八年级上册数学 期末试卷综合测试(Word版 含答案)(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 期末试卷综合测试(Word 版 含答案)(1)

一、八年级数学全等三角形解答题压轴题(难)

1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.

(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;

(2)如图2,若点A 的坐标为()

23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;

(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.

【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=

12

(EM-ON),证明见详解. 【解析】

【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;

(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-

(3)作BH ⊥EB 于点B ,由条件可以得出

∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12

(EM-ON).

【详解】

(1)如图(1)作CQ ⊥OA 于Q,

∴∠AQC=90°,

△为等腰直角三角形,

∵ABC

∴AC=AB,∠CAB=90°,

∴∠QAC+∠OAB=90°,

∵∠QAC+∠ACQ=90°,

∴∠ACQ=∠BAO,

又∵AC=AB,∠AQC=∠AOB,

≅(AAS),

∴AQC BOA

∴CQ=AO,AQ=BO,

∵OA=2,OB=4,

∴CQ=2,AQ=4,

∴OQ=6,

∴C(-6,-2).

(2)如图(2)作DP⊥OB于点P,

∴∠BPD=90°,

△是等腰直角三角形,

∵ABD

∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,

∴∠ABO=∠BDP,

又∵AB=BD,∠AOB=∠BPD=90°,

∴AOB BPD

∴AO=BP,

∵BP=OB-PO=m-(-n)=m+n,

∵A ()23,0-,

∴OA=23,

∴m+n=23,

∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,

∴整式2253m n +-的值不变为3-.

(3)()12

EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.

∵OBM 为等边三角形,

∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,

∴EO=MO,∠EBM=105°,∠1=30°,

∵OE=OB,

∴OE=OM=BM,

∴∠3=∠EMO=15°,

∴∠BEM=30°,∠BME=45°,

∵OF⊥EB,

∴∠EOF=∠BME,

∴ENO BGM ≅,

∴BG=EN,

∵ON=MG,

∴∠2=∠3,

∴∠2=15°,

∴∠EBG=90°,

∴BG=

12

EG, ∴EN=12EG, ∵EG=EM-GM,

∴EN=

12

(EM-GM), ∴EN=12(EM-ON).

【点睛】

本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.

2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);

(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;

(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.

【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析

【解析】

【分析】

(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;

(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此

CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;

(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出

相关文档
最新文档