使学生经历整十、整百数乘整十数的口算乘法的过程,能比较正确熟练地进行口算。
2学会运用整十、整百数乘整十数的口算乘法解决简单的实际问题。
十字相乘法因式分解导学案
因式分解——十字相乘法导学案【学习目标】(1)了解“二次三项式”的特征;(2)理解“十字相乘”法的理论根据;(3)会用“十字相乘”法分解某些特殊的二次三项式。
【学习过程】一 、自主学习请直接填写下列结果(x+2)(x+1)= ; (x+2)(x-1)= ; (x-2)(x+1)= ; (x-2)(x-1)= 。
(x+p )(x+q )= x 2+(p+q)x+pq问题:把上述式子左右对调,你有什么发现?二、探索新知(1)先学后练:把x 2+3x+2分解因式分析∵ (+1) × (+2) =+2 ---------- 常数项(+1) + (+2) =+3 --------- 一次项系数 ---------- 十字交叉线2x + x = 3x 解:x 2+3x+2 = (x+1) (x+2) 练:652++x x = 。
(2)先学后练:把x 2+6x-7分解因式x 2 + 6x – 7= (x+7)(x-1) 步骤:①竖分二次项与常数项 ②交叉相乘,和相加 ③检验确定,横写因式 -x + 7x = 6x x x 12⨯x ⇓⇓7⨯x 1-练:因式分解①x 2-8x+15 ②x 2+4x+3 ③ x 2-2x-3④1522--x x ; ⑤2265y xy x +-.归纳:对于二次项系数为1的二次三项式的方法的特征是“拆常数项,凑一次项”(3)先学后练:把-x 2-6x+16 分解因式提示:当二次项系数为-1时 ,先提取-1,再进行分解 。
练: ①-x 2-5x-6 ②-x 2+3x+4 ③ -x 2-2x+8 ④ -x 2+8x-15(4)用十字相乘法分解因式:①2x 2-2x-12 ②12x 2-29x+15③3522--x x ; ④3832-+x x .归纳:对于二次项系数不是1的二次三项式它的方法特征是“拆两头,凑中间”。
三、巩固训练1.分解因式:(1)1522--x x (2) 1032-+x x (3)3522--x x 2.分解因式:(1)22157x x ++; (2) 2384a a -+;(3) 2576x x +- (4) 261110y y --3.分解因式:(1) 3ax 2+6ax+3a (2) x 2-4y 2(3)x 4-8x 2+16 (4)2ax 2+6ax+4a四.巩固训练先阅读学习,再求解问题:材料:解方程:=-+1032x x 0。
十字相乘法分解因式教案(可打印修改)
十字相乘法分解因式主备人:雷京珂 组员:王少波 朱刚锋 陈飞娥一、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式()的因式分解;q px x ++23、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
二、教学的重点、难点教学重点:能熟练应用十字相乘法进行二次三项式()的因式分解。
q px x ++2教学难点:在分解因式时,准确地找出、,使,。
q px x ++2a b p ab =q b a =+三、导学过程:(一)知识回顾,创设情境,导入新课:1、什么叫分解因式?分解因式的方法有那些?(1,提取公因式法;2,公式法)2、你知道2ax 2+6ax+4a=2a(x 2+3x+2) 分解因式吗?(二)自主学习我们知道,反过来,就得到二次三项式的因式()()22356x x x x ++=++256x x ++分解形式,即,其中常数项6分解成2,3两个因数的积,而()()25623x x x x ++=++且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。
一般地,由多项式乘法,,反过来,就得到()()()2x a x b x a b x ab ++=+++()()()2x a b x ab x a x b +++=++请直接口答计算结果内容见课件:(三)合作探索这就是说,对于二次三项式,如果能够把常数项分解成两个因数a 、b 的2x px q ++q 积,并且a+b 等于一次项的系数p ,那么它就可以分解因式,即。
可以用交叉线来表示:()()()22x px q x a b x ab x a x b ++=+++=++ xx +a +b十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
(四)、展示交流:例1 把分解因式。
232x x ++分析:这里,常数项2是正数,所以分解成的两个因数必是同号,而2=1×2=(-1)(-2),要使它们的代数和等于3,只需取1,2即可。
人教初中数学八上《因式分解》十字相乘法》教案 (公开课获奖)
因式分解十字相乘法◆教学目标◆◆知识与技能:理解十字相乘法的概念和意义;◆过程与方法:会用十字相乘法把形如x2+px+q的二次三项式分解因式;.◆情感态度:培养学生的观察、分析、抽象、概括的能力,训练学生思维的灵活性和层次性渗.◆教学重点与难点◆◆重点:能熟练用十字相乘法把形如x2+p x+q的二次三项式分解因式◆难点:能熟练用十字相乘法把形如x2+p x+q的二次三项式分解因式◆教学过程◆自主学习一. 创设情境1.口答计算结果:〔1〕 (x+2)(x+1) 〔2〕 (x+2)(x-1) 〔3〕(x-2)(x+1) 〔4〕 (x-2)(x-1)〔5〕(x+2)(x+3) 〔6〕 (x+2)(x-3)〔7〕 (x-2)(x+3) 〔8〕 (x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?归纳: .二.探索尝试根据上面的公式试将以下多项式写成两个一次因式相乘的形式:x2+(2+3)x+2×3=;x2+(-1-2)x+(-1)×(-2)=;x2+(-1+2)x+(-1)×2=;x2+(1-2)x+1×(-2)= . 由上面的分析可知形如x2+px+q的二次三项式,如果常数项q能分解为两个因数a、b的积,并且a+b恰好等于一次项的系数p,那么它就可以分解因式,即x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)三.例题举例根底题〔1〕x2+7x+6 〔2〕x2-5x-6 〔3〕x2-5x+6四.练习:〔1〕x2-7x+6 〔2〕a2-4a-21〔3〕t2-2t-8 〔4〕m2+4m-12拓展题〔1〕x2+xy-12y2〔2〕x4+5x2-6五.练习:〔1〕x2-13xy-36y2 〔2〕a2-ab-12b2〔3〕m4-6m2+8 〔4〕x4+10x2+9六.课堂小结:对二次三项式x 2+px +q 进行因式分解,应重点掌握以下三个方面: 1.掌握方法: 拆分常数项,验证一次项.2.符号规律: 当q >0时,a 、b 同号,且a 、b 的符号与p 的符号相同;当q <0时,a 、b 异号,且绝对值较大的因数与p 的符号相同.七.课外延伸:把以下多项式分解因式:〔1〕 342+-x x 〔2〕1282+-x x 〔3〕1582++x x 〔4〕762-+x x 〔5〕11102--a a 〔6〕432-+m m 〔7〕302-+x x 〔8〕13122--x x 〔9〕2282y xy x -+ 〔10〕2234b ab a ++ 〔11〕22208y xy x -- 〔12〕2254n mn m -- 〔13〕434--x x 〔14〕1522--x x 〔15〕24102-+x x 〔16〕24142+-x x八.思考:1.请将以下多项式因式分解:①362132++x x ② 12724++x x ③()()242112222+---x x xx2. 先填空,再分解〔尽可能多的〕: x 2( )x + 60 = ; ◆板书设计◆因式分解之十字相乘法二. 创设情境 二.探索尝试 三.例题举例 课 堂 小 结 课 外 延 伸 ◆课后思考◆15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
十字相乘法因式分解讲义
整式乘法中,有
(x+a)(x+b)=x2+(a+b)x+ab
(4) (x-3)(x-4)
2、提问:你有什么快速计算类似 以上多项式的方法吗?
整个二次三项式
(x+a)(x+b)=x2+(a+b)x+ab
反过来,得
x2+(a+b)x+ab=(x+a)(x+b)
一个二次三项式
将下列各式用十字相乘法进行因式分解
(1)x2-7x+12 (2)x2-4x-12 (3)x2+8x+12 (4)x2-11x-12 (5)x2+13x+12 (6)x2-x-12
达标测验
将下列多项式因式分解
(1)x2+3x-4 (2)x2-3x-43 (3)x2+6xy-16y2 (4)x2-11xy+24y2 (5)x2y2-7xy-18 (6)x4+13x2+36
(2)由于把x2 + px + q中的q分解成两个因数有多种情况,
怎样才能找到两个合适的数,通常要经过多次的尝试才
能确定采用哪种情况来进行因式分解.
课下作业
课本121页 (1) (2) (3)(4)
两个一次二项式相乘的积
因式分解
如果二次三项式x2+px+q中的常数项系数 q能分解成两个因数a、b的积,而且一次 项系数p又恰好是a+b,那么x2+px+q就可 以进行如上的因式分解。
试一试:把x2+3x+2分解因式
分析∵ (+1) ×(+2)=+2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 案
科目 数学 时间 学生 分解因式——十字相乘法
一、重要知识点
1.二次三项式
(1)多项式c bx ax ++2,称为字母 的二次三项式,其中 称为二次项, 为一次项, 为常数项.
例如:322--x x 和652++x x 都是关于x 的二次三项式.
(2)在多项式2286y xy x +-中,如果把 看作常数,就是关于 的二次三项式;如果把 看作常数,就是关于 的二次三项式.
(3)在多项式3722
2+-ab b a 中,把 看作一个整体,即 ,就是关于 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把 看作一个整体,就是关于 的二次三项式.
2.十字相乘法的依据和具体内容
(1)对于二次项系数为1的二次三项式))(()(2b x a x ab x b a x ++=+++
方法的特征是“拆常数项,凑一次项”
当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;
当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.
(2)对于二次项系数不是1的二次三项式c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++= 它的特征是“拆两头,凑中间”
当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;
常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;
常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同 注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.
二、课堂练习
例1 把下列各式分解因式:
(1)1522--x x ; (2)2
265y xy x +-.
例2 把下列各式分解因式:
(1)3522--x x ; (2)3832
-+x x .
例3 把下列各式分解因式:
(1)91024+-x x ; (2))(2)(5)(723y x y x y x +-+-+;
(3)120)8(22)8(222++++a a a a .
例4 分解因式:90)242)(32(22+-+-+x x x x .
例5 分解因式6538562
34++-+x x x x .
例6 分解因式655222-+-+-y x y xy x .
例7 分解因式:ca (c -a )+bc (b -c )+ab (a -b ).
例8、已知12624+++x x x 有一个因式是42
++ax x ,求a 值和这个多项式的其他因式.
试一试: 把下列各式分解因式:
(1)22157x x ++ (2) 2384a a -+ (3) 2576x x +- (4) 261110y y --
(5) 2252310a b ab +- (6) 222231710a b abxy x y -+ (7) 22712x xy y -+
(8) 42718x x +- (9) 22483m mn n ++ (10) 53251520x x y xy --
课堂练习
一、选择题
1.如果))((2
b x a x q px x ++=+-,那么p 等于 ( )
A .ab
B .a +b
C .-ab
D .-(a +b )
2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( ) A .5 B .-6 C .-5 D .6
3.多项式a x x +-32
可分解为(x -5)(x -b ),则a ,b 的值分别为 ( )
A .10和-2
B .-10和2
C .10和2
D .-10和-2
4.不能用十字相乘法分解的是 ( )
A .22-+x x
B .x x x 310322+-
C .242++x x
D .22865y xy x --
5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( )
A .20)(13)(22++-+y x y x
B .20)(13)22(2++-+y x y x
C .20)(13)(22++++y x y x
D .20)(9)(22++-+y x y x
6.将下述多项式分解后,有相同因式x -1的多项式有 ( )
①672+-x x ; ②1232-+x x ; ③652-+x x ;
④9542--x x ; ⑤823152+-x x ; ⑥121124-+x x
A .2个
B .3个
C .4个
D .5个
二、填空题
7.=-+1032x x __________.
8.=--652m m (m +a )(m +b ). a =__________,b =__________.
9.=--3522
x x (x -3)(__________).
10.+2x ____=-22y (x -y )(__________). 11.22____)(____(_____)+=++a m
n a . 12.当k =______时,多项式k x x -+732有一个因式为(__________).
13.若x -y =6,36
17=xy ,则代数式32232xy y x y x +-的值为__________. 三、解答题
14.把下列各式分解因式:
(1)6724+-x x ; (2)36524--x x ; (3)4
22416654y y x x +-;
(4)633687b b a a --; (5)234456a a a --; (6)4
22469374b a b a a +-.
15.把下列各式分解因式:
(1)2224)3(x x --; (2)9)2(22--x x ; (3)2222)332()123(++-++x x x x ;
60)(17)(222++-+x x x x ;
(5)8)2(7)2(222-+-+x x x x ;
(6)48)2(14)2(2++-+b a b a .
16.已知x +y =2,xy =a +4,263
3=+y x ,求a 的值.。