高考物理动量定理解题技巧及练习题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动量定理解题技巧及练习题及解析
一、高考物理精讲专题动量定理
1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停
在沙坑里.求:
⑴沙对小球的平均阻力F ;
⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122
()
mg t t t (2)1mgt 【解析】
试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:
方向竖直向上
⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理
点评:本题考查了利用冲量定理计算物体所受力的方法.
2.如图所示,质量为m =245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m 0 = 5g 的子弹以速度v 0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:
(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v 1 (2)木板向右滑行的最大速度v 2 (3)木块在木板滑行的时间t
【答案】(1) v 1= 6m/s (2) v 2=2m/s (3) t =1s 【解析】 【详解】
(1)子弹打入木块过程,由动量守恒定律可得:
m 0v 0=(m 0+m )v 1
解得:
v 1= 6m/s
(2)木块在木板上滑动过程,由动量守恒定律可得:
(m 0+m )v 1=(m 0+m +M )v 2
解得:
v 2=2m/s
(3)对子弹木块整体,由动量定理得:
﹣μ(m 0+m )gt =(m 0+m )(v 2﹣v 1)
解得:物块相对于木板滑行的时间
21
1s v v t g
μ-=
=-
3.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .
(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;
(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .
(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法. 【答案】(1)(2)
(3)增大S 可以通过减小q 、
U 或增大m 的方法.
提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:
(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv
根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则
根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.
4.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m ,两根质量均m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行,大小0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过T=5.0s ,金属杆甲的加速度为a=1.37 m/s 2,求此时两金属杆的速度各为多少?
【答案】8.15m/s 1.85m/s 【解析】
设任一时刻两金属杆甲、乙之间的距离为,速度分别为和
,经过很短时间
,杆
甲移动距离
,杆乙移动距离
,回路面积改变
由法拉第电磁感应定律,回路中的感应电动势:
回路中的电流:
杆甲的运动方程:
由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:
联立以上各式解得
代入数据得=8.15m/s =1.85m/s
【名师点睛】
两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.
5.正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f与m、n和v的关系。(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
【答案】
【解析】
【分析】
根据“粒子器壁各面碰撞的机会均等”即相等时间内与某一器壁碰撞的粒子为该段时间内粒子总数的,一个粒子每与器壁碰撞一次给器壁的冲量是,据此根据动量定理求与某
一个截面碰撞时的作用力F;
【详解】
一个粒子每与器壁碰撞一次给器壁的冲量是:
在时间内能达到面积为S容器壁上的粒子所占据的体积为:
由于粒子有均等的概率与容器各面相碰,即可能达到目标区域的粒子数为:
根据动量定理得:
考虑单位面积,整理可以得到: